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Abstract

We propose a new method for estimating the probability mass
function (pmf) of a discrete and finite random variable from a small
sample. We focus on the observed counts — the number of times each
value appears in the sample — and define the Maximum Likelihood
Set (MLS) as the set of pmf’s that put more mass on the observed
counts than on any other set of counts possible for the same sample
size. We characterize the MLS in detail in this article. We show that
the MLS is a “diamond”-shaped subset of the probability simplex
[0,1]% bounded by at most k x (k — 1) hyper-planes, where k is the
number of possible values of the random variable. The MLS always
contains the empirical distribution, as well as a family of Bayesian



estimators based on a Dirichlet prior, particularly the well known
Laplace estimator. We propose to select from the MLS the pmf that
is “closest” to a fixed pmf that encodes prior knowledge. When using
Kullback-Leibler distance for this selection, the optimization problem
comprises finding the minimum of a convex function over a domain
defined by linear inequalities, for which standard numerical procedures
are available. We apply this estimate to language modeling using
Zipf’s law to encode prior knowledge, and show that this method
permits obtaining state of the art results while being conceptually
simpler than most competing methods.

1 Introduction

Let p be a probability mass function (pmf) over a set {1,...,k} of finite
cardinality. This may represent a set of numerical values for a quantitative
variable or a set of indices for a qualitative variable. The later situation
is often qualified as non-metric, as will be the case in Section 4, where the
indices will refer to words of the English vocabulary.

Suppose that we observe n samples z1,...,z,, that are independent and
identically distributed with common pmf p, which is unknown and needs to
be estimated from the observed samples. Prior information may be available
about p and, in particular, a specific estimate, or an estimate of a certain
form, may be preferred when n = 0.

For the case when n >> k, a very satisfactory answer is the empirical
distribution or type p, namely:

N . . 1 . 1y .
p(X:’L) = b = E;l(xtzz) E, ZE{l,...,k}, (1)

where 1(-) is an indicator function and, hence, n; is the number of times the
value 7 is observed in the sample.

When n is small, the pioneering work of Laplace (for £ = 2) has lead
to the well known Bayesian estimates as alternatives to the type. During
World War II, while working on cracking German cryptographic systems,
Jack Good and Alan Turing invented a method for regularizing the type
(Good, 1953; Orlitsky, Santhanam and Zhang, 2003). In their case, k£ = 26
was the number of letters in the Latin alphabet, and n =~ 100 — 1000. In
section 4, we consider a case where k is the number of words in the English



vocabulary, which is set to about 10°, and the training sample is n ~ 10°
words. Many “smoothing” techniques, most being variations on the Good-
Turing idea, have been compared for such a case by Chen and Goodman
(1996) and Chen and Rosenfeld (1999). Excellent empirical performance is
obtained by using Good-Turing like estimators. With the exception of the
Bayesian estimates, however, there is often only a heuristic justification, and
no principled derivation of the estimation formulae.

There have, of course, been numerous studies of the pmf estimation prob-
lem since Laplace, and it is not our intention to present a comprehensive
survey of the literature here, which begins at least as far back as (Lidstone,
1920), and continues to be an active area of investigation of numerous recent
publications (Ristad, 1995; Poschel et al, 2003).

We propose the following new method for estimating p. We consider the
counts — the number of times each value appears — and define the Maximum
Likelihood Set (MLS) as the set of probability mass functions that put more
mass on the observed counts than on any other set of counts possible for the
given n. In a second step, an element is chosen from this set. It can be the
one with maximum entropy, or another based on available prior information.
This view of the problem, we believe, is very natural. Indeed, so much so
that when we first arrived at this view, we expected that someone, in the
time of Laplace or thereafter, had already investigated it. We have however
not found any evidence of this in the literature.

1.1 The Empirical Distribution

The empirical distribution, or type, of a sample z1,...,x,, as briefly men-
tioned earlier, is

n n

k
ﬁ:(ﬂ,...,%>,withn22ni, (2)
i=1

where n;,1 <1 < k, are the counts, that is the number of times the value 2
appeared in the sample. We write P* the set of pmfs over a set of cardinality
k and P% the set of types with denominator n over a set of cardinality k.
The probability, under p € P*, of observing z1, ..., z, is

k
p(xla,xn) :Hp?l: (3)
i=1
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where n; are the counts as above. The right hand side of (3), viewed as a
function of the pmf p is called the likelihood function, and may be rewritten
as

Hpnz — 9~ n(D(p.p)+H(P)) ’ (4)
where
k D
= sz 10g2 _%a (5)
i=1 i

with 0log, g =0 and plog, & = oo for p > 0, is the Kullback-Leibler distance
of p from ¢, and

k
= - pilog,p;, (6)
i=1

with 0log, 0 = 0, is the Shannon entropy of p.

