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Abstract—Methods for tracking an object have generally fallen into two
groups: tracking by detection, and tracking through local optimization.
The advantage of detection-based tracking is its ability to deal with
target appearance and disappearance, but does not naturally take
advantage of target motion continuity during detection. The advantage
of local optimization is efficiency and accuracy, but requires additional
algorithms to initialize tracking when the target is lost.

To bridge these two approaches, we propose a framework for unified
detection and tracking as a time-series Bayesian estimation problem.
The basis of our approach is to treat both detection and tracking as a
sequential entropy minimization problem, where the goal is to determine
the parameters describing a target in each frame. To do this we integrate
the Active Testing paradigm with Bayesian filtering, and this results in a
framework capable of both detecting and tracking robustly in situations
where the target object enters and leaves the field of view regularly. We
demonstrate our approach on a retinal tool tracking problem and show
through extensive experiments that our method provides an efficient and
robust tracking solution.

Index Terms—Unified object detection and tracking, Active Testing,
Instrument tracking, Adaptive Sensing, Retinal microsurgery.

1 INTRODUCTION

Visual tracking has been intensely studied in computer
vision over the past two decades [1]. Informally, the
objective of visual tracking is to provide an accurate es-
timate of the configuration of a target across time, where
the term “configuration” denotes parameters describing
the position, pose, or shape of an object. A general
solution involves solving two subtasks: (i) detecting the
target in the initial image in which it appears, and (ii)
predicting and refining (i.e., tracking) the configuration
of the detected target in subsequent images [1], [2]. While
extensive research in this area has produced excellent
tracking systems, combining these two subtasks remains
difficult when the target appearance is complex or when
the target enters and leaves the field of view frequently.

Indeed, the initial detection of the target is often
the most difficult aspect of a tracking system. This is
particularly the case when object appearance is complex
and many configuration parameters are involved [3]–[5].
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Even more so, performing detection with accuracy and
at frame rate for objects that have many pose parameters
is often infeasible due to the enormous size of the search
space i.e., easily over a billion hypotheses. In addition,
while object detection and localization algorithms, such
as classifier cascades [6], [7] or branch-and-bound algo-
rithms with SVM based cost functions [8] are expected
to determine parameters that define an object (i.e., a
bounding box [6], or object segmentation [9]), incorpo-
rating prior object knowledge into these frameworks to
improve detection in subsequent images is usually an
ad-hoc adaptation of common filtering paradigms [10],
[11].

Conversely, some tracking approaches have tried to
place detection and tracking under the same umbrella.
Approaches have included strategies for removing faulty
detections by model validation and temporal non-
maximal suppression [12]–[14]. However, in these cases
only restricted regions of the image are considered when
searching for the target, which often leads to tracking
failures when motion models are violated. Other ap-
proaches have performed tracking by using cascades of
detection processes that refine the possible object loca-
tion [15], [16]. While these have generally been shown
to be robust, the construction of these systems has been
hand-crafted for each problem setting with no underly-
ing principle. This in turn makes them challenging to
implement in real-applications.

1.1 An Active Testing Approach

In this work, we propose an algorithmic solution for the
task of detection and tracking. Our approach embodies
and extends the Active Testing (AT) paradigm [3], [17]
and allows both detection and tracking to be considered
within the same framework. In particular, in both tasks,
estimating the object parameters is achieved by using the
same sequential entropy minimization procedure, and
hence removes the need for two separate algorithms and
the protocols necessary to join them. By using the AT
framework and Bayesian filtering strategies, the entire
search space of the object is always considered when
searching for the object pose, and informative priors
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can effectively be used to weigh likely pose candidates
in subsequent images. In addition, within the AT opti-
mization, the parameters of the object are searched se-
quentially, requiring far fewer observation models when
compared to [17]. Consequently, the learning stage of the
framework is significantly simplified. Finally, central to
the tracking problem, we detail how to incorporate tradi-
tional gradient-based tracking methods for this task [1],
[18], [19] within our framework.

In summary, the unique aspects of our framework are:
(i) an information-based heuristic is used to guide the
search process during detection and tracking, allowing
both to be solved using the same optimization strategy
while considering the entire search space at all times,
(ii) traditional local optimization tracking is incorporated
into a larger class of image functions used to gather
information regarding the location of the target and
(iii) the process of learning observation models from
training data is greatly simplified by introducing a new
parametrization of these models.

1.2 Instrument Tracking in Surgery

We demonstrate our approach on the task of detect-
ing and tracking a surgical instrument during retinal
microsurgery. From a computer vision point of view,
visual tracking of instruments is a challenging problem
within a controlled environment. The instruments used
during surgery are known a priori, making it possible
to learn their appearance and geometry beforehand.
However, the instruments are subject to a large variety of
appearance changes during procedures, making tracking
difficult. For example, an instrument may be partially
blurred, the shadow of the instrument may be similar
in appearance to itself, and local and global illumina-
tion conditions change with time. While one possibility
would be to model the background and detect outliers
to estimate the instrument pose as in [20], modeling
the background in in-vivo settings remains challenging,
particularly when the eye moves during the procedure.

