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While neurodegenerative diseases are characterized by steady degeneration over relatively long timelines, it
is widely believed that the early stages are themost promising for therapeutic intervention, before irreversible
neuronal loss occurs. Developing a therapeutic response requires a precise measure of disease progression.
However, since the early stages are for the most part asymptomatic, obtaining accurate measures of disease
progression is difficult. Longitudinal databases of hundreds of subjects observed during several years with
tens of validated biomarkers are becoming available, allowing the use of computational methods. We propose
a widely applicable statistical methodology for creating a disease progression score (DPS), using multiple
biomarkers, for subjects with a neurodegenerative disease. The proposed methodology was evaluated for
Alzheimer's disease (AD) using the publicly available AD Neuroimaging Initiative (ADNI) database, yielding
an Alzheimer's DPS or ADPS score for each subject and each time-point in the database. In addition, a common
description of biomarker changes was produced allowing for an ordering of the biomarkers. The Rey Auditory
Verbal Learning Test delayed recall was found to be the earliest biomarker to become abnormal. The group of
biomarkers comprising the volume of the hippocampus and the protein concentration amyloid beta and Tau
were next in the timeline, and these were followed by three cognitive biomarkers. The proposedmethodology
thus has potential to stage individuals according to their state of disease progression relative to a population
and to deduce common behaviors of biomarkers in the disease itself.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Neurodegenerative diseases such as Alzheimer's disease (AD),
Parkinson disease (PD), Huntington disease (HD) and amyotrophic
lateral sclerosis (ALS) involve the loss of structure or function of neu-
rons, including neuronal death (see Martin (2002); Shaw (2005)).
During the earliest stages of these diseases, the progression is slow,
on the time scale of years, (see Sperling et al. (2011) for the case
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of AD). It is widely believed that these early stages are the most
promising for therapeutic intervention, before irremediable neuronal
loss occurs. Developing a therapeutic remedy requires a precisemeasure
of disease progression, i.e., a quantitywhichwould be specific to a partic-
ular disease and sensitive to subtle changes. However, obtaining accurate
measures of disease progression during the earliest phases of the disease
is difficult. Indeed, these phases are essentially non-symptomatic and
the clinical tests which characterize the acute phase of the disease are
not sensitive enough to qualify as ameasure of disease progression. In re-
sponse, the medical research community has contributed to developing
and validating biomarkers. Biomarkers for neurodegenerative diseases
include protein counts (in the cerebrospinal fluid), blood analysis,
brain imaging, including molecular and MR, genetic analysis and neuro-
psychological tests. Structural imaging biomarkers are unique in that
they allow one to characterize the size, shape, and health of various
brain substructures at the organ level while being noninvasive (see
e.g. Qiu et al. (2008) for AD, Rizk-Jackson et al. (2011) for HD). Functional
imaging provides a spatially localized image of the physiological
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processes occurring in the brain. See Brooks and Pavese (2011) for
a review of imaging biomarkers in PD and Turner et al. (2011) for
ALS. Due to the complexity of the neurodegenerative diseases and
variabilities within the human population, research efforts have been
pooled in order to create datasets with a large number of subjects,
time-points and biomarkers. The Alzheimer's Disease Neuroimaging
Initiative (ADNI), see http://adni.loni.ucla.edu/, was launched in 2003
by the National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Administration, private
pharmaceutical companies and non-profit organizations, as a $60 mil-
lion, 5-year public/private partnership. A related effort is taking place
for PD. The Parkinson Progression Marker Initiative (PPMI), see http://
www.ppmi-info.org/, is a comprehensive observational, international,
multicenter study designed to identify PD progression biomarkers
both to improve understanding of disease etiology and course and to
provide crucial tools to enhance the likelihood of success of PDmodify-
ing therapeutic trials. Huntington disease is caused by a mutation in a
single gene, HTT, with full penetrance, making it feasible to identify
presymptomatic individuals who will develop the disease but do
not show yet any clinical symptoms, see Hayden (1981). At least two
large studies (Predict-HD, see https://www.predict-hd.net/ and
TrackOn-HD, see http://hdresearch.ucl.ac.uk/current-studies/trackon-
hd/) are underway to identify sensitive biomarkers for HD. Similar ef-
forts are recently taking place for ALS, see Turner et al. (2009); Labbe
(2012). The availability of large datasets for neurodegenerative diseases
opens new opportunities for computational methods which could have
a strong impact in the study, the development of therapeutics and the
follow-up of patients with neurodegenerative diseases.

