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Setting

x1, . . . , xn an iid sample of size n of an unknown distribution [or
point mass function (pmf)] p.
Each xi ∈ {a1, . . . , ak} finite alphabet of numbers, species, words,
DNA patterns, ...
we’ll use {1, . . . , k} in what follows.
our goal : estimate p when

I small sample situation n 6>> k

I domain specific information is available



counts,empirical distribution, type

x = (x1, . . . , xn) an iid sample of size n of a pmf p.
build the counts (n1, . . . , nk),
nj = #{xi , 1 ≤ i ≤ n, such that xi = j}
visualize it .. histogram

1 2 3 4 5

give it names and notations :
p̂ = (n1

n , . . . , nk
n ) is the empirical distribution or type of x .



Language modeling

the 56837 of 27155 in 20080

< \s > 47108 to 26274 and 19579

N 36068 a 23857 ’s 11058

... ... ... ... ... ...
california-backed 1 logs 1 lengthens 1

words counts obtained from the UPENN repository database.
Three first lines are the largest counts observed. < \s > stands for
“end of sentence” and N stands for “numerical expression”. This
set contains 1,021,203 words. The number of words seen at least
once is 37,000.



Likelihood, Kulback-Liebler divergence and Shannon
entropy

x = (x1, . . . , xn) a sample of size n of a pmf p = (p1, . . . , pk),
xi ∈ {1, . . . , k}. The type of x is p̂ = (n1

n , . . . , nk
n ).

Let’s compute the log - base 2 - likelihood of the data x
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n∏

i=1
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k∏

j=1
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= −n(D(p̂, p) + H(p̂))



Why (not) using the Maximum Likelihood Estimator

I p̂ → p a.s. fundamental theorem of statistics.

I when k is large, there might be many values for which
pi << 1

n . In this case, with high probability, p̂i = 0. Leads to
a bias in entropy : as soon as p 6= δj ,

Ep(H(p̂)) < H(p)

I what about prior knowledge ?



Alternatives to the Maximum Likelihood Estimator

I generic
I Bayesian estimates with Dirichlet prior
I Minimax estimates

add-β rules

p̃i =
ni + β

n + βk
= (1− λ)

ni

n
+ λ

1

k
, with λ =

βk

n + βk

I specific
I Good-Turing in langage modeling
I Bayesian estimates with specific prior



The “Maximum Likelihood Set”

x = (x1, . . . , xn) a sample of size n. The type of x is
p̂ = (n1

n , . . . , nk
n ).

The Maximum Likelihood Set (MLS) is the set of pmf’s that put
more mass on the observed counts than on any other set of counts
possible for the same sample size.

M(p̂) = {p = (p1, . . . , pk),∀(n′1, . . . , n′k),
k∑

j=1

n′j = n,

Probp(n1, . . . , nk) >= Probp(n
′
1, . . . , n

′
k)} ⇔

n!

n1! . . . nk !

k∏
l=1

pnl
l ≥ n!

n′1! . . . n
′
k !

k∏
l=1

p
n′

l
l }



The “Maximum Likelihood Set” (continued)

p̂ = (n1
n , . . . , nk

n )

n!

n1! . . . nk !
.
= 2nH(p̂) where an

.
= bn ⇐⇒ 1

n
log(

an

bn
) → 0

and recall that
k∏

l=1

pnl
l = 2−n(D(p̂,p)+H(p̂))

so that Probp(n1, . . . , nk)
.
= 2−nD(p̂,p)

hence M(p̂) ≈ {p;∀p̂′,D(p̂, p) ≤ D(p̂′, p)}



Characterization of the “Maximum Likelihood Set”

Let (n1, . . . , nk) be the counts. Let’s define a neighborhood
relationship in the set of types with denominator n. The neighbors
of (n1, . . . , nk) are the types obtained by moving a single sample
from one value to another one. If a pmf is in the MLS then it has
to put more mass on the observed type than on any of its
neighbors. It turns out that the converse is true which leads to the
following

Proposition
A pmf p = (p1, . . . , pk) on the set {1, . . . , k} belongs to the MLS
M(p̂) associated with the counts (n1, . . . , nk) if and only if

(ni + 1)pj ≥ njpi ∀ 1 ≤ i 6= j ≤ k,



Idea of the proof

Choose (n1, . . . , ni + 1, . . . , nj − 1, . . . , nk), a neighbor of
(n1, . . . , nk), then recall that

Probp(n1, . . . , nk) =
n!

n1! . . . nk !

k∏
j=1

p
nj

j

Probp(n1, . . . , nk) ≥ Probp(n1, . . . , ni + 1, . . . , nj − 1, . . . , nk)

⇔ (ni + 1)pj ≥ njpi (1)

hence, with p̂ = (n1
n , . . . , nk

n ),

M(p̂) ⊂ {p; (ni + 1)pj ≥ njpi , i 6= j}



Proof (continue)

conversly, suppose that p verifies (ni + 1)pj ≥ njpi ,∀i 6= j , then for
any p̂′, choose a neighbor p̂′′ in the direction of p̂ = (n1

n , . . . , nk
n )

then one can check that

Probp(p̂
′′) ≥ Probp(p̂

′)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

p^’ p^" p^



Motivating Examples

For k = 2, the MLS is

M(p̂ = (
n1

n
, 1− n1

n
)) = {p = (p1, 1− p1);

n1

n + 1
≤ p1 ≤

n1 + 1

n + 1
}

for k = 3, Left : n = 3, Right : n = 10
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More Motivating Examples

M(
n1

n
, . . . ,

nk

n
) = {p; (ni + 1)pj ≥ njpi , ∀ 1 ≤ i 6= j ≤ k}

if n1 = n and ni = 0,∀i 6= 1 then

M(
n1

n
, . . . ,

nk

n
) = {p; p1 ≥ npi ,∀i 6= 1}

I If n = 1, then the MLS always contains the Uniform pmf.