In the context of surgical applications and with the
goal of providing semi-automated assistance for clin-
icians during procedures, tool detection has received
increased attention in recent years. Towards this end, a
number of techniques have been proposed such as in
[20], [21] where kinematic information and instrument
templates were used to detect and track tools in image
sequences. In [22]–[25], instrument models based on
pixel, or local color are learned and used for detec-
tion and segmentation. Other methods, as in [26], [27]
extracted edges and lines to ultimately infer tool tip
position. Yet, to date a majority of methods have relied
on the ability to alter the tool appearance directly by
adding visible markers to facilitate tool detection [28]–
[30].

Unlike other approaches for this task that demand
prohibitively high computational costs [31] or extremely
accurate initialization methods [19], [21], [32], our so-
lution provides a feasible and automatic solution to

tracking retinal instruments without the need for ac-
curate instrument motion models. More importantly,
this remains the case when the instrument enters and
leaves the field of view often. To demonstrate this, our
approach is validated on a microscope platform that
uses a phantom eye and also on images from human
retinal microsurgery. While a preliminary version of our
method was presented in [33], this paper provides a full
description of our approach, integrates gradient-based
tracking methods in our framework, and presents exten-
sive additional empirical results on both phantom eye
data and human in-vivo data. While this work focuses
on this particular application, the approach is relevant
for a number of other applications as well.

The remainder of the paper is organized as follows:
in Sec. 2 we first introduce some notation and describe
the problem formulation. We then introduce tracking as
a Bayesian sequential estimation problem and describe
how our approach embodies this structure in Sec. 3. In
Sec. 4 we describe the AT model for detecting retinal
instruments. In Sec. 5, we perform extensive experi-
mentation to validate our approach on both phantom
and in-vivo data. Finally, we conclude with some closing
remarks in Sec. 6.

2 PROBLEM FORMULATION

The aim of this work is to locate a surgical instrument
in a sequence of monocular images, gathered from the
operating microscope. Similar to most detection and
tracking approaches, we assume that the instrument’s
position and orientation1, or pose, can be described by
a relatively small number of parameters. As depicted
in Fig. 1(left), we let the parameters representing the
instrument be defined as Y = (Y1, Y2, Y3), where Y1

corresponds to the instruments point of entry in the
image (i.e., a pixel location on the image boundary), Y2

describes the angle the instrument makes with Y1 and
Y3 is the instruments length measured in pixels. This
particular parametrization is chosen as it is simple and
intuitive to the retinal microsurgery application.

Ultimately, we are interested in determining the values
of Y t = (Y t

1 , Y
t
2 , Y

t
3 ), for all images in a sequence, IT =

(I1, . . . , IT ). For this reason, we treat Y t as a random
variable that must be inferred and where we want to
compute P (Y t|It), t = 1, . . . , T .

To do this, we first describe the pose space of the
instrument. This is achieved in two steps. First, let the
instrument’s pose space when in the field of view, S1, be

S1 = {[0, L]× [−π/2, π/2]× [δ,D]}

where L is the perimeter length of the image, δ and
D are the minimum and maximum instrument lengths
measured in pixels. In practice, δ is 10% of the width of
the image.

1. The scale or size parameter is assumed to be known given that the
tool must be in focus and microscopes used during procedures have
very large focal lengths. Hence, we assume the tool scale is known.
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Fig. 1. (left) Tool parametrization: the retinal instrument
has three parameters consisting of the point of entry of
the instrument in the image, Y1, the angle the instrument
makes with the image boundary at the point of entry, Y2

and the instruments length, Y3. (right) Diagram of surgical
environment, displaying the positioning of the light pipe
and instrument during surgery.

Second, since the instrument may not be visible in the
field of view of the camera, the separate space S0 = {�},
is defined for this event (i.e., the � is a token representing
this case).

Finally, the complete pose space of the instrument is
defined as Y ∈ S = S1 ∪ S0.

3 ACTIVE TESTING FOR TOOL TRACKING

To detect and track an object, we cast the tracking
problem in a Bayesian sequential estimation fashion [10],
[11], [34]. That is, at time t, we must infer the random
variable, Y t, given the image sequence observed up to
that time instant, It. This can be expressed by,

P (Y t|It) =

∫
P (Y t|Y t−1, It)P (Y t−1|It)dY t−1 (1)

∝ P (It|Y t)

∫
P (Y t|Y t−1)P (Y t−1|It−1)dY t−1

(2)

∝ P (It|Y t)P (Ŷ t) (3)

where the conditional distribution given the observa-
tions can be rewritten as (1) by including the marginal-
ization of Y t−1 and an application of Bayes theo-
rem. (2) follows from (1) by another application of
Bayes theorem, the assumption of Markov dynamics of
the object, and the assumption that P (Y t) is a suffi-
cient statistic for It. In (3) we have defined P (Ŷ t) =∫
P (Y t|Y t−1)P (Y t−1|It−1)dY t−1.
In most cases, various elements of the observation

model, the dynamics and the distribution on Y have
been approximated in order to allow both fast and
feasible computation. For example, in methods based on
Kalman filtering [10], the dynamics are assumed to be
linear or are linearized, and both the distribution of Y

and the observation model are Gaussian. In sampling-
based methods [11], non-Gaussian distributions of Y are
maintained by using particles. In our approach, we rely
on a partitioning of S1 (using a conditional binary tree)
to allow exact computation of posterior distributions and
will be achieved by using a slightly adapted histogram
filter [35], [36].