We present in this article a generic computational method for
computing a disease progression score (DPS) by combining bio-
markers. ADNI is, as of today, the largest publicly available longitudi-
nal dataset of biomarkers related to a neurodegenerative disease. It is
therefore the dataset which we have chosen to evaluate our method.
Since we will work with the ADNI dataset, we recall some preliminary
information on AD as well as the validated biomarkers for AD in
Section 2. The method for computing a DPS, which is the main contri-
bution of this paper, is presented in Section 3. Results with the ADNI
dataset appear in Section 4 and finally in Section 5, we discuss the
results in the context of ADNI, and their consequence in the study of
AD and other neurodegenerative diseases.

Alzheimer's disease

Although this paper describes amethod applicable to any neurode-
generative disease, our current evaluation involves the ADNI dataset
Fig. 1. This graph represents a conceptualization of the timing of key biomarkers transition
disease: “Cognitively Normal”, “MCI”, and “Dementia.” This plot is reproduced from “Hypoth
Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW,Petersen RC, Trojanowski JQ., Lan
and therefore it is informative to use this disease as a framework
for motivating the method. The classical characterization of late-
onset Alzheimer's disease progression is a time-ordered succession
of three stages: normal (N), mild cognitive impairment (MCI), and
AD. Physical measurements of disease progression, i.e., biomarkers,
are used to classify patients into these three stages, but it has been
challenging to reliably define finer stages of the disease. As a result,
staging of the disease remains coarse and the evaluation of therapies
are difficult at the earliest stages when intervention is most likely to
be effective, see Hampel et al. (2008).

Cognitive biomarkers such as the clinical dementia rating sum-
of-boxes (having scores from 0 to 18) and the mini-mental state
exam (having integer scores from 0 to 30) have finer discrete levels,
see Berg et al. (1988); Folstein et al. (1975). But it has been reported
in Mungas and Reed (2000) and Duara et al. (2011) that these mea-
surements have poor dynamic range in the earliest stages of AD. On
the other hand, Mosconi et al. (2007) has shown that the early stages
of AD can be characterized using both imaging and biochemical bio-
markers. Following these observations, Jack et al. (2010) proposed
that there is a single disease progression and that different bio-
markers characterize the disease during different stages. They hy-
pothesized the biomarker changes and disease progression shown
in Fig. 1 (reproduced with permission from Jack et al. (2010)). In
this hypothesized model, the amyloid beta (Aβ42) protein changes
first, followed by changes in the protein Tau, then structural changes
in the brain (gray matter loss), and lastly a deterioration of cognitive
function resulting in dementia. Based on Fig. 1 we expect to find that
no single biomarker has the dynamic range to cover the full spectrum
of the disease. Given the limitations of any single biomarker, there is
likely benefit in developing methods that can combine multiple bio-
markers in a nonlinear fashion in order to represent—using a single
measure—progression throughout the entire disease. This is a key
motivation for the process we report in this paper. An important
byproduct of this effort is a plot similar to that of Fig. 1, but derived
from data using multiple biomarkers which reveal key differences in
the ordering of the biomarker dynamics over the course of disease.

Method

Principles for temporal standardization of multiple biomarkers

The available data are longitudinal measurements of multiple bio‐
markers for hundreds of subjects. Our research first describes and
then evaluates a disease progression score, notated DPS, which stan-
dardizes subject time-lines onto a common temporal scale. The DPS
s from “Normal” to “Abnormal” as subjects go through the three stages of Alzheimer's
etical model of dynamic biomarkers of the Alzheimer's pathological cascade,” Jack CR Jr,
cet Neurol. 2010 Jan;9(1):119-28.
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serves as a new (derived) biomarker enabling both disease staging
in single subjects and a data-driven characterization of biomarker
dynamics in the entire population.