I The element of the MLS with Maximum Entropy is

p∗1 =
n

n + k − 1
and ∀1 < l ≤ k, p∗l =

1

n + k − 1

If k > n, p∗1 ≤ 0.5 to be contrasted with the estimation
p̂1 = 1 given by the type.



Properties of the Maximum Likelihood Set

M(
n1

n
, . . . ,

nk

n
) = {p; njpi ≤ (ni + 1)pj , ∀ 1 ≤ i 6= j ≤ k}

Proposition
Let p̂ = (n1

n , . . . , nk
n ) be a type. The elements p = (p1, . . . , pk) of

the Maximum Likelihood Set M(p̂) verify

∀1 ≤ j ≤ k, nj > 0 ⇒ pj > 0 (1)

∀1 ≤ i , j ≤ k, ni < nj ⇒ pi ≤ pj (2)

∀1 ≤ i ≤ k, p̂i
n

n + k
≤ pi ≤ p̂i +

1

n
(3)



More Properties of the Maximum Likelihood Set

M(
n1

n
, . . . ,

nk

n
) = {p; njpi ≤ (ni + 1)pj , ∀ 1 ≤ i 6= j ≤ k}

Proposition
Let p̂ = (n1

n , . . . , nk
n ) be a type. The elements p = (p1, . . . , pk) of

the Maximum Likelihood Set M(p̂) verify

‖p − p̂‖1 =
k∑

i=1

|pi − p̂i | ≤
2(k − 1)

n

p̂ ∈M(p̂), but no other type with denominator n is an element of
M(p̂)
If xi , . . . , xn are independent samples with common pmf q ∈ Pk

and type p̂, then

sup
p∈M(p̂)

‖p − q‖1 → 0 as n →∞ with probability 1



Selecting an Element from the Maximum Likelihood Set

Proposition
Let p̂ = (n1

n , . . . , nk
n ) be a type and M(p̂) the MLS associated. Let

q = (q1, . . . , qk) be a pmf such that p̂ << q. Then, there exists a
unique element p∗ ∈M(p̂) such that

D(p∗, q) = min
p∈M(p̂)

D(p, q)



Selecting an Element from the Maximum Likelihood Set
(more)

Proposition
Let M(p̂) be the MLS defined by the counts (n1, . . . , nk). For any
pmf q � p̂, the pmf

p∗ = arg min
p∈M(p̂)

D(p‖q)

has the “monotonicity” property:

ni = nj and qi ≥ qj ⇒ p∗i ≥ p∗j ∀ 1 ≤ i 6= j ≤ k.

Hence,

ni = nj and qi = qj ⇒ p∗i = p∗j ∀ 1 ≤ i 6= j ≤ k.



Back to Language Modeling

the 56837 of 27155 in 20080

< \s > 47108 to 26274 and 19579

N 36068 a 23857 ’s 11058

... ... ... ... ... ...
california-backed 1 logs 1 lengthens 1

words counts obtained from the UPENN repository database.
Three first lines are the largest counts observed. < \s > stands for
“end of sentence” and N stands for “numerical expression”. This
set contains 1,021,203 words. The number of words seen at least
once is 37,000.



Rank ordered data
Zipf Law (log i , log

nσ(i)

n ) is a straight line with slope −1 provides a
reference pmf.
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Measuring Performances

To measure the efficacy of an estimate p̃ of p, we compute the
average codeword length (in bits) that the estimate p̃ achieves on
the type p̂T of the test set, that is

`(p̃) =
1

nT

nT∑
t=1

log
1

p̃(xt)
= D(p̂T‖p̃) + H(p̂T ) ,

where nT is the size of the test set, the xt ’s are the words of the
test set and H(·) the Shannon entropy.



Results

p̂β β = 1 p̂β β = 1
2 p̂β β = 1

k p̂GT

`(·) 10.21 10.21 10.52 10.19

p∗ : q=unif p∗ : q=Zipf p∗ : q=p̂GT

`(·) 10.21 10.20 10.19

p̂β β = 1 p̂β β = 1
2 p̂β β = 1

k p̂GT

avg. `(·) 10.58 10.42 11.31 10.37
std. dev. 0.017 0.017 0.036 0.016

p∗ : q=unif p∗ : q=Zipf p∗ : q=p̂GT

avg. `(·) 10.58 10.40 10.37
std. dev. 0.015 0.017 0.018

Codeword length in bit for pmf estimates: Upper Table : n = 106

words. Lower Table : average and standard deviation over 10
training sets with n = 105 words. “avg.” stands for average and
“std. dev.” stands for standard deviations.



Numerical aspects

Effective-k ≈ 600 for n = 106.
Minimize a convex function over a convex polyhedra in dimension
600.
Tune-up of the convex optimization package CFSQP developped
by Lawrence, Zhou and Tits (1997). A C code for solving (large
scale) constrained nonlinear (minimax) optimization problems,
generating iterates satisfaying all inequality constraints.



Ongoing work

I Estimate p(w(m+1)|wm) using p(w) as reference pmf. Iterate.

I Estimate pmf from functions of the type.


