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Volumetric measurements obtained from image parcellation have been instrumental in uncovering structure-
function relationships. However, anatomical study of the cerebellum is a challenging task. Because of its complex
structure, expert human raters have been necessary for reliable and accurate segmentation and parcellation. Such
delineations are time-consuming and prohibitively expensive for large studies. Therefore, we present a three-part
cerebellar parcellation system that utilizes multiple inexpert human raters that can efficiently and expediently
produce results nearly on par with those of experts. This system includes a hierarchical delineation protocol, a
rapid verification and evaluation process, and statistical fusion of the inexpert rater parcellations. The quality of
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Parcellation the raters’ and fused parcellations was established by examining their Dice similarity coefficient, region of interest
STAPLE (ROI) volumes, and the intraclass correlation coefficient of region volume. The intra-rater ICC was found to be 0.93
STAPLER at the finest level of parcellation.

Label fusion © 2012 Elsevier Inc. All rights reserved.
Introduction The study of cerebellar substructures has been confounded by in-

The cerebellum has a remarkably complex structure that coordinates
numerous vital functions of the human body. It is involved in tasks such
as eye-movement (McCormick and Thompson, 1984; Ritchie, 1976),
speech (Silveri et al., 1994), balance, fine motor control, motor learning,
and cognition (Leiner et al,, 1986; Schmahmann, 1991). Like the cerebral
cortex, the human cerebellum exhibits functional localization. This is
reflected in part by its anatomic structure. There are two macroscopic
levels of organization: medial-lateral and rostral-caudal. The medial-
lateral anatomical divisions of the cerebellum echo the differences in
connectivity between the medially located spinocerebellum, and the
lateral cerebrocerebellum, or “neo-cerebellum.” The spinocerebellum
consists of the wormlike “vermis” and the more lateral paravermis, or “in-
termediate zone.” As its name suggests, these regions receive afferents
primarily from the spinal cord. The evolutionarily ancient flocculonodular
lobe or “vestibulocerebellum” is intimately associated with the vestibular
system, and therefore highly influences spatial orientation and balance.
In the rostral-caudal direction, transverse fissures create divisions in
the cerebellum called lobules.
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consistencies in nomenclature. This has been remedied in the study of
humans by the general acceptance of the standard introduced by
Schmahmann et al. (1999, 2000). In their work, the cerebellar lobules
are numbered from I to X. These lobules stem from white matter
branches rooted in the central mass of cerebellar white matter, called
the corpus medullare (CM). Under this convention, lobule I is located
most rostrally, with lobule numbering increasing caudally. In this
work, we adopt the numbering standard of Schmahmann, but will
refer to super-groupings as follows: anterior (I-V), superior posterior,
or middle (VI and Crus I and II of VIIA, and VIIB), inferior posterior
(VIII, IX), and caudal (VIII, IX, and X). Three of these conventions
and super-groupings are illustrated in Fig. 1.

Region-specific changes in the cerebellum have been correlated
with a number of diseases and functional deficits. For example, region-
ally selective degeneration of the vermis and anterior lobe has been ob-
served over the course of aging (Andersen et al.,, 2003; Raz et al., 1998).
A decrease in size of the inferior posterior vermis has been observed in
boys with attention-deficit and hyperactivity disorder (ADHD) relative
to normals (Berquin et al., 1998; Mostofsky et al., 1998). Several studies
have shown changes in volumes of the vermis (Nopoulos et al., 1999;
Okugawa et al,, 2003) and vermian white matter (Levitt et al,, 1999)
in patients with schizophrenia. Evidence suggests that the vermis and
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Fig. 1. lllustration of cerebellar anatomy and lobule grouping.

flocculus are targeted by chronic alcoholism (Baker et al, 1999;
Cavanagh et al, 1997). Superior posterior lobe volumes have been
shown to decrease in patients with Alzheimer's disease relative to con-
trols (Thomann et al., 2008). Several types of cerebellar ataxia have also
demonstrated region-specific atrophy within the cerebellum (Brenneis
et al,, 2003; Jung et al,, 2011; Ying et al., 2006).

Clearly, the success of such studies depends on accurate and precise
measurements for the structures of interest. Segmentations produced
by human experts remain the gold standard despite the progress
achieved in automated segmentation algorithms. However, the training
of experts is a very long process, typically requiring thousands of hours.
The high quality measurements produced by such raters are therefore
time-consuming and expensive. Here we briefly review examples of
three approaches that have been used to limit the amount of human ex-
pertise required: 1) limit the scope of the study, 2) employ automated
or semi-automated image analysis methods, or 3) employ inexpert
human raters.

