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ABSTRACT

In order to perform medical image registration, landmarks are
used to settle correspondences between images. A landmark
is a voxel in the image that corresponds to a well-defined point
in the anatomy. Manual landmarking is a difficult, tedious
and time-consuming procedure that would gain to be auto-
mated. We propose a bayesian approach for automatic land-
marking. Using training data, we learn the geometry through
a probabilistic template. Landmarking consists then in esti-
mating an affine transformation mapping the image onto the
template. We use gradient ascent in the likelihood function to
perform this task. Experiments validate the methodology for
landmarking the temporal lobe in MR brain images.

1. INTRODUCTION

If landmarks by themselves can provide a first analysis of the
geometry of brain structures, they are overall useful for image
registration, see Figure 1. They can be used to initialize corre-
spondences between structures or to give control points in the
alignment process, [1]. We define a landmark, as in [2], as the
voxel in the image which corresponds to a specific point of the
anatomy. They can be points like the apex of the Head of the
Hippocampus (HoH), the Tail of the Hippocampus (HT) and
the Splenium of the Corpus Callosum (SCC). Figure 1 shows
some examples of landmarks. The manual detection of these
points is a tedious and time consuming task. Although some
methods have been developed to attempt detecting some types
of landmarks automatically, based on 3D filters [3] or by fit-
ting a local parametric model on the intensities [4], the detec-
tion of landmarks remains a manual task. In both cases indeed
one needs prior information on the underlying structure and a
detectable contour, but landmarks that neuroscientists define
do not necessarily fulfill the latter requirement.

We propose a generic approach for automatic landmark
detection. We assume that an image results from the defor-
mation of a template. Because deformations in the brain can
be extremely complicated, we use a probabilistic template.
We present a Bayesian approach to estimate the transforma-
tion ���	��

����
 which maps the landmark location in the
image onto the landmark location in the template. Given a
training set of images ��������������������� , ������� the vector of inten-

Fig. 1. (a) the bottom left cross represents the Head of the Hippocampus
landmark, the right top cross is the Tail of the Hippocampus, (b) shows the
mean image of the hippocampus, obtained by averaging the intensities of 14
images without registration, (c) is the average image after rigid registration
using the landmarks HoH and HT.

sities of the image  , we define a generative model !"����# �$�
and estimate the best transformation for a new image using
the maximum a posteriori (MAP): %"&('*)+!"�,�-# ./� . In section 2
we detail the image model. Parameter estimation is in section
3. Section 4 presents the gradient ascent algorithm. Finally
we demonstrate the algorithm on brain MRI to detect the lo-
cation of the Head and the Tail of the Hippocampus and also
the Splenium of the Corpus Callosum.

2. BAYESIAN INTENSITY MODEL

2.1. The transformation set

Let 0 be a set of transformations from �1
2�3��
 , such that
there is a unique �24
0 that maps the landmarks in the image
onto a given configuration in the template. We will consider
transformations not more complicated than affine transforma-
tions or compositions of transformations inspired from the
procedure specialists use to define landmarks. Firstly, HoH
is located using a translation, secondly, the hippocampus is
rotated around the sagittal axis to fix its orientation and then
it is scaled to overlay the tail. We will present experiments on
translation in this paper while the more complex transforma-
tions will appear elsewhere.