It is clear from (4) that the type p is a sufficient statistic for estimating p.
Also note that p is the maximum likelihood estimate of p, i.e. the choice of p
for which the likelihood (3) of 1, ..., Z,, is maximum. Indeed, D(p,p) > 0,
with equality iff p = p (cf e.g. Cover and Thomas (1991)).

For k fixed and n — oo, the type is a strongly consistent and efficient
estimate of the pmf. However, the type may not be the best possible estimate
for finite n. For example, one may have prior information about the true
distribution that is captured in the type only for very large n. There is also
a more structural objection: when £ is large, there might be many values
1 < i <k, for which p; << Z. In this case, with high probability, we will
observe n; = 0. Hence, low probability events tend to be underestimated and
high probability events overestimated by p. One manifestation of this effect
is that the expected entropy of the type underestimates the entropy of the
original pmf. Indeed,

E[H(p)] = -

Zﬁi IOg%pi] = —E[D(p,p)| + H(p) < H(p).

In Section 2, we therefore construct a set of pmfs that contains the type as
well as other pmfs that are close to it. In particular, it contains pmfs with
larger entropy than the type. We will then choose an estimate from this set
based on available prior knowledge.



1.2 Bayesian Estimates

Bayesian analysis offers an alternative to maximum likelihood estimation.
The Dirichlet family, indexed by a parameter (3, is a family of prior distribu-
tions over pmf’s given by

R k
Wﬁ(p)_mgpi , peP, BeER, (7)

where Z(f) is a normalizing constant. Note that for § = 1, (7) reduces
to the uniform distribution over P*. Now, if the Bayesian cost function is

quadratic, that is,
k

Lp,g) = Y _(ni — @)%, (8)

i=1

then, the Bayesian estimate corresponding to the Dirichlet prior is the pos-

terior expectation of p given x4, ..., x,, which can be shown to be
~ s n; + .
= , V1<i<k. 9
Boli) = <i< )

This is often referred to as an “add-g rule”. The special case of § — 0 yields
the maximum likelihood estimate p, and 8 = 1 the so called Laplace rule (cf,
e.g. Lidstone (1920)). Estimators with 8 = 0.5 and 8 = { have also been
considered; see Nemenman, Shafee and Bialek (2002) and references therein.
Note that all such estimators with § > 0 assign a strictly positive mass to
every value in {1,...,k}, and they all converge to the type as n — oc.

We will see that the the set from which we will choose our estimate
contains all add-g rules in (9) for 0 < g < 1.

1.3 Minimax Estimates

An alternative to Bayesian analysis is minimax analysis where one seeks an
estimate that would be optimal in the worst case over the underlying model
and in average over the observations. More precisely, if p is the underlying
model and ¢ an estimate of p, one builds the functional

n!

7. TL U
o Pl P L), (10)

Ro= s Y

p=(p1,---Dk)
T e R ni=n
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For the quadratic cost (8) as well as for the standardized quadratic cost

)2

Lipg) =Y =8 (1)
i1 pi

the minimum of R(q) is achieved by an add-g rule, with 8 = k~'y/n, (Stein-

haus, 1957), and 8 = 0, (Olkin and Sobel, 1979), respectively.

1.4 Maximum Entropy Estimates

Maximum entropy estimation is another standard solution to data sparseness.
Instead of estimating p, the maximum entropy method first estimates p(4;) =
a; for select sets A; C {1,...,k}, for which we have sufficient evidence in
the n samples. Fixing the probability of some subsets of {1,...,k} in this
manner typically under-specifies the pmf of interest, leading to a set M of
admissible pmfs

M={pePt :pA)=aq;j=1,..,J}, (12)

in which the estimate p is but one member. From this admissible set, the
pmf with the highest Shannon entropy is then chosen as the estimate of p.
It is well known (see Berger et al. (1996)) that the pmf with the maximum
entropy has an exponential form:

(i) = ﬁexp {; M\l(i € Aj)} ,  V1<i<k, (13)

where the parameters A = (A1,..., \;) are chosen to satisfy the constraints
of (12).

It can be shown that for every i, as long as at least one p € M satisfies
p; > 0, it follows that pyg(i) > 0. Thus the maximum entropy estimate is
inherently smooth.

There are several heuristics but few principles for selecting the sets A; or
even J. In language modeling, some A;’s are typically singleton, specifying,
for instance, the probability of words that have been seen sufficiently often
in the sample; some A;’s may contain all words which can take on a certain
grammatical part of speech, e.g. adjectives; some A;’s may overlap with
others; etc. Therefore, while maximum entropy estimation eliminates the



need for some of the ad hoc assumptions made by other techniques, it leaves
open the problem of selecting the sets used to define M.

