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Abstract

We build a maximum entropy model for skin detection. This model im-
poses constraints on various marginal distributions. Parameter estimation as
well as optimization cannot be tackled without approximations. We propose
to use a tree approximation of the pixel lattice. Parameter estimation is then
reduced to the estimations of color histograms for neighbor pixels. More-
over, the belief propagation algorithm permits to obtain fast solution for skin
probability at pixel locations. We assess the performance on the Compaq
database.

1 Introduction

1.1 Skin Detection
Skin detection consists in detecting human skin pixels from an image. It plays an impor-
tant role in various applications such as face detection [14], searching and filtering image
content on the web [6].

Research has been performed on the detection of human skin pixels in color images by
use of various skin color models. One method is to define explicitly the skin color bound-
aries in some color space [6]. The simplicity of this method leads to a fast classifier.
However, the challenge is to find a good color space and adequate decision rules empiri-
cally. Some researchers have used skin color models such as Gaussian , Gaussian mixture
[14]. There are also nonparametric skin modeling method such as histograms based[11]
and self-organizing map(SOM) based methods[3]. A recent evaluation appeared in [15].
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In most experiments, skin pixels are acquired from a limited number of people under
a limited range of lighting conditions. Unfortunately, the illumination conditions are of-
ten unknown and the variation in skin colors is much less constrained in practice. This
is particularly true for web images captured under a wide variety of conditions. How-
ever, given a large collection of labeled training pixels including all human skin (Cau-
casians, Africans, Asians), one can still model the distribution of skin and non-skin col-
ors. Jones and Rehg [12] compared an histogram-based model with a Gaussian mixture
density model. The histogram models were found to be slightly superior.

A skin detection system is never perfect and different users use different criteria for
evaluation. General appearance of the skin-zones detected, or other global criteria might
be important for further processing. For quantitative evaluation, we will use false positives
and detection rates. False positive rate is the proportion of non-skin pixels classified
as skin and detection rate is the proportion of skin pixels classified as skin. The user
might wish to combine these two indicators his own way depending on the kind of error
he is more willing to afford. Hence we propose a system where the decision of each
pixel is not binary but a floating number between zero and one, the larger the value, the
larger the belief for a skin pixel. The user can then apply a threshold to obtain a binary
image. Error rates for all possible thresholding are summarized in the Receiver Operating
Characteristic (ROC) curve.

We use the Compaq Database [12]. It is a catalog of almost twenty thousand images.
Each of them is manually segmented such that the skin pixels are labeled. Our goal is to
infer a model from this set of data in order to perform skin detection on new images.

1.2 Methodology
Maximum Entropy Modeling (MaxEnt) is a method for inferring models from a data set.
See [9] for the underlying philosophy. It works as follows: 1) choose relevant features 2)
compute their histograms on the training set 3) write down the maximum entropy model
within the ones that have the feature histograms as observed on the training set 4) es-
timate the parameters of the model 5) use the model for classification. This plan has
been successfully completed for several tasks related to speech recognition and language
processing. See for example [1] and the references therein. In these application the un-
derlying graph on which the model is defined is a line graph or even a tree but in all cases
it has no loops. When working with images, the graph is the pixel lattice. It has indeed
many loops. A break through appeared with the work in [19] on texture simulation where
1) 2) 3) 4) was performed for images and 5) replaced by simulation.

We adapt to skin detection as follows: in 1) we specialize in colors and “skinness” for
one pixel and two adjacent pixels. In 2) we compute the histogram of these features in the
Compaq manually segmented database. Models for 3) are then easily obtained. In 4) we
use the tree approximations. It consists in approximating locally the pixel lattice by a tree.
The parameters of the MaxEnt models are then expressed analytically as functions of the
histograms of the features. In 5) we pursue the approximation in 4): we use the Belief
Propagation algorithm, see [16], which is exact in tree graph but only approximative in
loopy graphs.

Indeed, one of us had already witnessed in a different context that tree approximation
to loopy graph might lead to effective algorithms, see [8].

The rest of the paper is organized as follows: in section 2, we detail the features



used and compute the associated MaxEnt models. In section 3 we present the various
tree approximations and the related Belief Propagation algorithm. section 4 is devoted
to experiments and comparisons with alternative methods. Finally, the conclusion is in
section 5.

2 Maximum Entropy Models

2.1 Notations
Let’s fix the notations. The set of pixels of an image is S. The color of a pixel s ∈ S is
xs. It is a 3 dimensional vector, each component being coded on one octet. We notate
C = {0, . . . ,255}3. The ”skinness” of a pixel s, is ys with ys = 1 if s is a skin pixel and
ys = 0 if not. The color image, which is the vector of color pixels, is notated x and the
binary image made up of the ys’s is notated y.