2.2. The generative model

Let us describe the generative model, !"����# �$� , where � is
the gray-level image and �5�6� 
 �7� 
 is a transformation.
We assume that the voxel intensities are independent given
the landmarks location, i.e. given the transformation, so that
we can write the conditional joint probability as a product:!"���8# �$�:9<;2=?>A@"!"��� = # �$� , with B the set of voxels. We
introduce a new variable C = representing the matter at voxelD . The intensity distribution is indeed slightly different from
one image to the other, because anatomically equivalent vox-
els appear with different intensities in two images. Let us
assume that the brain is composed of 6 matters: CSF, GM
and WM to which we add the mixed voxels composed of
CSF+GM and GM+WM. We also identify a sixth class cor-
responding to very high intensities due to blood vessels or
to the skull. The discrete random variable C = takes values
on EGFH�JIKIJIL�NMPO . Conditioning by the matter at each voxel, the
generative model can be written as!"��� = 9Q. = # �$�+9 RSTNU6V !"�W� = 9Q. = # C = 98XG���$��!"�YC = 9�X$# �$��Z
We assume that the intensity at the voxel D , given the mat-
ter at the same voxel is independent of the transformation � .
This assumption allows us to model the photometry indepen-
dently from the geometry. The first term characterizes the
photometry of the matter X in the image, which is modeled
with a Gaussian distribution. The second term corresponds to
the probability of observing the matter X at the voxel D given
the transformation � which maps the image onto the template.
We assume that this is the probability distribution of the mat-
ter at the transformed voxel �-� D � . Under the preceding as-
sumptions the generative model can be rewritten as!"�W�8# �/�19\[=?>H] RSTNU6V*^ T �W. = ��!"�YC ) � = � 98XA��Z
2.3. The probabilistic template

In this Bayesian approach, we define the template as the prob-
ability distribution of the matter when the landmarks lie in
a standardized configuration. Figure 2 represents the model
with which new images can be generated by drawing a mat-
ter at each voxel according to the distribution in the template,
then drawing a random transformation. Applying the inverse
transformation �6_ V one creates the geometry of the new im-
age and finally using a set of Gaussian distributions we can
assign an intensity to each voxel. At each voxel the template
gives the probability to observe each matter. If the probabil-
ity at one voxel to observe one of the matters is high, it means
that most of the images of the registered training set contain
this matter at this point. The probabilistic template allows
us to capture the matter variability in addition of the global

Fig. 2. To generate a new image draw a random segmentation based on
the distribution of matters contained in the template. Apply a random defor-
mation `Pa/b to find the new image segmentation. Finally assign an intensity
chosen in the corresponding Gaussian distribution.

CSF CSF+GM GM

GM+WM WM OUT

Fig. 3. Template obtained when ` is a translation with HoH as landmark.
Each image corresponds to one matter. The white voxels have a high proba-
bility to belong to the corresponding matter. The represented section of the
template corresponds to the sagittal slice containing HoH. Notice that the
hippocampus appear both in CSF+GM and in GM.

geometry. We conjecture that using such a template will al-
low us to deal with much simpler transformations and achieve
comparable results.

2.4. Bayesian registration versus classical registration meth-
ods

Considering a new image, one wants to maximize the likeli-
hood of the observation over the parameters c of the trans-
formation � . The likelihood of the model can be expressed
with the generative model and the prior distribution on the
transformation: !"�,��# �d�feg!"���8# �$��!"�,�/� . The prior is a dis-
tribution over the parameters of � . In the case of a translation
for example, we use a Gaussian model on the parameter h iPj�k�l
so that we compute from the training set a mean vector of pa-
rameters in ��
 and an empirical covariance matrix in �m
1no��
 .
The log-likelihood of the model is:p �WcG�19 S =rq�s RSTNU-Vt^ T ��. = ��!"�,C ) � = � 9uXv��w qxs !"�WcG��Z
As in the classical cost function used for image registration,
the likelihood contains two terms. A data term measuring
the way the model fits to the data and a regularization term.
The particularity of our approach is first that using a Bayesian
approach allows us to deduce naturally the cost function from
the model. Second, the template gives a variable weight to the
voxels in the image. When the entropy of the matter distribu-
tion is low, the corresponding voxel has potentially a large



weight: it increases the likelihood if the observation and the
model match and penalizes it in case of mismatch.

Algorithm 1 describes the outline of the procedures whose
steps are detailed in the following section.