In the context of tracking, image observations are typ-
ically evaluated at a single location or a set of locations
predicted by the distribution of the target (i.e., at particle
locations). But in the case of detection, following such a
strategy is computationally hopeless as the number of
hypotheses to evaluate is enormous. For example, when
using particle filters, this would imply maintaining order
the size of the pose space number of particles. For this
reason, we need a mechanism to efficiently select which
observations to make and the AT optimization scheme
serves this purpose.

3.1 The Active Testing Model

The Active Testing (AT) [3], [17] can be viewed as an
iterative stochastic optimization scheme aimed at reduc-
ing the uncertainty of a discrete random variable by se-
quentially asking “questions” or “queries” in an efficient
fashion. In particular, this optimization scheme provides
an approximation to the maximum likelihood estimate
of the random variable when all possible questions are
answered.

In general, the optimization process is as follows: one
begins with a prior on the random variable to infer,
p0, and selects a subset of the pose space to query
using a question regarding this subset. The question
typically consists of computing a simple measurement
on a region of the image, such as the proportion of pixels
belonging to the object in some region of the image.
Hence, a question is a coupling between a computation
type and a region of the search space. The answer to the
question is then used in a Bayesian way to recompute a
new probability distribution or posterior distribution (i.e.,
p1, p2, p3, . . .).

Selecting a new question for the following iteration,
which we will denote as X̂ , is then achieved by choosing
the question that reduces the expected entropy of the
object as much as possible. This is equivalent to selecting
the question that has the highest information gain,

X̂ = argmax
X∈X

MI(Y ;X) (4)

where MI is the mutual information [37] and X is the
set of possible questions that are available. This proce-
dure repeats until the entropy of the random variable
drops below a pre-determined threshold, or a set number
of questions have been asked.

Hence, in order to make use of the AT framework
three pieces must be specified: (i) a prior distribution
on the parameter, P (Ŷ t), (ii) a representation for the
distribution of Y and (iii) a set of “questions” (and their
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associated noise models), X , pertaining to the parameter
Y . We will specify these in Sec. 4.

3.2 Active Testing Filtering

At this point, we describe the general form of an Active
Testing Filtering (ATF) algorithm (see Alg. 1). Here, the
user initially provides an instrument dynamics model,
P (Y t|Y t−1) and a prior on P (Y 0). Then, for each image
in the sequence, we first compute P (Ŷ t) (line 3) by using
the provided dynamics model and the previous density.
Depending on the model used, this can be computed in a
number ways. We can then treat P (Ŷ t) as an initial prior
for the AT optimization (line 4). That is, instead of using
uninformative priors on the pose of the instrument for
each image, we begin the AT optimization with P (Ŷ t),
which carries information about where the instrument
was previously located and how it may have moved.

Algorithm 1 Active Testing Filtering ( I )

1: Initialize: P (Y 0), P (Y t|Y t−1)
2: for all It do
3: P (Ŷ t) =

∫
P (Y t|Y t−1)P (Y t−1)dY t−1

4: P (Y t|It) = ActiveTesting(It, P (Ŷ t))
5: end for

In this work, we select a simple linear instrument
dynamics model of the form,

Y t+1 = AY t +N (0, α) (5)

where A is the dynamics transition matrix. In the exper-
iments that follow, we use two different models: (i) A
is the identity matrix which corresponds to assuming
the tool has not moved from one frame to another.
(ii) A is augmented to allow velocity estimates to be
compounded in the new prior. Given that we know that
the tool will enter and leave the field of view often, we
expect both dynamic models to be consistently violated.
While this may induce inappropriate priors P (Ŷ t), the
active testing framework will still recover the pose of the
instrument.

4 ACTIVE TESTING IMPLEMENTATION

In this section, we describe the aspects of the AT op-
timization that must be specified: the representation of
the probability distribution of Y and what “questions”
will be available to localize an instrument. In particular,
we will provide a set of questions, which can be viewed
as a set of features that can be evaluated, combined and
integrated by the framework and which are informative
with respect to different coordinates of Y .

4.1 Probability Density Representation

To represent p0 and the sequence of posterior distribu-
tions that will be computed, we make use of an abstract
decomposition of the space S1. Let S denote a binary

decomposition of the space S1. That is, S is a tree of
subsets

S = {Si,j , i = 0, . . . , H, j = 0, . . . , 2i − 1} (6)

The root of tree is S0,0 = S1 and Si,j is a subset of S0,0.
The decomposition of the tree is performed by splitting
one coordinate of Y at a time, until a desired resolution
is reached, at which point we repeat the procedure for
another coordinate (e.g., split Y1, then Y2 and so on).
Simply put, the tree consists of a series of binary trees
one after the other.

