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Abstract

We study conditions for the detection of an N -length iid sequence with unknown

pmf p1, among M N -length iid sequences with unknown pmf p0. We show how the

quantity M2−N D(p1||p0) determines the asymptotic probability of error.
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1 Introduction

Our motivation for this paper has its origins in Geman et. al. (1996), where an algorithm

for tracking roads in satellite images was experimentally studied. Below a certain clutter

level, the algorithm could track a road acurately, and suddenly, with increased clutter level,

tracking would become impossible. This phenomenon was studied theoretically in Yuille

et. al.(2000 and 2001) . Using a simplified statistical model, the authors show that, in an
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apropriate asymptotic setting, the number of false detections is subject to a phase transition.

Our objective in this paper is to generalize these results. First, we demonstrate, in the same

setting, that the phase transition phenomenon occurs for the error rate of the maximum

likelihood estimator. Second, we consider the situation where the underlying statistical

model is unknown; i.e., there is a special object among many others but it is not known

how it is special (it is an outlier, in some sense). We show that the same phase transition

phenomenon occurs in this case as well. Moreover, we propose a target detector that has

the same asymptotic performance as the maximum likelihood estmator, had the model been

known. Simulations illustrate these results.

Let

X =



X1
1 X2

1 . . . XN
1

X1
2 X2

2 . . . XN
2

...
...

...

X1
M+1 X2

M+1 . . . XN
M+1


(1)

be a (M + 1) × N matrix made of independent random variables (rvs) taking values in a

finite set. We denote by Xm = (X1
m, . . . , XN

m ) ∈ XN the rvs in line m and by X(m) the ones

that are not in line m. There is a special line, the target, with index t. All the other lines

will be called distractors. The rvs Xt are identically distributed with point mass function

(pmf) p1. The other ones, X(t), are identically distributed with pmf p0 6= p1. The goal

is to estimate t, the target, from a single realization of X. If p0 and p1 are “close”, the

target does not differ much from the distractors, a situation akin to “finding a needle in a

haystack”.

2



2 Known distributions

Let x be a realization of X. Then, the log-likelihood1 of x is

l(x) =
N∑

n=1

log p1(xn
t ) +

M+1∑
m=1,m 6=t

N∑
n=1

log p0(xn
m) (2)

=
N∑

n=1

log
p1(xn

t )
p0(xn

t )
+

M+1∑
m=1

N∑
n=1

log p0(xn
m) (3)

The maximum likelihood estimator (mle) for t is then

t̂(x) = arg max
1≤m≤M+1

N∑
n=1

log
p1(xn

m)
p0(xn

m)
(4)

We call the reward of line m the quantity

1
N

N∑
n=1

log
p1(xn

m)
p0(xn

m)
(5)

The mle entails choosing the line with the largest reward. The quantity of interest is the

probability that the mle differs from the target:

e(M,N) = IP (t̂(X) 6= t) (6)

which is the probability that a distractor gets a reward which is greater than the reward of

the target. If M is fixed , letting N →∞, and using the law of large numbers, we obtain

1
N

N∑
n=1

log
p1(xn

t )
p0(xn

t )
→ D(p1, p0) and (7)

1
N

N∑
n=1

log
p1(xn

m)
p0(xn

m)
→ −D(p0, p1) for every m 6= t (8)

1Logarithms are base 2 throughout the paper.
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almost surely, where

D(p, q) =
∑

x

p(x) log
p(x)
q(x)

(9)

is the Kulback-Leibler distance between p and q. Hence, as long p 6= q, D(p, q) > 0, and

the reward of the target converges to a positive value while the reward of each distractor

converges to a negative value which allows us to show that the error of the mle goes to zero.

One can even bound e(M,N) from above for any fixed M and N as follows

Theorem 1

e(M,N) ≤ M

(∑
x

√
p0(x)p1(x)

)2N

. (10)

Note that

0 ≤
∑

x

√
p0(x)p1(x) = 1−Hellinger(p0, p1) ≤ 1, (11)

where Hellinger(p0, p1) is the Hellinger distance between p0 and p1. The proof, using

classical large deviations techniques, is in Section 6. Note that if the right-hand side of (10)

goes to 0 as M →∞ and N →∞, the probability that the mle differs from the target goes

to 0. This condition, however, is not necessary. As we show below, there is a maximum

rate at which M can go to infinity in order for the probability of error to go to zero (if M

increases faster, then the probability of error goes to one). A similar result, i.e., that the

number of distractors for which the reward is larger than the reward of the target follows a

phase transition, was also shown by Yuille et. al.(2000). We present below the same analysis

for the convergence of the mle. The phase transition, or in other words, the dependence of

the probability of error on the rate at which M goes to infinity, is expressed in the following

theorem:

Theorem 2

If ∃ ε > 0, such that lim
M,N→∞

M2−N(D(p1,p0)−ε) = 0 then lim
M,N→∞

e(M,N) = 0, (12)
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and

If ∃ ε > 0, such that lim
M,N→∞

M2−N(D(p1,p0)+ε) = +∞ then lim
M,N→∞

e(M,N) = 1. (13)

The intuition is as follows. First, as N goes to infinity, if M remains fixed, the probability

of error goes to zero (exponentially fast, following a large deviation phenomenon) since the

reward of the target line converges to a positive value, while the reward of the distractors

converges to a negative value (as was mentioned earlier). On the other hand, as the num-

ber M of distractors increases, when N remains fixed, the probability that there exists a

distractor with a reward larger than the reward of the target increases as well. These are

two competing phenomena, whose interaction gives rise to the “critical rate” D(p1, p0). The

detailed proof appears in Section 6.

Note: In order for the limits of functions of M,N to be well-defined as M,N → ∞, we

assume that M is, in general, a function of N . Hence, all limits limM,N→∞ should be

interpreted as limN→∞, with the proviso that M is increasing according to some function

of N . We kept the notation limM,N→∞ for simplicity.

3 Unknown Distributions

We now look at the case where p0 and p1 are unknown. It is clear that the error rate of

any estimator in this context cannot be lower than the error rate of the mle (with known

p0 and p1). Hence, (13) holds even when e(M,N) is the error rate of any estimator. Can

one build an estimator of the target for which the error rate will satisfy (12) ? The answer

is yes as we shall see now.

A simple way of building an estimator of the target when p0 and p1 are unknown is to

plug-in estimators of p0 and p1 in the previous (mle) estimator (4). Hence, let us define
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t̃(x) = arg max
1≤m≤M+1

N∑
n=1

log
p̂m(xn

m)
p̂(m)(xn

m)
(14)

where p̂m and p̂(m) are the empirical distributions of the rvs in line m and in all the other

lines, respectively. I.e.,

p̂m(x) =
1
N

N∑
n=1

1{Xn
m = x}, (15)

and

p̂(m)(x) =
1

MN

N∑
n=1

M+1∑
j=1,j 6=m

1{Xn
j = x}. (16)

Note that

t̃(x) = arg max
1≤m≤M+1

D(p̂m, p̂(m)). (17)

Hence, t̃ is the line that differs the most (in the Kulback-Leibler sense) from the average

distribution of the other lines. (The reader may be more familiar with the variant

ṫ(x) = arg max
1≤m≤M+1

D(p̂m, p̂), (18)

where p̂ is the empirical distribution over all rvs, including line m; both ṫ and t̃ are similar

in the sense that they pick the sequence which differs the most from the rest.)

It turns out that the error rate of t̃, that is

ẽ(M,N) = IP (t̃(X) 6= t), (19)

where, as before, t denotes the target, has the same asymptotic behavior as the mle (4) in

the case of known distributions.

Theorem 3

If ∃ ε > 0, such that lim
M,N→∞

M2−N(D(p1,p0)−ε) = 0 then lim
M,N→∞

ẽ(M,N) = 0 (20)
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Figure 1: Estimates of the probability of error for various N , for the case p0 = (0.9, 0.1), p1 =
(0.8, 0.2),M = 1000. The two plots correspond to the cases of known and unknown distri-
butions, respectively. The red line represents the upper bound as established by Theorem
1.

and

If ∃ ε > 0, such that lim
M,N→∞

M2−N(D(p1,p0)+ε) = +∞ then lim
M,N→∞

ẽ(M,N) = 1. (21)

The proof uses the same large deviations techniques as the proof of Theorem 2 but is

slightly more complex due to the fact that the rewards are not independent anymore. The

proof appears in Section 6.

4 Simulations

We now provide simulations that show Theorems 1, 2 and 3 in action.