Let’s assume for now that we knew the joint probability distribution p(x,y) of the
vector (x,y), then Bayesian analysis tells us that, whatever cost function the user might
think of, all that is needed is the posterior distribution p(y|x).

From the user’s point of view, the useful information is contained in the one pixel
marginal of the posterior, that is, for each pixel, the quantity p(ys = 1|x), quantifying the
belief for skinness at pixel s. In practice the model p(x,y) is unknown. Instead, we have
the segmented Compaq Database. It is a collection of samples

{(x(1),y(1)), . . . ,(x(n),y(n))}

where for each 1 ≤ i ≤ n, x(i) is a color image and y(i) is the associated binary skinness
image. We assume that the samples are independent of each other with distribution p(x,y).
The collection of samples is referred later as the training data. Probabilities estimated
using the classical empirical estimators are denoted with the letter q.

In what follows, we build models for the joint distribution of the skinness image and
the color image p(x,y) using maximum entropy modeling.

2.2 Baseline and Hiddend Markov (HMM) Models
First, we build a model that respects the one pixel marginal observed in the Compaq
Database. That is, consider probability distributions over for (x,y)that verify:

C0 : ∀s ∈ S,∀xs ∈C,∀ys ∈ {0,1}, p(xs,ys) = q(xs,ys)

In this expression, the quantity on the right side is the proportion of pixels with color xs
and label ys among all the pixels in the training data. The MaxEnt solution under C0,
using Lagrange multipliers is the following independent model:

p(x,y) = ∏
s∈S

q(xs,ys) (1)

This model is the most commonly used model in the literature [11]. We will use it as a
baseline for evaluating subsequent models.

Including constraints on the labels of neighbor pixels leads naturally to a HMM model.
This model has been studied thoroughly in [10] and shown to statistically improve the
performances of the baseline model.



2.3 First Order Model (FOM)
The baseline model was built in order to mimic the one pixel marginal, that is q(xs,ys) as
observed on the database. Now, we constrain once more the MaxEnt model by imposing
the two-pixel marginal, that is p(xs,xt ,ys,yt), for neighboring s and t, to match those
observed in the training data. Hence we define the following constraints:

C1 : ∀s ∈ S,∀t ∈ V (s),∀xs ∈C,∀xt ∈C,

∀ys ∈ {0,1},∀yt ∈ {0,1},
p(xs,xt ,ys,yt) = q(xs,xt ,ys,yt)

The quantity q(xs,xt ,ys,yt) is the proportion of times we observe the values (xs,xt ,ys,yt)
among all the couples of neighboring pixels, regardless of the orientation of the pixels s
and t in the training set.

Clearly, C1 ⊂ C0. Using once more Lagrange multipliers, the solution to the MaxEnt
problem under C1 is then the following Gibbs distribution:

p(x,y)≈ ∏
<s,t>

λ (xs,xt ,ys,yt) (2)

where λ (xs,xt ,ys,yt) > 0 are parameters that should be set up to satisfy the constraints.
Assuming that one color can take 2563 values, the total number of parameters is as huge
as 2563×2563×2×2.

2.4 Parameter Estimation
Parameter estimation in the context of MaxEnt is still an active research subject, especially
in situations where the likelihood function cannot be computed for a given value of the
parameters. This is the case here, since the partition function cannot be evaluated even for
very small size images. One line of research consists in approximating the model in order
to obtain a formula where the partition function no longer appears: Pseudo-likelihood
[2], [5] and mean field methods [18], [7] are among them. Another possibility is to use
stochastic gradient as in [17]. However, due to the large number of parameters in the
FOM model, this is a real challenge.

Moreover, recall that the quantities of interest for the users are the one pixel marginal
of the posterior, that is for each s the quantity p(ys = 1|x). These quantities are not easily
available due once more to the impossibility of evaluating the partition function. One has
then to use stochastic algorithm as the Gibbs sampler which is time consuming or to rely
on an approximate model.

By approximating the local pixel lattice with a tree, the parameter estimation is eradi-
cated. We can further take advantage of the Belief Propagation algorithm for the fast and
exact computing of the one pixel marginal p(ys = 1|x) as we shall see now.

3 Tree Approximations of Pixel Lattice

3.1 Maximum Entropy Models in Tree Graphs
The FOM defined in (2) is a Markov Random Field on the non-oriented pixel graph. Let
us assume for now that this graph was a tree: that is a connected graph without loops.