Fig. 2 depicts this decomposition visually. Here, we
show a tree structure specified by (6), where blue nodes
show where only Y1 is being decomposed, red nodes
show where Y1 has been fully decomposed and Y2 is in
the process of being decomposed, and green nodes show
those with both Y1 and Y2 fully decomposed and where
only Y3 is being refined.

Using this decomposition, describing the probability
distribution of Y as a function of S is straightforward.
If we denote the probability P (Y ∈ Si,j) as ui,j . Then
since the node sSi,j are disjoint subsets, ui,j = ui+1,2j +
ui+1,2j+1 for every non-terminal (or leaf) node in S.
Hence, observing the probability at a single level of
S provides a piecewise constant representation of the
distribution of Y .

Naturally, the space required to store this tree may
be overwhelmingly large. For this reason, the tree will
be generated in a lazy fashion and will allow us to
represent the distribution of Y in a compact fashion.
That is, the AT optimization will only begin with the
root, S0,0 and the tree will grow as questions are asked.
This is closely related to Evolving Trees [38] which allow
efficient organization of large amounts of data. Indeed,
a key aspect of this method compared to classification
trees, is that the construction of the tree is done online,
dictated by the data at test time.

4.2 Set of Questions

To determine the pose of the instrument, the AT frame-
work relies on the ability to ask “questions” about the
content in the image. For a particular node Si,j ∈ S,
a “question” is a deterministic function of the image,
Xi,j : ISi,j

�→ R, which computes a specific quantity
from the image region specified by the pose subset Si,j .
The answers to the question Xi,j , denoted Zi,j , is consid-
ered to be random and is interpreted in a probabilistic
manner. In particular, when asking a question Xi,j the
answer, Zi,j = z is assumed to follow,

P (Zi,j = z|Y ) =

{
fo(z; i, j) if Y ∈ Si,j

fb(z; i, j) if Y /∈ Si,j

(7)

where fo and fb are two distributions of responses,
corresponding to the case where the instrument pose is
in the space queried, and when it is not. These distribu-
tions are learned from representative labelled training
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data and since the response, Z ∈ R, both fo and fb
are modelled as Gaussian (this will be detailed in the
following subsection).

As in [17], we use two categories of questions in
this framework: (i) noisy questions (Sec. 4.2.1) and (ii)
noiseless or oracle questions (Sec. 4.2.2). These two cate-
gories of questions are motivated by the fact that oracle
questions correspond to evaluating excellent, if not state-
of-the-art, methods for detecting the target when looking
at extremely small regions of the search space, while
noisy questions help reduce the search space in order to
ultimately use an oracle question. As shown in [17] this
has the benefit of being computationally efficient when
locating a target and allows for a simple mechanism to
reject regions of the search space that have been observed
fully. We now specify what questions are available in this
application.

4.2.1 Noisy Questions

To detect our instrument we use five noisy questions
such that each node of S only evaluates a single type
of question. In particular, for Si,j ∈ S we denote the
intervals for each coordinate of Y , as Y1 ∈ [a, b], Y2 ∈ [c, d]
and Y3 ∈ [e, f ]. Also, we recall that δ is the minimum
length the instrument must be protruding from the
image boundary to be considered in the image, and let
W be the width of the instrument. Fig. 2 visually depicts
examples of where each question type (A through E) is
evaluated in our decomposition and what computation
is performed:

(A): In this question, Xi,j computes the proportion
of tool-like pixels in the region defined by [a, b]. This
consists of a rectangular image patch along the boundary
of the image, where the width of the patch is δ and is of
length [a, b].

Evaluating if a pixel belongs to the tool is achieved
by evaluating if the RGB color of the pixel is likely to
have come from a 3 dimensional Gaussian representing
the instrument color. The parameters of the Gaussian
are estimated using labeled training data, and pixels
are classified as tool-like if their RGB color is within a
fixed Mahalanobis distance to the Gaussian mean. The
computed score is the proportion of tool-like pixels in
the evaluated δ by [a, b] patch.

(B): This question evaluates a series of template
matches in order to estimate the precise location of the
instrument entry point, Y1. Centered on the boundary
at the point (a+ b)/2 and in increments of five degrees,
we rotate a template of size δ × 3W , consisting of three
δ × W strips stacked together (i.e., similar to [21]). At
each rotation, we evaluate a template match, and then
return maximum score observed over all evaluations.

The template match consists in evaluating a Haar-like
feature [6] such that on each strip we sum the number
of tool-like pixels using the color model described in
question type (A), and subtract the sums of the two outer
strips to that of the center region.

Fig. 2. Search space decomposition, density represen-
tation and image questions. The above tree represents a
binary decomposition of the search space, where each
node splits half the search space in two, by only spiting
one coordinate of Y at a time. Blue, red and green
nodes show when Y1, Y2 and Y3 are being decomposed,
respectively. By assigning the likelihood of the instrument
parameters being within the search space of a given
node, the tree S provides a representation of pn. We also
show examples of where different noisy question (types
A through E) types can be evaluated, and what region of
the image space they query. Oracle questions (type F)
can only be evaluated at the leaf of the tree.