The method we use to achieve standardization is based on three
assumptions:

1. All subjects follow a common disease progression but differ in their
age of onset and rate of progression;

2. As the disease progresses, each biomarker changes continuously
and monotonically following a sigmoid shaped curve; and

3. In the longitudinal period over which biomarkers are observed, the
rate of progression of a given subject is constant.

The proposed computation assigns to each subject and each time-
point a score denoted the DPS. Note that all subjects are expected to
undergo the same biological and cognitive changes when they reach
the same DPS.

Statistical model for DPS

The age t of subject i is to be transformed into the DPS si as follows

si tð Þ ¼ αit þ βi ð1Þ

upon estimation of the subject dependent parameters αi and βi,
which indicate rate and onset of disease, respectively. A linear trans-
formation is justified when the interval over which longitudinal
observations of subjects occur is short relative to disease duration
(true at present in the ADNI database). This could be generalized to
nonlinear functions in the case of cohorts with longer longitudinal
base. Our objective is to standardize all I subjects by estimating α=
(α1, …, αI) and β=(β1, …, βI). The subject dependent parameters α
and β are deliberately modeled as fixed effects, not random effects,
as the DPS may ultimately be used as a covariate.

The longitudinal dynamic of each biomarker is assumed to be the
same across the population and can be represented as a sigmoidal
function f of DPS s. Sigmoidal functions capture the relative quiescent
states of a biomarker in the early and late parts of the disease progres-
sion while being parsimonious. Using θk=(ak, bk, ck, dk) to represent
the vector of sigmoid function parameters for the k-th biomarker, we
can write the form of the k-th biomarker as

f s; θkð Þ ¼ ak 1þ e−bk s−ckð Þ� �−1 þ dk: ð2Þ

The minimum and maximum values of the sigmoid function are dk
and dk+ak, and the value of s for which the biomarker is the most dy-
namic, having maximum slope akbk/4 corresponding to its inflection
point, is ck. A closely related model is the trilinear model in Brooks
et al. (1993). Caroli et al. (2010) and Sabuncu et al. (2011) noticed
that sigmoids offer a parsimonious parametric model which is
often a better fit than linear models for biomarkers. Sigmoids are
also similar in form to the conceptual evolution of biomarkers
envisioned in Jack et al. (2010) for AD (Fig. 1). Among parametric
models, alternatives include the generalized sigmoid in Richards
(1959) and polynomials of low order.

Databases for neurodegenerative diseases contain measurements
yijk of biomarker k for subject i at visit j. Since there are often irregu-
larities in data collection, we use I to denote the set of triples (i, j, k)
for which measurements are available. Each biomarker observation
can then be written as

yijk ¼ f αitij þ βi; θk
� �

þ σk�ijk; i; j; kð Þ∈I ; ð3Þ

where tij is the age of subject i at visit j. Observation noise in each
biomarker is modeled for simplicity by the product of �ijk, which
are independent random variables with zero mean and unit variance.
σk is the standard deviation of biomarker k. The collection of standard
deviations σ=(σ1, …, σK) comprise another unknown that must be
estimated.

The unknowns in this problem are α, β, θ, and σ and the least
squares problem associated with the observation model in (3) is

l α;β; θ;σð Þ ¼ ∑
i;j;kð Þ∈I

logσk þ
1

2σk
2 yijk−f αitij þ βi; θk

� �� �2 ð4Þ

Parameter fitting

Parameter fitting is performed using alternating least squares
wherein the parameters θ, α, β, and σ are optimized iteratively
starting from the values computed in the previous step. The details
of the fitting algorithm are shown in Alg. 1. Because of the additive
form of (4), optimization over θ is done serially over each of the K bio-
markers. Similarly, optimization over (α, β) is performed serially over
each of the I subjects. Fitting of θ, α, and β requires optimization of con-
tinuously differentiable nonconvex functions, which is carried out using
the Levenberg–Marquardt algorithm (Lines 4 and 8), see Levenberg
(1944). Ik (line 4) is the number of subjects and visits available for
biomarker k. The denominator in the equation of Line 5 is the number
of degrees of freedom. Because unconstrained optimization can pro-
duce unfeasible parameters, parameters are projected onto the feasible
space after the main loop (Lines 12–16), see (5) below. This does not
change the value of the objective function in (4). Our experiments
presented in Section 4 confirm that successful fitting is accomplished
in 15 iterations for the ADNI dataset; i.e., L=15 on Line 2, standard
optimization stopping criteria can be used otherwise. The parameters
α and β are centered and rescaled in Lines 17–19 in Alg. 1 for
identifiability reasons which are explained in the next section.