Then, the Maxent solution under C1 would be

p(x,y)≈ ∏
<s,t>

q(xs,xt ,ys,yt)

q(xs,ys)q(xt ,yt)
∏
s∈S

q(xs,ys) (3)

The proof is as follows: we know from [13] that any pairwise MRF on a tree graph can
be written

p(z)≈ ∏
<s,t>

p(zs,zt)

p(zs)q(zt)
∏
s∈S

p(zs) (4)

where p(zs) is the one-site marginal of p and p(zs,zt) is it’s two-site marginal.
Applying this result to z = (x,y) and replacing p with q on the right side permits to

obtain the model in equation (3). By construction it is in C1. Moreover it has the same
form as the one in equation (2) which concludes the proof.

3.2 Tree-based First Order Model (TFOM)
The model in (3) cannot be used as it is. Indeed, the quantities q(xs,xt ,ys,yt) cannot be
directly extracted from the database without drastic over-fitting due to high dimensional-
ity.

We propose to estimate q(xs,xt ,ys,yt) using the classic MaxEnt procedure. The con-
straints include the marginal histograms for one pixel as well as the histogram of the
difference of two adjacent pixels. This can be done off-line and will not introduce any
additional online load to skin detection. To be more precise, denoting by p(xs,xt ,ys,yt)
the two-site joint distribution, we define the following constraints:

C ∗ : ∀xs ∈C,∀xt ∈C,∀ys ∈ {0,1},∀yt ∈ {0,1},

p(xs,ys) = q(xs,ys)

p(xt ,yt) = q(xt ,yt)

p(xt − xs,ys,yt) = q(xt − xs,ys,yt)

The entropy of the joint distribution is defined as:

H(p) =− ∑
xs,xt ,ys,yt

p(xs,xt ,ys,yt) log p(xs,xt ,ys,yt)

Our goal is to find the MaxEnt solution

p∗(xs,xt ,ys,yt) = argmaxpH(p)

subject to the constraints C ∗. Using Lagrange multipliers, then the MaxEnt solution is

p∗(xs,xt ,ys,yt) = Pλ ∩C ∗

in which

Pλ = {exp[λ (xs,ys) + λ (xt ,yt) + λ (xt − xs,ys,yt)]

Zλ
} (5)

where Zλ = ∑xs,xt ,ys,yt exp[λ (xs,ys) + λ (xt ,yt) + λ (xt − xs,ys,yt)] is a normalizing con-
stant.



The MaxEnt model p∗(xs,xt ,ys,yt) is equivalent to a model p∗λ (xs,xt ,ys,yt)∈Pλ that
maximizes the likelihood of the training data [1]. However, the parameters λ ∗ that maxi-
mize the likelihood cannot be found analytically. Instead, we have to resort to numerical
methods. From the perspective of numerical optimization, the likelihood function is well
behaved since it is smooth and convex-∩ in λ . An optimization method specifically tai-
lored to the maximum entropy problem is the generalized iterative scaling algorithm of
Darroch and Ratcliff[4]. In the algorithm, we first initialize the parameters λ ’s. Then
the iterative scaling process follows. For each iteration that updates the parameters, the
likelihood function will climb a little toward the maximum value. We stop the iterative
scaling when such updating will introduce very little gain in the likelihood.

The generalized iterative scaling algorithm for our solution of λ ∗ has been proposed
by [1]. It is accelerated as follows:

1. Initialize λ

∀xs ∈C,∀xt ∈C,∀ys ∈ {0,1},∀yt ∈ {0,1},
λ0(xs,ys) = λ0(xt ,yt) = λ0(xt − xs,ys,yt) = 0.0

2. Update λ
(1) Calculate marginals and Zλ
(a) Initialize marginals and Zλ to 0.
(b) For each value (xs,xt ,ys,yt), we calculate

g(xs,xt ,ys,yt) = exp[λ (xs,ys) + λ (xt ,yt) + λ (xt − xs,ys,yt)]

once and update the normalizing constant and marginal arrays,

Zλ ← Zλ + g(xs,xt ,ys,yt)

p(xs,ys)← p(xs,ys) + g(xs,xt ,ys,yt)

p(xt ,yt)← p(xs,ys) + g(xs,xt ,ys,yt)

p(xt − xs,ys,yt)← p(xt − xs,ys,yt) + g(xs,xt ,ys,yt)

(c) For all the marginals

p(xs,ys)← p(xs,ys)/Zλ

p(xt ,yt)← p(xt ,yt)/Zλ

p(xt − xs,ys,yt)← p(xt − xs,ys,yt)/Zλ

(2) Calculate all ∆λ

∆λ (xs,ys) = ln
q(xs,ys)

p(xs,ys)

∆λ (xt ,yt) = ln
q(xt ,yt)

p(xt ,yt)

∆λ (xt − xs,ys,yt) = ln
q(xt − xs,ys,yt)

p(xt − xs,ys,yt)



Figure 1: Left: 4-star tree of depth 1. right: 4-star tree of depth 2.