(C): This question also computes the proportion of
tool-like pixels. As in (A), tool-like pixels are estimated
by means of the same RGB color model. The region
evaluated by this query type is defined by both [a, b] and
[c, d]. Defining the origin as the location on the boundary
of the image (a+b)/2, we evaluate a restricted sector, by
sweeping from c to d degrees and with length δ/2 to δ
to the origin. The proportion of tool-like pixels in this
region is the computed score.

(D): Evaluates a template region, similar to that in (B),
and returns the template matching score. A template of
size 3W × W , consists of three W × W square regions
stacked together. The template is positioned at a distance
δ from boundary point (a + b)/2, and with an angle of
90 + (c + d)/2 degrees (i.e., perpendicular to the angle).
The sum of tool-like pixels in the outer square regions is
computed and subtracted to the sum in the inner square.
Again, tool-like like pixels are computed as in (A).

(E): In this question, we evaluate a modified Haar-like
feature. Along a line with intercept on the boundary at
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(a + b)/2 and slope (c + d)/2, we position W/2 × W/2
square regions at a distance of e and f pixels. The
average intensity of each square is subtracted from each
other. In addition, perpendicular to the slope and at
a distance e to the boundary point, the average pixel
intensity of two supplementary square regions of the
same size are also computed and then subtracted to the
previous two regions. This final score is then returned.

4.2.2 Oracle Questions
The second category of questions are assumed to be
noiseless (i.e., f1 and f0 do not overlap), and can only
be evaluated at the leaves of our final tree, i.e., when
the pose of the instrument is explicitly hypothesized (see
Fig. 2 question type (F)). Given that both the detection
and tracking literature present a number of methods that
appear to perform well in certain situations, we demon-
strate the use of using two possible oracle questions: (i)
template match which detects the pose of the instrument
and (ii) gradient-based trackers typically used for tradi-
tional local tracking tasks. In our experiments, we show
the effects and benefits of using either oracle:

Template Matching: We follow a similar approach to
that of [21]. Given a specific hypothesis for the instru-
ment location, we expect to find the instrument on the
boundary at location (a+ b)/2, with angle (c+ d)/2 and
length (e+ f)/2. With the instrument width known, W ,
we perform a sum-of-squared difference (SSD) template
match between the hypothesized pose and the projec-
tion of the tool-like color model on the image. That is,
using the hypothesized pose, we construct an instrument
template mask of width 3W and length (e + f)/2 +W ,
with value 1 at instrument locations and 0 elsewhere.
Placing the mask on the image, we apply the RGB color
model to the overlapping regions of the image. The SSD
is then computed from the projected tool-like pixel image
and the constructed mask, and normalized by the total
number of evaluated pixels. The final score is 1 if the
normalized SSD is above a threshold and 0 otherwise.

Gradient-Based tracker: We use the recently devel-
oped Sum of Conditional Variance (SCV) objective func-
tion along with the ESM optimization strategy to refine
the tool pose as proposed in [39]. The reference template
used is an image patch describing the instrument tool
tip, of size 40 by 40 pixels, extracted from the previous
frame. Once the optimization scheme finishes, we apply
a normalized cross-correlation template match (returning
“yes or “no”) to verify good convergence (which occurs
when the score is above a threshold).

Naturally, many different classifiers or trackers could
be substituted for those chosen here. Our aim is to
show how to incorporate different oracles within our
framework.

Note that if an oracle responds “yes” to any ques-
tion regarding a hypothesized pose, then the posterior
distribution becomes a Dirac (i.e., all probability mass
is concentrated on a single pose) because the noise
models have non-overlapping support. Consequently,

the entropy of the ensuing posterior distribution is zero
and the algorithm terminates. Hence, having a good
oracle questions is crucial to avoid the algorithm from
finishing prematurely or erroneously.

4.3 Learning noise models

As described in the previous section, each node Si,j ∈ S
has an associated question, Xi,j with a corresponding
noise model (densities (fo, fb) from (7)). Given that these
densities are indexed by (i, j), it would appear as though
a separate noise model for each node in S is required.
Considering the size of the pose space, the quantity of
training data to achieve this would be overwhelming.

In [17], the problem is somewhat avoided by using
folded models, that take advantage of translational in-
variances within levels of the hierarchy. However, this
trick is not possible in this setting given that the pose
space is much larger and S does not maintain the same
invariance properties.