We generated M = 1000 binary sequences with probabilities p0 = (0.9, 0.1) and p1 =

(0.8, 0.2) for the background and the target, respectively. We varied the number N from

10 to 500, and we observed the probability of error decreasing to zero. We performed the

random experiment 100 times for each value of N . The procedure was replicated 20 times in
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Figure 2: Estimates of the probability of error for various N , for the case p0 = (0.9, 0.1), p1 =
(0.7, 0.3),M = 1000. The two plots correspond to the cases of known and unknown distri-
butions, respectively. The red line represents the upper bound as established by Theorem
1.

order to compute error bars. The plots in Figure 1 show the (estimated) probability of error

versus N , for the two maximum likelihood detectors (known and unknown distributions,

respectively), along with 1 standard deviation error bars. As expected, the error for the

case of unknown distributions is somewhat higher, as there is an additional error due to the

inaccuracy in estimating the two distributions. The KL divergence is D(p1, p0) ' 0.064.

The dashed line shows the phase transition “boundary”, i.e., the value of N such that

M = 2ND(p1,p0). For M = 1000, this value is equal to 155.5. For the known distributions

plot, the red line corresponds to the upper bound established by Theorem 1, and it is equal

to 1000(0.98)N . Similar plots for the case p0 = (0.9, 0.1) and p1 = (0.7, 0.3) are shown in

Figure 2. As expected, the error curves of Figure 1 are higher than the ones in Figure 2,

since the former detection case is “harder” than the latter. The phase transition boundary is

depicted in Figure 2 with the dashed line at value N = 44.9. The upper bound of Theorem

1 is given by 1000(0.9349)N .
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5 Conclusions

We have considered a statistical model with M + 1 sequences of independent random vari-

ables, each of length N . All random variables have the same point mass function p0 except

for one sequence, the target, for which the common point mass function is p1. The error

of the maximum likelihood estimator for the target converges to 0 if there exists an ε > 0

such that M2−N(D(p1,p0)−ε) → 0, and it converges to 1 if there exists an ε > 0 such that

M2−N(D(p1,p0)+ε) → +∞. Moreover, when p0 and p1 are unknown, we are able to build

an estimator of the target with the same performace; this allows us to study the important

practical problem of outlier detection. We conjecture that these results can be generalized

to the case of ergodic Markov chains, and we plan to report the more general results in a

subsequent publication.

6 Proofs

Without loss of generality, we assume that the target line is line number 1.

Proof of Theorem 1:

e(M,N) = IP

(
max

2≤m≤M+1

N∑
n=1

log
p1(Xn

m)
p0(Xn

m)
>

N∑
n=1

log
p1(Xn

1 )
p0(Xn

1 )

)
(22)

≤ MIP

(
N∑

n=1

log
p1(Xn

2 )
p0(Xn

2 )
>

N∑
n=1

log
p1(Xn

1 )
p0(Xn

1 )

)
(23)

= MIP

(
N∏

n=1

(
p1(Xn

2 )p0(Xn
1 )

p0(Xn
2 )p1(Xn

1 )

)s

> 1

)
, for all s > 0 (24)

≤ ME

[
N∏

n=1

(
p1(Xn

2 )p0(Xn
1 )

p0(Xn
2 )p1(Xn

1 )

)s
]

(25)

= M

[
E

(
p1(X1

2 )p0(X1
1 )

p0(X1
2 )p1(X1

1 )

)s]N

(26)

where (25) is due to the Markov inequality.
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Let us define

f(s) , E

[(
p1(X1

2 )p0(X1
1 )

p0(X1
2 )p1(X1

1 )

)s]
and g(s) , ln f(s) (27)

One can check that f ′(1/2) = g′(1/2) = 0. Moreover, using Hölder’s inequality, Grimmett

et. al. (1992), it is easy to show that, for any s, t > 0 and 0 ≤ α ≤ 1,

E

[(
p1(X1

2 )p0(X1
1 )

p0(X1
2 )p1(X1

1 )

)αs+(1−α)t
]
≤
(

E

[(
p1(X1

2 )p0(X1
1 )

p0(X1
2 )p1(X1

1 )

)s])α
(

E

[(
p1(X1

2 )p0(X1
1 )

p0(X1
2 )p1(X1

1 )

)t
])1−α

.

(28)

By taking the log on both sides, we deduce that g is a convex function of s. Hence, it achieves

its minimum value at s = 1/2 (therefore, f achieves its minimum value at s = 1/2). This

leads to the tightest upper bound in (26), i.e.,

e(M,N) ≤ MfN (
1
2
) = M

(∑
x

√
p0(x)p1(x)

)2N

. (29)

In order to prove Theorems 2 and 3, we start with two technical lemmas that will be

useful later on.