Identifiability

The units of DPS are arbitrarily defined, which implies that we
must choose two specific numerical values in order to fully specify
the DPS. This situation is analogous to the selection of a scale for tem-
perature, where the numerical values of the freezing and boiling
points of water determine the scale. Note that calibration is not spe-
cific to the DPS. It is in fact needed for most if not all biomarkers
(see Hughes et al. (1982)). In our experiments with ADNI, we chose
to fix the DPS such that after computation of DPS for the entire pop-
ulation, the computed DPS for all visits of subjects with normal clini-
cal assessment - subjects of type N -had a median (mN) and a median
absolute deviation (σN) which are set respectively to zero and one.
This is accomplished in Lines 17–19 in Alg. 1.

Algorithm 1. Algorithm for fitting of the parameters
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Note that (3) is invariant with respect to the following two trans-
formations, for two constants γ1≠0 and γ2:

ak; bk; ck;dk;αi;βi;σkð Þ ↦ ak;γ1bk;γ
−1
1 ck;dk;γ

−1
1 αi;γ

−1
1 βi;σk

� �
↦ ak; bk;γ2 þ ck;dk;αi;γ2 þ βi;σkð Þ

Note also that the sigmoid function verifies

f t;−a1;−b1; c1;d1 þ a1ð Þ ¼ f t; a1; b1; c1;d1ð Þ ð5Þ

In order to build an identifiable model, we define the restricted
parameter set

ϱ¼ ρ¼ a; b;α;β;σð Þ; I−1XI

i¼1

αi¼ α0; I
−1XI

i¼1

βi¼ β0; bk>0; ak≠0 for all k∈I
( )

for some α0≠0 and β0. Necessary conditions on the available data I
for guaranteeing the identifiability of the parameters are as follows:

1. For each biomarker, there is at least one subject i with αi≠0 and
with at least 4 distinct time-points in I .

2. For each subject, there is at least one biomarker which is available
at 2 time points in I
A proof is provided in the Appendix A. In practice, a sufficient

number of data points per parameter are needed in order to obtain
tight estimators. Examining first the case with no missing data, the
number of equations in (3) is IJK. The number of parameters is
2I+5K, counting two parameters per subject, and five per bio-
markers: four for the sigmoid and one for the standard deviation. In
applications where I is large compared to K, the number of data points
per parameter is close to JK/2. Note that longitudinal data (J>1) is
critical for such modeling. However, a small number J of time-points
together with a small number K of biomarkers is acceptable. The sub-
set of ADNI that we used in our results has numerous missing data
points. Nevertheless, the identifiability conditions are met. The tight-
ness of the estimators of the biomarker parameters is measured using
bootstrapping as reported in the Results section.

The ADNI dataset

Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.ucla.edu). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5- year public-private part-
nership. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer's disease (AD). De-
termination of sensitive and specific markers of very early AD pro-
gression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California – San Francisco.
ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the U.S. and Canada. The
initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to partic-
ipate in the research, approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with MCI to be
followed for 3 years and 200 people with early AD to be followed
for 2 years. For up-to-date information, see www.adni-info.org.
The ADNI, ADNI GO, and ADNI 2 biomarker datasets were
downloaded from the ADNI server (http://adni.loni.ucla.edu/) on
November 24, 2011. The following seven biomarkers were selected
for use based on their relevance in assessing the progression of AD.
HIPPOis the sum of the two lateral hippocampal volumes (Freesurfer
version 4.4.0 for longitudinal data http://surfer.nmr.mgh.harvard.
edu) normalized by dividing by the intracranial volume. ADAS is the
Alzheimer's Disease Assessment Scale-cognitive subscale. MMSE is
the Mini-Mental State Examination score. TAU and ABETA (our abbre-
viation for Aβ42) are protein levels measured from the cerebrospinal
fluid. CDRSB is the Clinical Dementia Rating Sum of Boxes score and
RAVLT30 is the Rey Auditory Verbal Learning Test, 30 minute recall.
A detailed description of the ADNI population, protocols and bio-
markers is provided at http://adni.loni.ucla.edu/. Of the seven bio-
markers, only ADAS and RAVLT30 were available at the time of
download from the ADNI 2/GO dataset. The protocol for these bio-
markers is the same in ADNI, ADNI 2, and ADNI GO. All visits without
date informationwere removed. Subjects not having at least twomea-
surements for at least one of the seven biomarkers were also removed.
Finally, subjects not having at least two measurements of the HIPPO
biomarker were removed. The total number of subjects remaining
was 687, where 389 were male, 275 were female, and 23 had un-
known gender. The total number of visitswas 3658, and the clinical di-
agnoses at these visits were 1103 N, 1513 MCI, and 1010 AD. There is
an average of 26.92 (sd=5.52) and a minimum of 11 data points
available per subject for estimating the parameters of the model.