In order to make best use of the experts’ time, research hypotheses
may be tested using a small cohort of subjects, on a small number of
subregions, or using a coarse parcellation. For example, one may limit
study to the cerebellar vermis. Raz et al. (1998) measured the
cross-sectional area of the cerebellar vermis grouping lobules I-V,
VI-VII, and VIII-X. A coarse parcellation considered by Levitt et al.
(1999), among others, consists of hemispheric white and gray matter,
vermian white matter, and gray matter split into three subgroups
consisting of lobules I-V, VI-VII, and VIII-X.

A few methods have been introduced that produce a full parcellation
of the cerebellar lobules from magnetic resonance (MR) images. A
semi-automatic surface-based method presented by Makris et al.
(2003, 2005) has the advantage of parcellating the cerebellum into
medial-to-lateral subdivisions. Pierson et al. (2002) developed manual
and semi-automated methods for delineating the corpus medullare, an-
terior lobe, superior posterior lobe, and inferior posterior lobe. These
manual and semi-automated methods have produced good results,
but rater training and delineation time are not discussed. Significant

knowledge of cerebellar anatomy is required to follow these protocols,
and their use will yield adequate results only when used by expert
human raters. As a consequence, they tend also to be time-consuming
and expensive.

To our knowledge, there is currently only one publicly available
automated method for cerebellar parcellation. Diedrichsen (2006),
Diedrichsen et al. (2009) describe an automatic method based on
nonlinear registration of a cerebellum label template (SUIT). This meth-
odology was employed in (Donchin et al., 2012) in the case of focal le-
sions and cerebellar atrophy and showed lobule-specific changes using
voxel-based morphometry. However, an explicit evaluation of segmen-
tation performance was not performed. For our data, the SUIT template
produced a mean Dice similarity' (standard deviation) of 0.55 (0.16)
across 15 subjects and 24 labels (see Appendix A for details). Since this
method uses a template constructed from control subjects, it is not sur-
prising that results are poor for patients with severe cerebellar degener-
ative disease (especially those including diverse forms of lobule-specific
atrophy). Our data, which include nine subjects with significant degener-
ation, demonstrate this phenomenon. In any case, testing this approach
(or any alternative) would require numerous manual parcellations for
validation. The present paper describes a cost-effective approach to pro-
duce such manual parcellations on both normal and ataxia subjects.

Recently, the “multi-atlas” segmentation framework has been shown
to achieve excellent results for many anatomical segmentation tasks
(Heckemann et al., 2006; Isgum et al., 2009). We explored the perfor-
mance of such a method (see Appendix A for details) for cerebellar
parcellation and found that it produced unsatisfactory results: mean
Dice similarity (standard deviation) across 15 subjects and 28 labels of

T The Dice similarity coefficient (DSC) (Dice, 1945) was computed with the "gold
standard" expert rater delineation. For a given label [, the DSC of a parcellation with
the expert parcellation is given by: DSC(I) = 2(|SriNSgll)/(|Sell + |Sril) , where Sg; and
Sg denote the sets of voxels assigned to label I by the rater and expert, respectively.
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0.66 (0.15). An important factor in explaining this is the high complexity
and inter-subject variability of the anatomical shape of the cerebellum.
In order to address the need for simultaneously accurate and inex-
pensive ratings, numerous explorations into recruiting members of
the public to complete rating tasks (“crowd sourcing”) have been
performed. These studies have challenges ranging from object identifi-
cation and annotation in images (Russell et al., 2007; Sorokin and
Forsyth, 2008) to language translation (Callison-Burch, 2009). The re-
sults suggest that good results can be obtained once enough data from
the crowd has been collected. Of course, the quality of the final results
depends on the difficulty of the task, the extent to which the “crowd”
is trained, and the method for combining their ratings. Tasks that
require little to no training (e.g., object identification or naming) often
produce excellent results, while the results for more challenging tasks
are usually sub-par. In a previous work, a large number of minimally
trained raters performed an easy version of the cerebellar parcellation
task with acceptable accuracy (Landman et al., 2012a). In particular,
the labeling task was two-dimensional with only four labeled substruc-
tures whose boundaries are readily discernible by underlying image in-
tensities, while here we seek three-dimensional labeling with as many
as 29 substructures, some of which are only separable by knowledge of
cerebellar anatomy. Minimally trained “crowd” raters, having no training
in cerebellar anatomy, are incapable of producing acceptable, detailed
three-dimensional parcellations, even when statistically combined.