Another weakness of the classical maximum entropy method, as pointed
out by others, is that the specification of M via equality constraints leads
to an ad hoc choice for any candidate A; — either one must constrain its
probability to be eractly a;, or leave it completely unconstrained. This is
unsatisfactory. For instance, if one were considering as candidate sets A; all
singleton sets {v} then the naive act of including all of them in the definition
of M leads to M = {p}. On the other hand, leaving out all i for which,
say, n; = 1 from the definition of M may result in an estimate under which
n; > 0 and ny = 0, but pyr(i) = pme(?’). Maximum entropy estimation
has therefore been proposed with inequality constraints (cf e.g. Khudanpur
(1995) and Kazama and Tsujii (2003)):

M={p:a;<p(4;) <b;, j=1,...,J}. (14)

To the best of our knowledge, there has not been much discussion in the
literature of a principled way to make the choice of a; and b;, particularly of
a way that depends only on the observed sample, and not on other ad hoc
assumptions about p.

Yet another variation on maximum entropy consists of minimizing a func-
tional of the form

Z/J'jd(p(Aj), a;) — H(p), (15)

where d(., .) is some metric of deviation from the constraints of (12), and the
parameters pu = (yg,..., @) are estimated, usually, from held-out data. Yet
another way to relax the constraints in (12) is to note, using convex duality
(Berger, Della Pietra and Della Pietra, 1996), that the parameters A that
satisfy the constraints are exactly the parameters for which the model of (13)
assigns maximum likelihood to the observed sample. One may then choose a
penalized likelihood approach with a regularizing function of A. Still, several
parameters need to be estimated from held-out data in either case. Several
such methods are compared in Chen and Goodman (1996) for the estimation
of bigram and trigram language models.

In Section 2, we will seek to provide a principled way of relaxing the linear
equality constraints in maximum entropy estimation.



1.5 Good-Turing and Other Held-Out Methods

In Jelinek (1998), page 258, the author asks “how much larger a probability
should be assigned to an event observed once than to one not observed at
all, or, in general, whether the ratio of probabilities of events observed n and
m times, respectively, should really be n/m”.

Considering pmfs that put more mass on the observed counts than on
any others, which we do in Section 2, will lead to one answer to this ques-
tion, namely (24). The Good-Turing and other held-out methods answer the
question in a different way.

The basic idea is to divide the data into two parts. The first part, called
the development set, is used for the collection of counts {n;}. The second
part, called the held-out set, is used to estimate additional parameters. A
typical structure is as follows:

axoifn; > M,
; { (16)

bi =
z 4 if n; < M,

where the (usually small) threshold M, and “smoothed” probability estimates
qi, t=0,..., M, are the additional parameters.

The Good-Turing estimate (Good, 1953; Orlitsky, Santhanam and Zhang,
2003; McAllester and Schapire, 2000) is obtained by setting

Tni+1 M + 1 .
g= i e {1,...,k}, 17
=TS i1k (17)
where 7. is the number of symbols j € {1,...,k} whose count n; = c. Thus

¢; for a symbol 7 depends not just on its count n; and n, but on the counts
of all other symbols.

Note that if n; > n;, it is not necessarily true that ¢; > ¢;, though
this frequently holds in practice for symbols with very small counts. In
other words, ¢; may not respect the rank-ordering implied by the empirical
counts {n;}, particularly for symbols with large counts. For this reason,
the threshold M is often chosen to be small enough so as not to have this
undesirable effect. E.g., in language modeling, M is typically chosen to be
10 or less, depending on n. The parameter « is then computed so that p;
sums to unity.

The Good-Turing estimate performs remarkably well for pmf on words.
However, its derivation is somewhat ad hoc and unsatisfactory.



2 The Maximum Likelihood Set

One of the simplest and driving ideas in statistics is as follows : what we
observe has to be fairly likely, otherwise we would not have observed it. One
way to quantify this is to say that what we observe has to be more likely under
the true pmf, than any other comparable event. Let’s define the Maximum
likelihood Set (MLS) as the set of pmf’s that put more mass on the observed
type than on any other type given n. Let p = (p1,...,px) be a pmf over
{1,...,k}. The p-probability of observing the type p = (",..., "k) is

’'n

k
n!
H) — — W_ 18
f(p, D) nl!...nk!ilzllp’ (18)

The MLS, with these notations is defined as
M@B)={peP" : VaePy f(p.p) > f(p, D)} (19)

We will see in section 2.3 that this set always contains the type p, which is

the maximum likelihood estimate for p, and that it shrinks down to it as

n — oo. For finite n, it contains pmf’s that might reflect prior information

such as “smoothness,” or other desirable properties in a better way than the

type, but still remaining “close” to the observed counts. Moreover, this set

is a close convex subset of P* opening the way to numerical optimization.
Using Stirling formulae, as well as (4), one can check that

i 1 .
f(p,p) =27P@P) where u, = v, < lim — logu— =0. (20)

n—o0o N Un,

Hence, for n sufficiently large, the MLS associated with a type p is roughly
{peP* : D(p,p) <D(Gp), Yi€P}, (21)

leading to the loose description that the MLS is the set of pmf’s that are

“closer” to the observed type than to any other.