Results

DPS computed for ADNI subjects

The Alzheimer's DPS (ADPS) was computed for all subject visits in
the combined ADNI, ADNI 2, and ADNI GO datasets (with minimal
exclusions as was described in Section 5). Seven biomarkers—HIPPO,
MMSE, TAU, ABETA, CDRSB, RAVLT30, and ADAS—were used together
in the computation in order to compute an ADPS score for each visit
of each subject (Fig. 2). The initial values (Line 1 of Alg. 1) are
obtained as follows: firstly, we set α(0)≡1 and β(0)≡0; secondly, the
sigmoids are replaced by linear functions. The main loop (line 2), is
then executed 15 times. In this case, the optimization problems in
lines 4 and 8 are least squares problems which are solved exactly.
At the end of this initialization step, α(0) and β(0) are set to the corre-
sponding values obtained and the sigmoids are initialized using the
linear fits. The running time of the Algorithm 1, which was coded in
Matlab, was 125 seconds using an Intel Core i7 Q820 running at
1.73 GHz (quadcore). In Fig. 2, overall, N subjects (black) have the
smallest ADPS, MCI subjects (red) have moderate ADPS, and AD sub-
jects (green) have the largest ADPS. Lower ADPS scores are therefore
consistent with the normal population and higher ADPS scores are in-
dicative of increased presence of dementia. Those subjects whose
clinical status changes from MCI to AD (blue) are found mostly be-
tween the red and green colors.

The estimated sigmoidal behaviors of each biomarker were also
computed as part of the normalization process (gray curves on each
plot in Fig. 2). It is observed that individual subject trajectories
fall near these curves and have similar slopes in most cases. This is
expected due to the nature of the optimization criterion used to de-
fine ADPS. However, since ADPS is computed as a joint optimization
considering all seven biomarkers, some data falls fairly far from the
estimated characteristic biomarker curves.

We used bootstrapping via Monte Carlo resampling to quantify
the variance of the estimated parameters. We drew 100 resamples
of the observed dataset by random sampling (with replacement)
from the original collection of subjects, and then recomputed the
ADPS for the entire population. Bootstrap replicates of the estimated
biomarker sigmoids are shown in Fig. 3 and 90% confidence intervals

http://www.adni-info.org
http://adni.loni.ucla.edu/
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://adni.loni.ucla.edu/
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for the parameter ck, i.e. the inflection point of each sigmoid, are
presented in Fig 5(b).

The empirical variance of the residuals �ijk in (3) is the compo-
nent of the variance which is unexplained by the model. It accounts
for about 38% of the total variance. Hence the model explains 62%
(±1.37%) of the total variance (i.e., 62%=100%−38%.), the stan-
dard deviation (sd) of 1.37% being computed using the bootstrap
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(±1.4%) and 46% (±1.4%). The percentage of explained variance
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Table 1
Mean value (standard deviation) of ADPS and rate of change of ADPS for N,MCI and AD
subjects in ADNI at baseline.