Lemma 1 Let U and R be two rvs, and y ∈ IR. Then, for any ε > 0,

IP (U > y + ε)− IP (R < −ε) ≤ IP (U + R > y) ≤ IP (U > y − ε) + IP (R > ε) (30)

Proof of Lemma 1:

IP (U + R > y) = IP (U + R > y, R ≤ ε) + IP (U + R > y, R > ε) (31)

≤ IP (U > y − ε) + IP (R > ε) (32)
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and

IP (U + R ≤ y) = IP (U + R ≤ y, R < −ε) + IP (U + R ≤ y, R ≥ −ε) (33)

≤ IP (U ≤ y + ε) + IP (R < −ε) (34)

which allows us to obtain the lower bound by computing the complementary event.

Lemma 2 Let (V N
1 , . . . , V N

M ) be a sequence of M independent, identically distributed, dis-

crete random variables. Moreover, assume that the following large deviation property holds

for some z ∈ IR,

IP (V N
1 > z) .= 2−NI(z), where I(z) > 0 and aN

.= bN ⇔ lim
N→+∞

1
N

log
aN

bN
= 0. (35)

Then, if

∃ ε > 0 s.t. lim
M,N→+∞

M2−N(I(z)−ε) = 0, then lim
M,N→+∞

IP ( max
1≤m≤M

V N
m > z) = 0. (36)

Also, if

∃ ε > 0 s.t. lim
M,N→+∞

M2−N(I(z)+ε) = +∞, then lim
M,N→+∞

IP ( max
1≤m≤M

V N
m > z) = 1.

(37)

Proof of Lemma 2: Let ε > 0 be arbitrarily small. Then, there exists N0(ε) > 0 such

that

∀N > N0,

∣∣∣∣ 1
N

log
(

IP (V N
1 > z)

2−NI(z)

)∣∣∣∣ < ε. (38)

To prove the first part, we start with the following claim:

(∃ ε′ > 0) (∀N ′ > 0) (∃N > N ′) : IP ( max
1≤m≤M(N)

V N
m > z) > ε′.
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Then, using the union bound, we obtain

(∃ ε′ > 0) (∀N ′ > 0) (∃N > N ′) :
M(N)∑
m=1

IP (V N
m > z) = M(N)IP (V N

1 > z) > ε′. (39)

By picking N ′ > N0(ε), (39) becomes

(∃ ε′ > 0) (∀N ′ > N0(ε)) (∃N > N ′) : M2−N(I(z)−ε) > ε′.

Hence, M2−N(I(z)−ε) does not converge to zero for any ε > 0, as required.

To prove the second part, we first assume that N > N0(ε), as above. Then,

IP ( max
1≤m≤M

V N
m > z) = 1− IP ( max

1≤m≤M
V N

m ≤ z) (40)

= 1− IPM (V N
1 ≤ z) (41)

= 1− 2M log(1−IP (V N
1 >z)) (42)

≥ 1− 2−MIP (V N
1 >z) (43)

≥ 1− 2−M2−N(I(z)+ε)
, (44)

where the first inequality is a consequence of the inequality log(1−x) ≤ −x, and the second

inequality arises from (38). Note that (44) is true for any arbitrary ε > 0. Hence, if there

exists ε > 0 such that M2−N(I(z)+ε) → +∞, then necessarily IP (max1≤m≤M V N
m > z) → 1.

This concludes the proof of the second part, and the proof of the lemma.

We are now ready for

Proof of Theorem 2:

e(M,N) = IP

(
max

2≤m≤M+1

1
N

N∑
n=1

log
p1(Xn

m)
p0(Xn

m)
>

1
N

N∑
n=1

log
p1(Xn

1 )
p0(Xn

1 )

)
(45)

= IP (UN
M + RN > D(p1, p0)), where (46)
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UN
M = max

2≤m≤M+1

1
N

N∑
n=1

log
p1(Xn

m)
p0(Xn

m)
and (47)

RN = D(p1, p0)−
1
N

N∑
n=1

log
p1(Xn

1 )
p0(Xn

1 )
(48)

From the law of large numbers, RN → 0 in probability. Hence, for all η > 0 and α > 0,

and for N sufficiently large, using Lemma 1,

IP (UN
M > D(p1, p0) + η)− α ≤ e(M,N) ≤ IP (UN

M > D(p1, p0)− η) + α (49)

Let us define

V N
m ,

1
N

N∑
n=1

log
p1(Xn

m)
p0(Xn

m)
(50)

Now, using Sanov’s theorem, Dembo at. al.(1998),

IP (V N
2 ≥ D(p1, p0))

.= 2−ND(p1,p0) (51)

Indeed,

IP (V N
2 ≥ D(p1, p0))