2.1 Characterization of the Maximum Likelihood Set

The MLS admits a simpler, though still implicit representation. Given the
observed counts (ni,...,ng), define a neighborhood relationship on the set
of types with denominator n: the neighbors of (ni,...,ny) are the types

9



obtained by changing a single sample from one value to another one. That
is, assume that for a pair of indexes 1 <14, j < k, we have n; > 0 and n; < n,
then (nf,...,n}) defined by

n;:ni—i-l, n;-:nj—l, and n;=nl [ #iorj, (22)

is a neighbor of (ny, ..., ng).

If a pmf is in the MLS then it has to put more mass on the observed
type than on any of its neighbors. It turns out that the converse is also true,
which leads to the following result.

Proposition 1. A pmfp = (p1,...,px) on the set {1,...,k} belongs to the
MLS M(p) associated with the counts (ni,...,ng) if and only if

n;pi < (ni +1)p;, Vi<i#j <k, (23)
or equivalently
H: ) p: + L
PP BT i<z <k, (24)
Pitya P pj
where, by convention, § = +oo whenever a > 0.

The proof uses elementary algebra and is relegated to the Appendix.

2.2 Motivating Examples
For k = 2, the MLS is

M(ﬁ):M((%’l_%)) Z{p=(p1,1—p1);n&<p1< ”1+1}_

+1 7"~ n+1

Note that this set contains the type and shrinks down to it as the num-
ber of samples goes to infinity. Beside the connection with Dirichlet pri-
ors mentioned in the introduction, the MLS in this case can be obtained
through Bayesian estimation of a proportion with quadratic cost function
and a Beta(a, B) prior distribution. It is the set of estimators corresponding
to the prior parameters (o, ) satisfying o + 8 = 1. See page 368 of Hogg
and Craig (1995).

The MLSs for &k = 3 are illustrated in Figure 1 for two different values
of n. The MLSs are convex cells with linear boundaries. They have at most
k x (k — 1) boundaries, one corresponding to each neighboring type.

10
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Figure 1: lllustration of the Maximum Likelihood Sets for all the possible types

“

= 10 samples. Each “cell” is

B:n
an MLS comtaining exactly one type marked with a cross.

samples.

for alphabet size k =3. A:n =3
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In order to select an estimate from the MLS, one could choose the pmf
with maximum Shannon entropy. This choice will be motivated further in
Section 3 below. We use it here to illustrate properties of the MLS set. For
example, if the counts (n1,...,ny) are made of 0’s and 1’s only then the pmf
selected is the uniform distribution over {1,...,k}, since it is of maximum
entropy over all pmf’s over {1,...,k} and it is included in the MLS, as one
can check from (23). In contrast, if there is one value, say the first one, that
gets all the counts, then the selected estimate is, for n > 0,

n 1

_ S Yl<I<Ek
poy and pj oy Vi<i<k (25)

pi
If n < k, then note that pj < 0.5, which stands in sharp contrast with the
estimate p; = 1 given by the type. Equation (25) is a direct consequence of
the property (35).

2.3 Properties of the Maximum Likelihood Set

We now present some insightful and useful properties of the MLS.

Proposition 2. Let p = (

M., k) be a type. The elementsp = (p1,...,Dx)
of the MLS M(p) defined b

p satisfy the following.

pLp de n;>0 = p; >0, V1<i<k, (26)
n;<n; = p;<p; V1<i,5<k, (27)

n 1
i < pi < pid+— V1<i<Ek, 28
TopP S ok < Pt <i< (28)

k

2k —1)
—plh = —pl < 22— and 29
lp — bl ;\p pl < — an (29)
p € M(p) (30)

but no other type with denominator n is an element of M(p).
If z1,...,z, are independent samples with common pmf ¢ € P*, then the
MLS defined by their type p is such that

sup |[p—gqlli =0 as n— oo with probability 1. (31)
PEM(P)

12



Proposition 2 is essentially a corollary of Proposition 1. Details of the proof
are in the Appendix. Properties (26) and (27) are desirable for any estimate
of the pmf generating x1,...,z,. Properties (28) and (29) show how the
elements of the MLS may deviate from the underlying type. Property (31)
shows that for a fixed £, as n gets large, all the elements in the MLS get
closer to the pmf generating the samples.