To avoid the problem here, we propose to parametrize
the noise models and interpolate the parameters based
on the position of a node in the tree. For example, let us
consider the answer to the noisy question of type (A) in
Fig. 2. Given that the size of the object is known, we can
expect to see a certain number of object-like pixels in the
queried region. Similarly, if no object were present, then
we would expect a much smaller number of object-like
pixels to be found in the queried region. In addition, if
the queried region were twice as large, the same intuition
would still apply. For this reason our noise models are
of the form,

fb(x; i, j) = G(x;μ0|Xi,j |, σ0|Xi,j |
2)

fo(x; i, j) = G(x;μ1|Y |+ μ0(|Xi,j | − |Y |),

σ1|Y |2 + σ0(|Xi,j | − |Y |)2)

(8)

where G(·) is a Gaussian distribution, |Xi,j | and |Y | are
the number of pixels contained in Xi,j and the estimated
instrument size in the image, respectively.

The parameters (μ1, σ1) and (μ0, σ0) are the means
and variances for the likelihood of observing tool-like
pixels for a given question type (assumed to be Bernoulli
random variables). As such, any blue node in Fig. 2
has the same noise model as any other node of the
same color, with its parameters interpolated based on
its placement in the tree. Modeling the noise this way
has the added benefit of being invariant to the fineness
of the decomposition the pose space. For example, if the
depth of the tree changed (e.g., image is twice as large),
we would not need to learn new noise models.

In practice, this type of noise model is learned for
each of the noisy questions. While this clearly does not
benefit questions of type (B), (D) and (E) (since they
are always computed over the same sized area), the
number of parameters needed to learn is greatly reduced
for questions of type (A) and (C). As such, only four
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Fig. 3. Active Testing Iterations. Each image pair (top and bottom row) shows a question being evaluated and the
corresponding state of the tree S at that point in time. See Video 1 for the entire image sequence.

parameters need to be learned for each question type and
can be achieved by using an extremely small number of
training images (i.e., 20 labeled training images).

5 EXPERIMENTS

In the following section we show how our approach
performs on a live phantom eye platform, as well as on
human in-vivo images. In both cases, we show qualitative
and quantitative results of our method, and specify
typical situations where our approach has difficulties
maintaining accurate tracking.

Our framework was implemented on a Dell Precision
PC with a Xeon 2.13GHz processor. The algorithm is
coded in C++ and uses Opencv and the CISST library
[40] for image acquisition and handling. Our PC is
connected to receive video from a Grasshopper camera
that is coupled to a microscope. The images acquired
are 1600 × 1200 pixels large, and are captured at 30fps.
The region of interest for the AT optimization is of size
256×256 and hence Y1 ∈ [1, L = 256+(3×255) = 1021]2.

The initial distribution of Y , P (Y 0) is set to be an
unbiased prior on the pose of the instrument. That is,
P (Y ∈ S1) = P (Y ∈ S0) = 1/2, indicating that a priori,
the instrument has equal likelihood of being in or not
in the image. Note that we assign this probability at
the root of S and assume uniform decomposition of the
probability mass. While a small number of nodes may
therefore be attributed with non-sensible probability, the
practicality of this approximation is beneficial given that
computing the exact probability is non trivial, and would
be time consuming.

Finally, two versions of the algorithm are imple-
mented. The first, ATF-match, uses the template match
oracle question and the second, ATF-track, uses the
gradient-based tracker oracle (as described in Sec. 4.2.2).
With the exception of Sec. 5.1.2, where we observe the
effect of different instrument motion models, we fix A
to be the identity matrix (see Eq. (5)).

2. This is similar to the size of regions of interest during clinical
procedures.

5.1 Phantom Eye Platform

We begin by providing some qualitative results as to
how the proposed approach detects and tracks a surgical
instrument in a phantom eye. To provide some intuition
to the sequential nature of the AT algorithm, we have
provided Video 1 (see additional videos) to visually
depict both the questions asked and the evolution of S
at each iteration of the AT optimization. Some snapshots
of this video are shown in Fig. 3. The top row shows
what question is being evaluated and the associated
queried region (highlighted in each image) at given
iterations of the optimization. The bottom row shows
the corresponding evolution of the state of S. Here, the
area of each node shown is proportional to the mass
contained for that pose subset, and the color of each
node represents which coordinate is being refined (as
in Fig. 2). Additionally, the black node indicates which
node is to be evaluated next.

Initially, only the root S0,0 exists and is questioned.
Having created children (Fig. 3(a)i-ii), the size of S
is of three nodes. After a few questions, the tree has
grown and refined itself past the first coordinate Y1 and
onto Y2 and Y3 (Fig. 3(b-c)i-ii). Eventually the correct
Y2 parameter (Fig. 3(d)i-ii) is refined, leading to a valid
tool detection (Fig. 3(e)i-ii). Note that nodes which are
extremely small are pruned as in [17]. This allows our
search space to remain tractable and computationally
manageable.

We also provided Videos 2-7, which show how our
algorithm detects and tracks retinal instruments in our
phantom environment. Fig. 4 shows a few snapshots
from these sequences. The recorded sequences cover a
wide range situations typically observed during retinal
microsurgery: different types of instruments to track,
severely blurred instruments, challenging non homoge-
neous illumination, no instrument in the field of view of
the camera and the instrument shadow being present.
In each image we have overlayed the AT search domain
with a green box (except for (b) and (g) where the AT
search domain is the entire image shown).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Visual tracking examples in phantom environment. A variety of visual conditions typically encountered during
clinical procedures are shown. The green box depicts the AT search region on our phantom platform.