.= 2−ND(p∗,p0) (52)

where

D(p∗, p0) = inf
p∈C

D(p, p0), with C = {p;Ep log
p1

p0
≥ D(p1, p0)}, (53)

and for p ∈ C,

D(p, p0) = Ep log
p

p0
= D(p, p1) + Ep log

p1

p0
(54)

≥ D(p, p1) + D(p1, p0) ≥ D(p1, p0). (55)

Now, by continuity of the rate function, there exists ε > 0 such that

IP (V N
2 > D(p1, p0)− η) .= 2−N(D(p1,p0)−ε) (56)
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and there exists ε′ > 0 such that

IP (V N
2 > D(p1, p0) + η) .= 2−N(D(p1,p0)+ε′) (57)

Finally, since

UN
M = max

2≤m≤M+1
V N

m (58)

and the rvs V N
2 , . . . , V N

M+1 are iid, we obtain the required result from Lemma 2.

Proof of Theorem 3: We proceed along the same lines as for the proof of Theorem 2.

ẽ(M,N) = IP

(
max

2≤m≤M+1

1
N

N∑
n=1

log
p̂m(Xn

m)
p̂(m)(Xn

m)
>

1
N

N∑
n=1

log
p̂1(Xn

1 )
p̂(1)(Xn

1 )

)
(59)

≤ IP (UN
M + RN

M > D(p1, p0)), with (60)

UN
M = max

2≤m≤M+1

1
N

N∑
n=1

log
p̂m(Xn

m)
p0(Xn

m)
(61)

RN
M = AN

M + BN + CN (62)

AN
M = max

2≤m≤M+1

1
N

N∑
n=1

log
p0(Xn

m)
p̂(m)(Xn

m)
(63)

BN =
1
N

N∑
n=1

log
p̂(1)(Xn

1 )
p0(Xn

1 )
(64)

CN = D(p1, p0)−
1
N

N∑
n=1

log
p̂1(Xn

1 )
p0(Xn

1 )
(65)

For all η > 0 , from Lemma 1,

ẽ(M,N) ≤ IP (UN
M > D(p1, p0)− η) + IP (RN

M > η). (66)

Let

V N
m =

1
N

N∑
n=1

log
p̂m(Xn

m)
p0(Xn

m)
, 2 ≤ m ≤ M + 1. (67)
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Using Sanov’s theorem,

IP (V N
2 ≥ D(p1, p0))

.= 2−ND(p1,p0). (68)

Indeed,

IP (V N
2 ≥ D(p1, p0))

.= 2−ND(p∗,p0), (69)

where

D(p∗, p0) = inf
p∈C

D(p, p0), with C = {p;Ep log
p

p0
≥ D(p1, p0)}. (70)

And for p ∈ C,

D(p, p0) = Ep log
p

p0
≥ D(p1, p0). (71)

Now, by continuity of the rate function, there exists ε > 0 such that

IP (V N
2 > D(p1, p0)− η) .= 2−N(D(p1,p0)−ε). (72)

To show that (66) approaches zero as M,N →∞ with M2N(D(p1,p0)−ε) → 0, it suffices

to prove that RN
M → 0, since the term IP (UN

M > D(p1, p0)−η) of (66) goes to zero by virtue

of (72), Lemma 2, and the fact that

UN
M = max

2≤m≤M+1
V N

m , (73)

and the rvs V N
2 , . . . , V N

M+1 are iid.

Using the law of large numbers, CN → 0 in probability. Also,

IP (AN
M > η) ≤ MIP

(
1
N

N∑
n=1

log
p0(Xn

2 )
p̂(2)(Xn

2 )
> η

)
(74)

≤ MIP

(
max

1≤n≤N
log

p0(Xn
2 )

p̂(2)(Xn
2 )

> η

)
(75)

≤ MNIP

(
log

p0(X1
2 )

p̂(2)(X1
2 )

> η

)
(76)
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≤ MN max
x

IP

(
log

p0(x)
p̂(2)(x)

> η

)
(77)

= MN max
x

IP (p̂(2)(x) < 2−ηp0(x)) (78)

≤ MN max
x

2−N(M−1)I(x,η) = MN2−N(M−1)J(η) (79)

where I(x, η) > 0 is a rate function, and J(η) = minx I(x, η). The last inequality comes

from the fact that p̂(2)(x) → p0(x) in probability. A similar argument shows that BN → 0

in probability as well.

Note that the result would still hold if we replaced p̂(m) with p̂, i.e., with the empirical

distribution over the full data.
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