It is easy to see, by comparing (28) and (9), that the MLS contains the
Bayesian estimates for 0 < 8 < 1.

3 Selecting an Element from the Maximum
Likelihood Set

Every pmf in the MLS satisfies a number of properties, as outlined above,
that one would consider desirable in an estimate of the pmf generating the
samples x1, ..., T,, and we advocate M(p) as an admissible set from which a
particular pmf may be selected using secondary criteria. One such criterion
is outlined next.

Proposition 3. Letp = (%,..., ") be a type and M(p) its associated MLS.
Let g = (q1,--.,qk) be a pmf such that p << q. Then, there erists a unique
element p* € M(p) such that

D(p*.q) = min D . 39
(r*,q) ,in (p,q) (32)

Note from (23) that M(p) is convex and closed in the Euclidean topology
on P*. The existence of p* therefore follows from Theorem 2.1 in (Csiszar,
1975) and the uniqueness follows from the convexity of p — D(p, q).

The pmf ¢ may be viewed as a means of incorporating a prior estimate
in the estimation process. In the case when n > k, the MLS has a very
small radius, and the choice of ¢ has a negligible effect on the choice of p*.
In the limit as n — 0, p* — ¢ by continuity. Therefor, in the small sample
situation, the choice of ¢ will greatly influence p*.

One may choose for ¢ the uniform pmf over {1,...,k}. p* is then the
element of M(p) with maximum Shannon entropy. It has been argued by
Nemenman, Shafee and Bialek (2002) that entropy might be the non-metric
(categorical data) analog of smoothness. Other compelling arguments for
this choice have been made by Jaynes (1994).

13



In a situation where one needs to estimate a conditional pmf p(-|y) and
the marginal pmf p(-) is known, a viable prior estimate is g(-) = p(-). See
Jelinek (1998) for related smoothing methods in language modeling.

If one chooses a measure such as the Kullback-Leibler distance to select
a pmf from the MLS, an additional satisfactory property of the selected pmf
emerges.

Proposition 4. Let M(p) be the MLS defined by the counts (ni,...,n).
For any pmf q > p, the pmf

*

= arg min D 33
p g min (pllg) (33)

has the “monotonicity” property:

ni=mn; and ¢ > ¢; = p; > pj Vi<i#j<k. (34)
Furthermore,

ni=n; and ¢ =gq; = p; =Dp; Vi<i#j<k. (35)

The proof is again relegated to the Appendix.

Every pmf p € M(p) has been shown, via (27), to be faithful to the ev-
idence. The monotonicity property (34) characterizes the selection rule of
Proposition 3: if ¢ is a priori more likely than j, then, in the absence of
evidence to the contrary, it continues to be more likely under the selected p*.
The special case (35) has significant implications for the numerical compu-
tation of p* as will be discussed in the following section.

Note that the Kullback-Leibler divergence of (32) is not the only “dis-
tance” one may use to select an pmf from the MLS. Any other function D(-,-)
with a projection theorem that guarantees the existence and uniqueness of
p* in (32), together with an algorithm that computes the projection, may be
used. An obvious choice is the Euclidean distance, which leads to a standard
quadratic programming problem.

3.1 Numerical Optimization Issues

The optimization problem (32) cannot, in general, be solved in closed-form
and, in practice, requires a numerical procedure. The setting is known in nu-
merical optimization literature as “general linearly constrained optimization”

14



(cf Fletcher (1981), Chapter 11, and Bazaraa, Sherali and Shetty (1993)).
Stated briefly, one needs to minimize a convex function over a domain de-
fined by linear inequalities such as (23). We minimize the Kullback-Leibler
distance of (32) subject to p satisfying (23) using the numerical optimization
package CFSQP developed by Lawrence, Zhou and Tits (1997).

The number of constraints specifying the MLS is k(k —1). A typical lan-
guage modeling situation requires a vocabulary of k ~ 10° words. Checking
just once that a pmf is inside the domain therefore may in general require
about 10'Y operations! Fortunately, choosing ¢ to be piecewise constant con-
siderably reduces the dimensionality. To see this, consider the extreme situa-
tion where ¢ is the uniform pmf. Two indexes 1 < 7,5 < k may be considered
equivalent if n; = n;, and the optimization may be performed over the set of
pmf’s on {1,...,k} modulo this equivalence relation, thanks to (35). What
is the number of indexes in this set? With n samples, it contains no more
than v/2n indexes. This is therefore the “effective” k when g is uniform. For
other pmfs ¢, the corresponding equivalence relation is n; = n; together with

9 = 4q;.