5.1.1 Empirical Comparison

To evaluate the performance of the ATF approach, we
compared it with several other methods: the Active
Testing (AT-match) approach described above with a
template match oracle but without any filtering (follow-
ing [17], a Color-based Detector (CBD) as that in [41]), a
Line-based tracker (LBT) (similar to [21]), and a particle
filter [11] using our template matching oracle. We now
further detail these methods.

The CBD [41] is a color based detector that requires a
color model to evaluate the presence of tool-like pixels.
Here, we set this color model to be the same as that used
by our framework and at evaluation time, the instrument
is segmented using this model. In addition to this, we
also estimate the tool tip position by marching from
the segmented centroid, along the direction of largest
variance until a segmentation boundary is encountered.
This position is considered to be the instrument tip.
The LBT (following [21]) is a strip tracker that performs
gradient based tracking on the color segmented image
and a binary mask of the instrument. Tool motion is
modelled with an image-plane rotation and translation
vector. The particle filter [11] was set to use 1000 particles
to maintain the distribution of the instrument, which
was parametrized as in this application. The observation
model consisted of using the same template match as
in our framework, and used the same motion model as
well. For both the LBT and the particle filter, initializa-
tion was performed by using the CBD.

To compare performances, we annotated by hand the
location of the tool (i.e., Y = (Y1, Y2, Y3)) in an image se-
quence of over 400 images. These annotations provided
ground truth for quantitative algorithm comparison. We
then evaluate each approach by observing the error in
the estimates of each parameter and the tool tip position,
as well as the true positive rate (TPR), the false positive rate
(FPR) and the precision for each approach (where a cor-
rect detection is where the estimated the tool tip location

is within 10 pixels of the ground truth). The average
time required by each method to find the location of
the target for a single frame was also computed. Table 1
summarizes these results for each evaluated method. For
the accuracy errors, we report the means and standard
errors (in bracket) for each instrument parameter and
tip.

In terms of coordinate accuracy, we can observe that
the ATF methods generally performs better than the
alternative methods. In particular, ATF-track performs
better than other approaches when estimating the instru-
ment tip position. This overall improvement can be at-
tributed to the sequential parameter estimation approach
that the active testing framework conducts. By estimat-
ing the first parameter, then the second and so on, each
parameter is individually estimated accurately. This is in
sharp contrast to the more direct LBT approach which
locates the tool tip, and then estimates the necessary
parameters, or the particle filter which simply samples
the space directly.

In terms of detection accuracy, we notice that all
methods tested provide more or less the same detection
accuracy, with the exception of ATF-track which is signif-
icantly better than the others. This increase in precision
is most likely due to the gradient-based tracker oracle
question used. Also, we see that detection is significantly
slower than tracking, as both AT-match and CBD run
at much slower rates than the tracking algorithms. This
confirms the advantage of tracking strategies over track-
ing by pure detection.

When comparing AT-match and ATF-match, we note
that both methods perform similarly from an accuracy
and detection point of view. However, we note that their
speeds differ. Indeed, ATF-match is significantly faster
than AT-match. This is most likely due to the use of
informative priors. In fact, counting the number of nodes
in final trees across all images, ATF-match trees have on
average 75 nodes, while AT-match trees have around 210
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TABLE 1
Comparison of algorithms. We show pixel accuracy of each method when estimating different parameters of the

instrument, as well as the detection accuracy and time necessary for each method to process one frame.

Accuracy Error Detection Accuracy
Method Y1 Y2 Y3 Tip TPR FPR (10−6) Precision Time (ms) per frame
ATF-track 4.13 (24) 2.42 (0.07) 4.94 (0.27) 6.78 (0.6) 0.975 2.8 0.811 8.0
ATF-match 2.97 (0.4) 2.37 (0.1) 14.11 (0.9) 11.03 (0.9) 0.839 6.6 0.631 8.54
AT-match 3.74 (0.4) 2.01 (0.1) 12.89 (0.8) 13.45 (0.8) 0.812 6.1 0.618 25.21
CBD 83.73 (2.4) 29.44 (0.8) 20.25 (0.7) 15.15 (0.79) 0.783 7.1 0.548 26.67
LBT 50.94 (7.3) 11.03 (0.9) 21.27 (2.1) 11.42 (0.2) 0.839 7.4 0.597 4.8
Particle Filter 1.08 (0.05) 11.53 (0.35) 6.64 (0.34) 6.91 (0.31) 0.841 2.9 0.783 6.28

nodes. This is a significant difference in the number of
operations required to update the posterior distribution
at each iteration of the AT optimization and accounts
for the difference in speed between AT-match and ATF-
match.

Given that our goal is to provide a tracking system,
we would also like to have an understanding of how
our system performs consecutively. To summarize this
ability, we consider the event of correctly detecting a
number of consecutive frames to follow a Geometric
probability distribution. That is, with some probability
ε, we correctly find the pose of the instrument in the
next frame. Hence good tracking should be characterized
by large values of ε. Computing this for each method,
we find that ATF-tracker has the largest value with 0.98,
followed by ATF-match (0.94), Particle Filter (0.93), LBD
(0.92), AT(0.82) and CBD (0.82).