ADPS: Mean (sd) Rate of change of ADPS: Mean (sd)

N −0.03 (1.48) −0.08 (0.81)
MCI 2.85 (1.98) 0.76 (1.11)
AD 6.49 (1.61) 1.46 (1.38)
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Relation between ADPS and rate of progression

The rate of progression αi of each subject i is also computed as part of
the ADPS parameter fitting algorithm.We plotted the rate of progression
b

a

Fig. 5. (a) Estimated biomarker dynamics as a function of the normalized ADPS. Estimation
dynamics represented by sigmoidal functions were simultaneously fitted as part of the ADPS
on a scale going from -1 representing “Normal” to 1 representing “Abnormal”. The positions
as optimal separating thresholds between the clinical diagnoses provided in the ADNI data
of each subject against their ADPS at baseline to see whether a relation-
ship might exist (Fig. 4). A clear trend of increasing rate of ADPS as a
function of ADPS is observed. The third column of Table 1 provides the
mean rate of change of ADPS in unit of years for each status. AD subjects
progress faster on average than MCI subjects. MCI subjects progress
faster on average than N subjects. Observed during 3 years, an MCI sub-
jectwould progress on average at 0.76 ADPS per year. The corresponding
ADPS would then increase by 0.76×3=2.28 units. In our model, the
ADPS of each subject is a linear function of age, or equivalently the rate
of change of ADPS is constant over the time a subject is observed. Retro-
spectively, it is therefore a reasonable approximation for N and MCI
subjects. It might be too simple a model for AD subjects. It is important
to recall that these observations are made in light of the optimization
criterion of ADPS, which uses the commonality of biomarker trends as
a basis for determining rate. Thus, an increasing rate of ADPS truly
means that subjects are progressing through degrading biomarkers at
a faster rate.

Biomarker dynamics

The sigmoidal functions representing common behavior of bio-
marker dynamics of the entire ADNI population can be compared by
scaling (and inverting if necessary) each of them independently to
range from −1 (Normal) to +1 (Abnormal). Plotted as a function
of the normalized ADPS (Fig. 5(a)), these scaled sigmoidal functions
provide a plot similar to the conceptual plot in Jack et al. (2010)
(Fig. 1). Our plot is data driven, of course, representing what the
entire ADNI dataset predicts under our model assumptions. Its sig-
moidal functions also provide information about the time of initial
biomarker change (represented by the heels of the sigmoidal func-
tions), the time of maximum biomarker change (represented by the
inflection point of the sigmoidal functions), and the rate of biomarker
change over the course of its activation (represented by the slopes of
the sigmoidal functions).

In addition to their interpretation as the time of maximum bio-
marker change, the inflection points also could represent a threshold
between normal and abnormal. Therefore, we use them as an indicator
of the normalized ADPS for all ADNI subjects was carried out, and common biomarker
normalization algorithm. Each sigmoidal function was scaled and flipped in order to fit

of vertical lines representing progression from Normal to MCI and MCI to AD were fitted
base. (b) 90% confidence intervals for the inflection point of each biomarker.
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of biomarker timing in the disease process. We recomputed the inflec-
tion point of the normalized biomarker sigmoids for each bootstrap
sample and plotted 90% confidence intervals (Fig 5(b)). Furthermore,
counting pairwise ordering within the bootstrap samples, we find that
RAVLT30 precedes all other 6 other biomarkers (p-valueb0.01) and
HIPPO, ABETA and TAU precede MMSE and ADAS (p-valueb0.02).

Relation between ADPS and clinical status

Conditional probability densities of ADPS given the clinical status
of each subject were computed using Gaussian kernel density estima-
tion (Fig. 5(a)). Since N subjects tend to have a smaller ADPS than
MCI subjects who in turn tend to have a smaller ADPS than AD sub-
jects, this plot confirms that ADPS provides a scale that correlates
strongly with clinical classification of disease. The mean and standard
deviation of the baseline ADPS for N, MCI and AD subjects in ADNI is
provided in Table 1, column 2. The means are well separated from
each other. There is overlap in the baseline ADPS value between N
and MCI and also between MCI and AD, but essentially not between
N and AD. It is worth restating the clinical diagnosis is not used in
computing the ADPS except to determine its units.