4 Language Modeling

Statistical language models are a key component in applications such as
automatic speech recognition, machine translation, spelling correction, and
document retrieval. Language modeling entails estimating a probability dis-
tribution over word-sequences, and this is typically done by modeling the
sequence of words in a sentence by a finite memory Markov chain. An n-
gram model is a set of conditional pmfs P(wy,|ws,...,w, 1), one for every
conditioning event. In applications such as document retrieval, where word-
order is not of paramount importance and a bag-of-words representation is
adequate, i.i.d. models, called unigram models, are used. In all cases, there
is a need to estimate a pmf, marginal or conditional, on the vocabulary. In
this section, we present experimental results for the estimation of unigram
models.

If obtaining smooth estimates is the primary goal, one would naturally
use the uniform distribution in the role of ¢ in (32). We obtain empirical
results for this (maximum entropy estimation) case as a first step. It should
be clear to the reader, however, that all words are not equally likely even a
priori, and it is known from several studies that the count n; and the rank of

15



a word %, when the vocabulary is sorted in order of decreasing counts, has a
roughly inverse relationship. The relationship, sometimes called Zipf’s law,
cf (Li, 1999), makes for a natural prior estimate ¢ for estimating the unigram
pmf. via (32). Specifically, we consider

a(k)

qzipt (1) = rank(i) (36)

where «(k) is a normalizing constant. Empirical studies (Ha, Sicilia, Ming
and Smith, 2002) show that this is a good initial estimate for unigrams.
Note that a need not be computed, since it plays no role in the minimization
of (32). The resulting estimate p* in the MLS may then be interpreted as
the pmf supported by the evidence x1...,x,, which is closest to Zipf’s law
in the sense of K-L divergence. This seems a plausible choice for language
modeling.

A problem however remains, that for a given vocabulary, there is no a
priori way of determining the rank-ordering of words. One could possibly use
word-length to perform such ordering. We take a simpler approach and use
the rank-ordering empirically observed in z; ..., x, to determine q. We make
a further modification to break ties: all words which have the same count in
Z1...,T, get a rank, namely the mean of the ranks spanned by those equal-
count words. This latter modification results in an important numerical
simplification. By assuming words with the same observed counts to have the
same g-probability, we are assured that they will have the same p* probability,
reducing the number of free variables in the numerical optimization of (32)
and indeed the specification of p*. Without this modification, p* would have
up to k — 1 free parameters, and in case of a most language models this is
impractical.

We have conducted experiments on English text from the Wall Street
Journal corpus, which contains articles from the general news and financial
domain. A particular subset of this corpus, called the UPenn Treebank
corpus (The Penn Treebank Project, 1992), has been widely used by many
researchers in language modeling, and we use this for our experiments as well.
The corpus is divided into sections, numbered 00 through 24. We use sections
00-20 as our training corpus, it contains 900K word tokens. Sections 21-22,
containing 100K tokens are used variably as a training or a held-out corpus
as needed, and finally sections 23-24, containing 100K tokens make up our
test corpus. For the purpose of studying the variability of the estimates, we

16



divided sentences in sections 00-22 into 10 roughly equal parts, and results
will be presented on these smaller corpora in the following.

We made a list of all seen words from sections 00-22 and augmented this
vocabulary with a set of “unseen” words. The decision on how many unseen
words to include is presently ad-hoc. We use a leave-one-out estimate of
the number of unseen words by asking, for each x; in z;...,x,, whether
it would be an unseen word if the vocabulary were to be extracted from
{z1..., %1, %431,-. ., 2}, t =1,...,n. It is easy to see that this procedure
yields ng = ny; i.e. the number of unseen words is exactly equal to the
number of words seen only once in the corpus. This procedure, while not
theoretically satisfactory, is performed out of necessity.

We remark that the MLS of (19) is well defined even for an infinite vo-
cabulary, and with a suitable prior estimate ¢, it may possible to let the
vocabulary-size be unbounded for the estimate of (32) as well.