Algorithm 1 (Bayesian Registration)

Learning step, y images in the training set:

1. Photometry estimation: Using the EM-algorithm, learn
the intensity distribution of each matter X in each image , EA��z �|{ T �N}L~�?{ T � T >A� V {�������{ R�� O � >A� V {������ { � � .

2. Superimposition of the training set: Given a set of
transformations 0 , find E|� V �JZKZJZ���� � O such that for each
image the transformed landmarks are mapped to the
same location.

3. Prior distribution estimation: Estimate the prior distri-
bution based on the set of transformations estimated on
the training set.

4. Template estimation: Based on the transformed imagesEv�W� �����) � = � � =?>A@ O � >A� V {������ { � � , use the EM-algorithm to es-
timate the matter proportions at each voxel �-� D � .

For a new image

1. Photometry estimation: Similarly to the learning step,
learn the matter distributions �Wz T �N}L~T � T >A� V {�������{ R�� .

2. Transformation estimation: Find � which maximizes
the likelihood of the observations, using a gradient as-
cent over the transformation parameters, c .

3. LEARNING ALGORITHM

3.1. Photometry estimation

As outlined in the previous section, we model the intensity
of each matter in the brain with a Gaussian distribution, so
that the intensities at a voxel result from a mixture of Gaus-
sian distributions. This model has been commonly used in
MRI segmentation with a variable number of components [5].
Given the matter segmentation of the image, it would be easy
to estimate the mixture parameters, it would also be straight-
forward to find the segmentation, if the model parameters
were known. However, since the matter at each voxel is un-
known, we use the EM algorithm to alternatively compute
the classification of the voxels and estimate the model param-
eters. The EM-algorithm [6] maximizes the log-likelihood
of the mixture model over the parameters �W� T ��z T ��}L~T � withXu4rEGFH�JZKZJZ��NMPO . In the case of Gaussian mixture, both the
E-step and the M-step can be written in closed form and con-
vergence to a local minimum has been proved. We initialize
the EM with Kmeans.

Fig. 4. Example of Gaussian mixture parameter estimation on a 41-by-
41-by-41 voxel subpart of the image. The plain lines are the 5 estimated
Gaussian densities and the dot line represents the estimated histogram. The
outliers distribution does not appear on this figure as the mean is usually
around 300.

3.2. Template estimation

Using a training set, composed of y images, typically between
10 and 100, on which the landmarks have been located, one
computes for each image  the transformation � � 420 which
maps the voxels coordinates onto the template. The super-
imposition procedure provides us with a collection of trans-
formations E|� V �JIKIKIL��� � O . We use the set of parameters of
these transformations to estimate the prior distribution on c .
At each location �6� D � in the template corresponds a set of in-
tensities �W. � V �) � = � �KZJZKZJ��. ���(�) � = � � resulting from the registration of
the training set. Because the transformation does not map
perfectly the image onto the template, the matters are not per-
fectly superimposed in the transformed images, also at �6� D �
the intensities correspond to different matters of the brain.
Since the matters and their distribution are unknown we need
to use the EM-algorithm to estimate the mixture parameters.
The likelihood maximized by EM, is written as%"&�'� ���P�����N� U/T � S � q��H� RSTNU6V !"�,C ) � = � 98Xv�� ��� } ~�|{ T � 'P����,� � . �����) � = � ��z �?{ T ��~� } ~�?{ T �� Z
We use the photometric parameters estimated during the pre-
vious step. Figure 3 shows one slice of the template obtained
if � is assumed to be a translation based on the location of
HoH.