Discussion

We combine multiple biomarkers to provide a neurodegenerative
disease progression. In contrast, in the case of AD, Brooks et al. (1993);
Stern et al. (1994); Ashford et al. (1995); Mitnitski et al. (1999) and
others use MMSE or ADAS as measure of disease progression. In Yang
et al. (2011a), the authors synchronize subjects onto a time-line
constructed using ADAS scores. The core assumption is that the rate of
change of ADAS is linear with respect to the ADAS score, resulting in
an exponential model of disease progression. In Walhovd et al. (2010);
Hinrichs et al. (2011), multiple biomarkers are combined to diagnose
AD. In Fonteijn et al. (2011) the progression of AD is divided into discrete
events based on the atrophy of different structures in the brain provid-
ing a probabilistic framework for estimating the global progression of
AD as well as for estimating the position of a single subject's measure-
ments. Longitudinal measurements are not used. In Ververidis et al.
(2010), a Bayesian classifier selects the set of biomarkers which are
most informative for classifying the current state of the disease.
Time-seriesmodels are used to predict the future state of the disease.
Yang et al. (2011b) use independent component analysis and support
vector machines to classify subjects into N versusMCI or AD. Our statis-
tical model is related to so-called single index models (see Hardle et al.
(1993); Carroll et al. (1997) and the references therein). However,
our models differ from these, as we assume parsimonious parametric
forms for the index function and allow for multivariate outcomes.

Ourmodeling technique applied to the ADNI has provided confirma-
tion of existing results: Jack et al. (2011) binarized each biomarker into
either normal or abnormal using a threshold or cut point. Cut points
were determined for each biomarker at autopsy and with an indepen-
dent cohort. When using these cut point to determine the ADPS at
which a biomarker changes from normal to abnormal, we find that
ABETA precedes bothHIPPO and TAUwhich is consistentwith the results
in Jack et al. (2011). We have also obtained surprising results. The fact
that the inflection of RAVLT30 precedes that of all other biomarkers,
and in particular that of ABETA is surprising, compared to Fig. 1, but con-
sistentwith some predictions. Jicha and Carr (2010) refer to the study in
Bennett et al. (2006) stating, “Retrospective analysis of their neuropsy-
chological test performance demonstrated significant differences in
only delayed recall tasks between subjectswith pathological AD autopsy
findings and those with normal autopsy findings, suggesting that mem-
ory decline may be present, albeit subtly, in persons with (preclinical)
AD before sufficient cognitive decline to warrant the diagnosis of either
MCI or dementia.”Also, Dubois et al. (2007) advocate that the presence
of an early and significant episodic memory impairment should consti-
tute one of the core diagnostic criteria for AD.

Conclusion

Wereport amultiple biomarker, data-driven approach to assess time-
dependent changes of biomarkers in neurodegenerative disease and to
localize subjects on a scale of disease progression, the DPS, over the entire
range of progression. The statistical model is shown to be identifiable
and bootstrap replicates show that the parameters are estimated tightly
in case of the ADNI dataset. TheDPS integrates information frommultiple
biomarkers into a single composite biomarker. Using this approach the
conceptual plot of Jack et al. (2010) can be recreated using the ADNI
data. The sequence of biomarkers obtained by comparing the inflection
point of each biomarker is similar to that in Jack et al. (2010) with an
exception: the RAVLT30 becomes dynamic before all other biomarkers.
The DPS provides a continuous measure of progression over the whole
course of disease, and it could therefore be used to stage individuals for
prognosis and to evaluate the effects of novel drugs at all stages of the dis-
ease. The method is generic and is applicable to all neurodegenerative
diseases pending availability of the data.
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Appendix A. Proof of Identifiability

Theorem 1. The model {Pρ;ρ∈ϱ} is identifiable as long as the following
2 conditions are verified:

1. For each biomarker, there is at least one subject i with αi≠0 and with
at least 4 distinct time-points at which this biomarker is available.