4.1 Empirical Results

The box at the top of Figure 2 illustrates, using crosses, the empirical pmf p
obtained from sections 00-22, where the words have been (re)ordered along
the abscissa in decreasing order of p;.  Specifically, for ¢« = 1,..., kg, the
ordinate shows the logarithm (to the base 2) of

Mo (1) Mo (ko)

ey, —— 37
n Y Y n Y ( )

with n,0) > ... > ng(ke)- ko = 37001 is the number of distinct words seen in
sections 00-22. The Zipf prior of (36) is shown in the same box using dots: it
is a straight line with slope —1. A uniform prior would be a horizontal line
on this plot. Finally, in the same box, the lower and upper bounds on each
p; in the MLS, per (28), are also illustrated using a solid and a dashed line
respectively:

{<logi,10g M) and (logi,log M) , 1<i< ko} ,  (38)
n+k n

where the number of words in the vocabulary k¥ = 52743 is estimated using

the procedure described above. Note that the envelope of the MLS has a

trumpet-like shape. For large counts, the upper bound of the MLS is essen-

tially indistinguishable from the type. The estimated pmf p* may decrease

the mass for these outcomes, but cannot increase it significantly. However,
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Figure 2: Plot of the empirical pmf from data, the Zipf prior and the lower and
upper envelopes of the MLS on a log-log scale. A: Full range of observed counts.

B: Zoom top left (= high counts).

C: Zoom bottom right (= low counts).
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for small counts, the envelope of the MLS has a flared bell shape showing
the statistical variability of the corresponding probabilities, and that the
type tends to underestimate rare events. Any pmf chosen from the MLS
corresponds to a curve that lies between the upper and lower envelopes.

To measure the efficacy of an estimate p of p, we compute the average
codeword length (in bits) that the estimate p achieves on the type pr of the
test set, that is

1 «— 1 . )

mg;%ﬂm——MmM+H%% (39)
where np is the size of the test set, the x,’s are the words of the test set and
H(-) the Shannon entropy.

Experimental results, for the Wall Street Journal data, along with stan-
dard deviations, when avaiblable, are shown in Table 1.

L1 » 1 | pgB=3 [ psB=5 | bor |
| 4() | 10 21 | 10.21 | 10.52 \10 19 |
| | p*: q=unif | p* : ¢=Zipf | p* : q=par | |
/()] 10210 | 10.20 | 10.19 | |
| [ BsB=1 1 psB=13 | psB=14 | par |
avg. £(°) 10.58 10.42 11.31 10.37
std. dev. 0.017 0.017 0.036 |0.016
| | p* : g=unif | p* : ¢=Zipf | p* : ¢q=par | |
avg. £(°) 10.58 10.40 10.37
std. dev. 0.015 0.017 0.018
Table 1: codeword length in bit for pmf estimates: Upper Table : n = 10°

words. Lower Table : average and standard deviation over 10 training sets with
n = 10° words. pgs is the add-S rule of (9). pgr is the Good-Turing estimate
of (16) and (17). p* is the MLS estimate of (32) with the prior ¢ as indicated.
“avg.” stands for average and “std. dev.” stands for standard deviations.

Looking at the average codeword lengths in Table 1, the reader unfamiliar
with language modeling might be surprised to see how well the Good-Turing
estimate (fifth column) performs compared to the add-g rules. Three MLS-
derived estimates are presented. In the first of the latter, we have used
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the uniform pmf as a prior. The estimate thus obtained has comparable
performance with the add-1 rule but not as good as the add-% rule for the
smaller training set. Next, using a Zipf prior, we increase the performance
to outperform all add-g rules considered so far and come closer to the GT
estimate. Third, we use the G'T estimate itself as a prior! We then get an
average codeword length that is indistinguishable from the GT estimate. In
our experiments, the GT estimate has never been inside the MLS. We have
thus shown empirically that there exist pmfs that are “closer” to the empirical
pmf than to any other type whose codeword lengths are undisdinguishable
from those of the GT estimate. Furthermore, unlike the GT estimate, these
pmfs are guaranteed not to contradict the observed counts in the data.

Note as an aside that the “effective-£” for numerical optimization is about
600 for n = 10° and about 180 when n = 10° for all priors used.

5 Conclusion

We have proposed a new method for estimating a probability mass function
from a sample: we consider the observed counts; the Maximum Likelihood
Set is defined as the set of pmf’s that put more mass on the observed counts
than on any other set of counts; the closest element from the MLS to a prior
estimate in the Kullback-Leibler sense is then selected.

The MLS is an “admissible set” for estimating a pmf that has the following
properties: it is built from first principles, it is strongly consistent (31) and
faithfull to the evidence (26)(27).

The way we select a pmf from the MLS permits to encode domain specific
information in a very natural way as demonstrated with the Zipf law for lan-
guage modeling. Moreover, it is practical as it entails minimizing a convex
function over a domain defined by linear inequalities. This is a classical prob-
lem in numerical analysis, with known solutions. This way of incorporating
domain information is a novel alternative to Bayesian or minimax methods.