4. TRANSFORMATION ESTIMATION BY
GRADIENT METHOD

Given a new image, recovering the landmarks location is equiv-
alent to finding the transformation � mapping the image onto
the template. � is a transformation from �1
�����
 of param-
eter c . Given the generative model, one wants to maximize
the likelihood of the observations over the transformation pa-
rameters, the likelihood is a mapping from �+���3� , where�

is the number of parameters. Let us simplify the notation



� XG�N!"�YC ) � = � 9QXv�f9 ! T �YC ) � = � � . We compute the gradient of
the log-likelihood:p �WcG�¡9 S=?>H] qxs ¢STNU6V ^ T �W. = ��! T �YC ) � = � ��w q�s !"��cG���£�¤ p �WcG�¡9 S=?>H] ¥ RTNU-V ^ T ��. = � £�¤ ! T �YC ) � = � �¥ RTNU6V ^ T ��. = ��! T �,C ) � = � � w £�¤ q�s !"��cG���

with
� XH� £ ¤ ! T �YC ) � = � �19§¦©¨ �Hª ��� ���«��� �¨?¬ ¨ )(­¨ ¤¨ � ª ���P���«�����¨?® � ¨ )|¯¨ ¤¨ � ª ���P���«�����¨J° ¨ )|±¨ ¤©² Z

The gradient of the log-likelihood over the parameters of the
transformation c can be written as a function of the template
derivative. Consequently it is possible to compute the carte-
sian derivatives of the template offline that makes the opti-
mization algorithm much faster. The estimation of the trans-
formation parameters is equivalent to a

�
-dimensional opti-

mization problem with
�

small in this approach.

5. EXPERIMENTS ON BRAIN MRI

The training set is composed of 38 MR brain images acquired
on a Philips-Intera 3-Tesla scanner, with resolution 1mm 
 , en-
coded in gray-level intensities from 0 to 1600. Brains were
first transformed into standardized Talairach space using Anal-
ysis of Functional Neuroimages (AFNI) to provide a canon-
ical orientation (anterior and posterior commissures (AC and
PC) made co-linear) and approximate alignment. All the im-
ages have the same size after the transformation: FJM*F+n"F?³´F+nF?µ´F voxels or mm. An expert located the splenium of the cor-
pus callosum (SCC), the apex of the Head of the Hippocam-
pus (HoH) and define on the same sagittal slice as HoH the
Tail of the Hippocampus (HT). We apply the algorithm to the
detection of HoH, SCC and HT.

In the case of HoH and SCC, the considered set of trans-
formations is the group of translations in �1
 . The derivatives
of the template are exactly the cartesian derivatives of each
matter. We use a gradient ascent to find the maximum of the
likelihood. The results are presented on both the training and
the testing set. The testing set is composed of 9 MR brain
images from the same scanner and landmarked by the same
specialist. We compare the results of the algorithm to the ex-
pert landmark by computing the Euclidian distance between
the two points. The detection of HT is conditional to the po-
sition of the HoH landmark, hence it reduces to a 2D prob-
lem, assuming that the location of HoH is given. Once again
we consider the group of translations but now in �1~ . Table
1 presents the results obtained on the training and the test-
ing set. A specialist obtains performances comparable to the
precision of the algorithm on the training set. As for the per-
formances on the testing set, they are closer to the precision a
non-specialist would reach.

Table 1. Mean prediction error obtained with our algorithm
for SCC, HoH and HT using the training set (38 images) and
the testing set (9 images).

error (training set) error (testing set)
SCC 1.81mm ( }
9 1.42mm) 2.46mm ( }¶9 1.92mm)
HoH 2.75mm ( }
9 1.94mm) 3.70mm ( }¶9 1.48mm)
HT 0.26mm ( }
9 0.51mm) 2.19mm ( }¶9 1.11mm)

6. CONCLUSION

We have presented a generic approach to address the issue
of automatic landmarking medical images. We develop a
Bayesian approach which results in the construction of a prob-
abilistic template for the matter of the brain. Using a training
set of images, it is easy to estimate the parameter of the gener-
ative model thanks to the EM-algorithm. Finally we showed
that the gradient ascent of the log-likelihood can be computed
efficiently to estimate the transformation mapping the land-
marks in the template. The method we developed can be used
either for specialists training or as a starting point for large
deformation registration.
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