2. For each subject, there is at least one biomarker which is available at 2
time points.

The proof uses the invertibility of a multivalued function closely
related to f. This property is deferred to lemma 1.

http://www.fnih.org
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Proof of Theorem 1. Let us assume that the model is not identifiable.
Then there exists 2 sets of parameters in ϱ, ρ=(a, b, c, d, α, β, σ) and
ρ′=(a′, b′, c′, d′, α′, β′, σ′) which differed by at least 1 component,
while verifying Pρ=Pρ′. Equivalently,

f αitij þ βi; ak; bk; ck;dk
� �

¼ f α′
itij þ β′

i; a′k; b′k; c′k;d′k
� �

ðA:1Þ

for all i; j; kð Þ∈I and σk ¼ σ ′k for all k
We proceed in steps until we verify that necessarily ρ=ρ′. Since

σk ¼ σ ′k, for all k=1…K, we concentrate on the other parameters.
For each k, let i be a subject such that αi>0 and for which biomarker
k is observed at four different time points ti1, ti2, ti3, ti4 . Notate uik=
bkαi, vik=bk(βi−ck),u′ik ¼ b′kα′i and v′ik ¼ b′k β′

i−c′kð Þ. Rearanging the
arguments of f and using (A.1),

f tij; ak;uik;−uik
−1vik; dk

� �
¼ f tij; a′k;u′

ik;−u′
ik
−1v′ik; d′k

� �

for j=1…4. Note that since ai≠0 and bk≠0, uik≠0 andu′ik≠0. Now,
using Lemma 1, ak ¼ a′k, dk ¼ d′k, uik ¼ u′ik, uik

−1vik ¼ u′ik
−1v′ik. Sum-

ming up over i and dividing by I in bkαi ¼ b′kα′i, we obtain bkα0 ¼
b′kα0, and since α0≠0, bk ¼ b′k. Since bk≠0, it follows that αi ¼ α′i

and uik ¼ u′ik. Replacing in vik ¼ v′ik and summing up over i and divid-
ing by I, we obtain that ck ¼ c′k. We have then obtained that for all bio-
markers, ak ¼ a′k, bk ¼ b′k, ck ¼ c′k, dk ¼ d′k and σk ¼ σ ′k. Now, for each
subject i, there is at least one biomarker k for which two time-points
ti1 and ti2 are available. Replacing in (A.1),

f αitij þ βi; ak; bk; ck;dk
� �

¼ f α′
itij þ β′

i; ak; bk; ck;dk
� �

ð7Þ

for j=1,…, 2. Since ak≠0 and bk≠0, t→ f(t;ak, bk, ck, dk) is invertible

which, together with (7), implies thatαi ¼ α′
i andβi ¼ β′

i concluding
the proof.

Lemma 1. The vector values function R4→R4 for fixed x1bx2bx3bx4:
defined by

a; b; c;dð Þ→ f x1; a; b; c;dð Þ; f x2; a; b; c;dð Þ; f x3; a; b; c;dð Þ; f x4; a; b; c;dð Þð Þ

with a≠0, b>0 is invertible.

Proof of Lemma 1. We verify that the Jacobian determinant of this
function is nonzero, which is enough to prove invertibility using the
inverse function theorem of multivariate calculus. Let c′=ebc

f x; a; b; c′; dð Þ ¼ a
1þ c′e−bx

þ d

It is equivalent to show the Jacobian determinant of

a; b; c′; dð Þ→ f x1; a;b; c′; dð Þ; f x2; a; b; c′; dð Þ; f x3; a; b; c′; dð Þ; f x4; a; b; c′; dð Þð Þ

is non zero.
The ith row of the Jacobian matrix is:

1þ c′e−bxi
� �−2

1þ e−bxi ; ac′xie
−bxi ;−ae−bxi ;1þ 2c′e−bxi þ c′2e−2bxi

h i

Column linear transformation will not change the singularity of
the Jacobian matrix. After some linear transformations, the ith row is:

1þ c′e−bxi
� �−2

1; xie
−bxi ; e−bxi ; e−2bxi

h i
Suppose the Jacobian matrix is singular, i.e. there exists (not all
zero) coefficients k, l, m, n such that

kþ lxie
−bxi þme−bxi þ ne−2bxi ¼ 0; i ¼ 1;…;4

then the function

g xð Þ ¼ kþ lxe−bx þme−bx þ ne−2bx

must have four real roots. Differentiating twice,

2b2ne−bx−lb

would need to have 2 real roots. Since it is not the case, the Jacobian
matrix is invertible, which concludes the proof.
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