Experiments with pmf’s on English words show that the proposed method
is competitive with state of the art methods.
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A Appendix

Proof of Proposition 1. First, we establish that if p € M(p) then p satisfies
(23). Towards this end, for any ¢ and any j # ¢ such that n; > 0, let

i1 1
@=<ﬂ It E %) (40)

) ; ) 3 ) 3
n n n n

By definition, f(p,p) > f(p,§), and hence

n! n

] ] ] ] by
nl'---ni'---nj'---nk' l
n

>

. n;+1 7}]'*1 n;
e (Dl (ny — D)ottt P 11
] 1 I#i,5

p. >
njpj - n,+1

The property (23) follows. If n; = 0, then (23) follows trivially.

Di-

Next, we establish that if p satisfies (23) then p € M(p). Towards this end,

again, let
. n1 ,
=—,...,— 41
i= (%) (an)
be an empirical pmf associated with any other set of counts (7, ..., 7) for
an n-length sample. We construct a sequence of pmf’s ¢9, ..., ™ such that
i =4q,  fE.d")<fp,dV) <. <fp,¢™)  amd  §™ =p.

(42)
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In particular, we begin with ¢(® defined by the counts

(ngO),..,,néo)) = (g, ..., 7, (43)
and, form =1,...,n,
o if @(m_l) = p, then we set (j(m) = g(m—l)’

(m—1)
i

e otherwise, choose 7 and j such that n > n,; and ng-m

define ¢(™ by the counts

< mj, and

TLEm) _ (m—l)_1 (m) _ (_m—l)

n;

, M n

J j
(44)
Note that a suitable pair i, j is guaranteed to exist whenever §(™1 £ p.

It is clear that for m =1,...,n, if ¢(™=1) # p, then by construction

R . N R 2 R R 2m
q(m)_p1 — q(m 1)_p1__ — — q(O)_p1_—
n n
Since ||¢ — p||; < 2, it follows that ¢™ = p.
Finally, note that for m =1,...,n, if g™ #£p
fp,0™) A Sl s
A~ = yY
f(p,qm=") a1l n! el
_ 1 ngm—l) &
ng-m_l) +1 1 p
Ny D
> 1,
where the first inequality holds by construction, since ngmfl) > n; and
ng-m_l) < nj, and the second inequality holds due to (23). O

Proof of Proposition 2. Let’s suppose that there is an index 1 < j < k such
that n; > 0 and p; = 0. Replacing in equation (23), it implies that V1 < ¢ <
k,i # j,p; = 0 which is impossible since p; = 0. This proves (26). Equation
(27) is also a consequence of (23) as the reader can check. Remark that (23)
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still hold for indexes ¢ = j. Then, summing out, we obtain, for any subset
AcA{l,... k},

SN b < 3G+ )y and (45)

icA j=1 icA j=1
k k 1

MY hpe < DD i+ ﬁ)pj (46)

JEA i=1 jEA i=1

from which we obtain
n #A

VA 1..... kY. p(A < p(A) < p(A) + =— 47
c{1,...,k}p( )n+k_p()_p()+n, (47)

where #A is the number of elements in A. Setting A = {7} gives (28). Now,
from (Cover and Thomas, 1991) page 300,

Ip = plls = 2(p(A) = p(A)); A = {1 < i < k;pi > pi}- (48)
Using (47), we obtain

R A 2(k-1
||p—p||1§2#n < (n ). (49)

Using equation (23), one can directly check that p € M(p). Now, if another

type in PF is also an element of M(p), then p has a neighbor who is an

element of M(p), following the argument in the part (<) of the proof of

Proposition 1. Let’s call ¢ this neighbor. It is such that ¢; = "17“ and
— ni—l

q; = for some indexes 1 < 4,5 < k such that n;, < n and n; > 0. Now,
j n j

as an element of M(p), it satisfies

But this is equivalent to say that n; < —1 which is impossible.

Finally,
2(k—1)

sup |[lp—q| < + 115 =gl . (51)

pEM(p)

using the triangular inequality as well as the bound (29). (31) follows from
the fact that the type converges to the true distribution in ||.[|;. O
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Proof of Proposition 4. Assume, to the contrary, that p; < pj for some i # j
with n; = n; and ¢; > ¢;. Define a pmf p*™* by

p; forl=i,
pt=qp forl=yj, (52)
p; forl#1iorj.

In other words, construct p** by “switching” the i-th and the j-th entries of
p*. Since p* € M(p), p* satisfies (23). But n; = n; then implies that, by
construction, p** also satisfies (23). Thus p** € M(p). Next, note that

k * k %
D(pllg) - D™ lle) = > pflog=™ — > pj*log=
—1 aq 11 aq

R T R R

= pjlog =+ pjlog— — pjlog=* — p}log =~

g q; qi g;

= pjlog =L —pjlog =
qi q;
= (pi—pj)log—J >0
q;

which contradicts Proposition 3, since p* is the unique minimizer of D(p||q)
in M(p). O
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