5.1.2 Alternative Tool Dynamics Model

We now briefly explore the effect of different instrument
dynamics models (see (5)). As described in Sec. 3.2, we
propose using two A matrices: (i) the identity (used until
now) or (ii) augmented with velocity information.

Table 2 also shows a resume of the performance differ-
ences between the two proposed models. One can notice
that in either case, the performances of the algorithms are
extremely similar to each other. Most noticeably, we see
that in terms of time, both methods run at approximately
the same speed. This suggests that the dynamic models
used in either case do not inhibit instrument localization
and nor do they improve performance. This leads us
to believe that the AT optimization ultimately is what
provides timely solutions, rather than precise instrument
motion models. Note that it could still be the case that al-
ternative dynamics models could provide improvements
in some cases.

5.2 Human In-Vivo Images

To validate the suitability of this approach for clinical
settings, we evaluated our system on a human in-vivo
image sequence. Our system was setup with the same
parameters as previously described and then evaluated
on 850 images. The initial 40 frames of the sequence were
used for training purposes and were not included in the
testing of our method.

Video. 8 show how our framework performs on this
data and snapshots of this video are shown in Fig. 5.
Here, we can see that even in situations where smoke
is present, or when shadows overlap instrument regions
considerably tracking is maintained and the instrument
tip is accurately found. While this sequence is signif-
icantly more challenging than those acquired in our
phantom experiments, reliable tracking is achieved for
significant portions of this sequence.

However, as shown in Fig. 5, there are situations
where our system fails to provide correct instrument
pose. In particular, we can identify two such causes:

• Tool appearance changes due partial illumination
variation. In some cases, the illumination on the
instrument is not regular. Coupling this with the
instrument tip appearing blurry (out of focus), our
algorithm has difficulties precisely localizing the
instrument tip, as depicted in Fig. 5(e).

• Poor oracle question. When using the gradient-
based tracker oracle question, a threshold is used to
validate valid convergence. Incorrect thresholds can
lead to saying that the instrument is at a particular
location when it is in fact not. As shown in Fig. 5(f),
this may lead to being “stuck” on irrelevant image
regions.

To relate the effectiveness of our method in this sce-
nario to that reported on phantom data, we computed
similar performance measures as done previously3. In
all categories computed AT-track performed better than
ATF-match (TPR; 0.6 vs 0.1. FPR; 5.1 vs 7.8 ×10−6.
Precision; 0.49 vs 0.12. Accuracy Tip; 37.3 vs 82.3. ε;
0.65 vs 0.49.). These results indicate two distinct points.
First, the task of detecting and tracking instruments is
substantially more difficult in in-vivo sequences than
in phantom sequences and is apparent from the drop
in performances across all measures when compared
to Table. 1. Second, the template match oracle, ATF-
match, is in effect not capable of accurately detecting
and tracking the instrument in this sequence. For this
reason, in challenging tracking tasks such as the one at
hand, the possibility of relying on successful gradient-
based trackers is of great benefit.

3. Note that the CBD could not locate the instrument in an over-
whelming number of images in the in-vivo sequence. Given that it
initializes both the LBT and the particle filter, quantitative evaluation
of these methods has been omitted here.
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TABLE 2
Comparison of instrument dynamics models. Two

instrument transition models, A, are tested.

A Identity Augmented A Identity Augmented

Y1 2.97 (0.4) 2.63 (0.1) TPR 0.839 0.842
Y2 2.37 (0.1) 1.72 (0.08) FPR (10−6) 6.6 6.4
Y3 14.11 (0.9) 11.65 (0.7) Precision 0.631 0.662
Tip 11.03 (0.9) 10.51 (0.7) Time (ms) 8.54 7.21

(a) (b) (c)

(d) (e) (f)

Fig. 5. Visual tracking example in a human in-vivo image
sequence. The green region depicts the region consid-
ered by the AT optimization. (e-f) show two different cases
where our system fails (see text for details).

6 CONCLUSION AND FUTURE WORK

In this paper, we have a proposed a novel approach for
the task of instrument detection and tracking in retinal
microsurgery. By using the Active Testing paradigm,
both these tasks can be treated as the same sequential
parameter estimation problem, as opposed to two sep-
arate algorithmic tasks. Using filtering techniques, we
have also shown how to effectively incorporate previous
instrument information for the task of tracking. We have
experimentally shown that the presented algorithm is
capable of detecting and tracking retinal tools efficiently
and robustly in cases where the object enters and leaves
the field of view frequently. This has been demonstrated
on both a live platform and on human in-vivo images.
While presented in the context of retinal microsurgery,
we are confident that this approach may apply to other
surgical procedures, as well as for other object categories.
Future work in this area will be directed to extending
this method to stereo image sequences, as well as mod-
eling illumination changes more consistently.
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