(3) Update λ according to: λ ← λ + ∆λ
3. Goto 2 until convergence.
The above algorithm is more than 3 times faster than the “basic” version. This is

probably due to the avoidance of the subscript searching process in the calculation of
∆λ (xt − xs,ys,yt).

3.3 4-Star Tree Approximation
The 4-star tree of depth 1 rooted at s, T s

1 , is built by adding to s its 4 neighbors in the
pixel lattice. For the 4-star tree with one more depth, we add one node u for each leaf t of
T s

1 , following the direction s→ t. We repeat this process until the tree reaches the depth
needed. Figure 1 shows the construction of 4-star trees.

3.4 One-Site Marginal—Belief Propagation Algorithm (BP)
Our aim is to compute for each pixel s, the quantity p(ys|xt , t ∈ T s

k ), for p in one of
the models above, and for k ranging from 1 to say 5. This computation can be done
exactly. Moreover, it can be done efficiently using the Belief Propagation Algorithm
(BP). This algorithm has been discovered in different scientific communities. It is called
BP in A.I., Viterbi algorithm in the special case of line graphs and dynamic programming
in combinatorial optimization. See [16] and the references therein for a detailed account.

For the generic pairwise model

p(x,y)≈ ∏
<s,t>

ψ(xs,xt ,ys,yt)∏
s∈S

φ(xs,ys) (6)

The BP algorithms consists in updating messages along the edges of the tree. ∀yu ∈
{0,1}, we compute:

mvu(yu)←∑
yv

φ(xv,yv)ψ(xu,xv,yu,yv) ∏
w∈V (v),w6=u

mwv(yv) (7)

where V (v) are the neighbors of v. The quantities mvu are interpreted as a message coming
from v to u. The message updating process proceeds from the leaves to the root. We
compute a message mvu only when ∀w ∈ V (v),w 6= u, ∀yv ∈ {0,1}, mwv(yv) is available.
When we have got all the messages to the root site s, we can calculate the following
marginals for ys ∈ {0,1}:

p(ys,xt , t ∈ T s
k )≈ φ(xs,ys) ∏

t∈V (s)
mts(ys)



Figure 2: Left: Original image. Center : Skin detection. Baseline model. Right: Skin
detection. Tree First Order Model.

Then

p(ys = 1|xt , t ∈T s
k ) =

p(ys = 1,xt , t ∈T s
k )

p(ys = 0,xt , t ∈T s
k ) + p(ys = 1,xt , t ∈T s

k )

4 Experiments
All experiments are made using the following protocol. The labeled Compaq database
contains about 13,562 photographs, in which there are 4,649 photographs with skin and
8,913 photographs without skin. Each photograph with skin is accompanied with a binary
mask image indicating skin and non-skin regions. These masks were obtained by manual
labeling[11]. This database is split into two almost equal parts randomly. The first part,
containing nearly 674 million pixels is used as training data while the other one, the test
set, is left aside for ROC curve computation. We use 32 bins per RGB channel in the
following experiments.

Fig. 3 shows ROC curves of 4-star TFOM and Baseline model computed from the
test set. The Baseline model permit to detect 80.6% of the skin pixels with 10% of false
positive rate.

4.1 TFOM Model
Result for the TFOM model with one iteration of the BP algorithm is presented in Fig. 2.
More iterations do not improve the performance of TFOM. Bulk results in Fig. 3 shows
that the 4-star TFOM has a uniform improvement over the Baseline model as well as over
the HMM model. For example, the 4-star TFOM model permits to detect 82.9% of the
skin pixels with 10% of false positive rate. Computational time is about 0.70 second per
image for 4-star TFOM. All the experiments are performed on a PC with a Pentium 4
processor at 1.7 Ghz and 256 MB memory.

5 Summary and Conclusions
We have shown in this paper that the nowadays popular Maximum Entropy Modeling
method can lead to an efficient algorithm for a supervised image segmentation problem.
We have used extensively a tree approximation that consists in approximating locally the
loopy pixel lattice by a tree graph. The natural algorithm for assessing probability for skin
at pixel locations in this context is the Belief Propagation algorithm. The resulting algo-
rithm performs uniformly better than the wide spread Baseline model. It also improves
over a Hidden Markov Model that was considered in an early version of this work.



Figure 3: Receiver Operating Characteristics (ROC) curves. x-axis is the false positive
rate, y-axis is the detection rate which is the complement to one of the false negative rate.
Lower curve: Baseline model. Center curve: HMM model. upper Curve: Tree First
Order model
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