In this work, we sought to develop a delineation scheme that yields
the accuracy of expert raters with the efficiency (with regard to time
and cost) of crowd raters. The anatomical complexity and subtlety of
image features in the cerebellum necessitate a large time commitment
be devoted to training and practice in order to become an expert cerebel-
lum delineator. In our experience, approximately 2000 h were devoted
in order to achieve excellent reliability (>0.99 ICC) (Jung et al.,, 2011).
Note that this figure depends on many factors such as the difficulty of
the parcellation problem or previous experience or qualifications of the
rater (e.g., a seasoned radiologist will require less training for a particular
task than a novice). We recommend that researchers take these factors
into account and perform “on-the-fly” evaluation during the training
process to determine when a rater achieves the desired performance.
On the other hand, raters from the crowd (with less than 20 h of experi-
ence), struggle to produce acceptable delineations due to the anatomical
knowledge required. We have found that individuals with a moderate
amount of training (about 150 h), whom we call "inexpert raters", are
markedly superior to “crowd” raters, and after review and statistical fu-
sion, their results can yield delineations approaching the quality of that
produced by an expert.

This paper describes a system, involving three stages, for the manual
parcellation of the cerebellum by multiple inexpert raters. The first stage
in this system is a hierarchical delineation protocol which enables a
newcomer to label the cerebellum with relative ease and accuracy. The
hierarchical scheme involves first delineating the whole cerebellum,
and then outlining finer structures until all sub-structures of the cerebel-
lum have been obtained. A hierarchical approach reduces rater variabil-
ity since the larger, more easily located anatomical landmarks are
delineated at early stages in the hierarchy. At later stages, the raters
need only concentrate on further delineation of the regions of the cere-
bellum that were previously established. An additional advantage of this
approach is that a coarser parcellation can be achieved in less time than
that required for the full parcellation, and coarser parcellations may be
ideal for some studies. Our proposed methodology achieves a mean
(standard deviation) Dice similarity of 0.84 (0.10) and outperforms all
automated methods that we have been able to test (see Appendix A
for further details).

Our protocol is specifically designed and tested on both normal and
highly atrophied cerebella. Subjects diagnosed with spinocerebellar
ataxia types 2 and 6, and subjects with non-genetic cerebellar ataxia
were among those used for rater training and testing. Our protocol is
likely to be applicable for studies involving ADHD, schizophrenia, or

chronic alcoholism and others, because the extent and patterns of atro-
phy are comparable in these conditions. The proposed methodology
may not be successful in more extreme conditions such as Dandy-
Walker syndrome. Because of the potential for large inter-subject varia-
tions in cerebellar size and shape, raters can make significant errors, as
illustrated in Fig. 2. Therefore, the second stage of our delineation system
is a method for rapid rater review, evaluation, and correction with em-
phasis on the large errors that our inexpert raters sometimes make.

The third stage of our delineation system is the application of a robust
statistical fusion method to the results of three or more inexpert raters
(Landman et al,, 2012b). This stage removes errors made by the raters,
since the consensus of these imperfect delineations tend to be accurate.
Fig. 2 shows an example of a fused label result that is similar to that of an
expert rater. While the excellent outcome of the fusion despite high var-
iability in raters may not occur in all cases, this example serves to show
that combining raters can produce a more robust and often more accu-
rate result than the inexpert raters alone.

Cerebellum delineation/parcellation protocol

Our protocol took a hierarchical approach to delineation: early steps
focus on large, clear boundaries, and subsequent levels of hierarchy
sub-parcellate previously defined regions. This scheme is easily adapted
to a fast, abridged protocol, in which coarse structures are delineated but
the finest structures are not. The choice of the hierarchical level at which
to stop involves a tradeoff between the detail of a fine parcellation, and
the reliability of a coarse parcellation (larger structures are able to be de-
lineated more consistently). The NIH software, “Medical Image Process-
ing, Analysis, and Visualization” (MIPAV) (McAuliffe et al., 2001) was
used throughout the delineation process. The entire protocol, complete
with snapshots of each stage is found online at http://iacl.ece jhu.edu/
Cerebellum_Protocol. The description we provide here is intended to
convey a general sense of the strategies we employ.

Image acquisition, processing, and interaction

Acquisition protocol

For each subject, two magnetization prepared rapid gradient echo
(MP-RAGE) images were obtained using a 3.0 T MR scanner (Intera,
Phillips Medical Systems, Netherlands). The first MP-RAGE was ac-
quired with the following parameters: 132 slices, axial orientation,
1.1 mm slice thickness, 8° flip angle, TE=3.9 ms, TR=28.43 ms, FOV
21.2x21.2 cm, matrix 256 x 256. The second was acquired with the fol-
lowing parameters: 162 slices, axial orientation, 0.9 mm slice thickness,
8° flip angle, TE=3.9 ms, TR=28.35 ms, FOV 23x18.328 cm, matrix
256 x 256. The two acquired images were co-registered and averaged
to produce a volume with 0.8 mm isotropic voxels in order to improve
SNR. If a different image acquisition protocol is used, the delineation
process can still be carried out, but specific results may vary.

Registration

The registration was performed by using MIPAV's (McAuliffe et al.,
2001) Optimized Automatic Registration tool, which is based on
(Jenkinson and Smith, 2001) using a rigid (6 degrees of freedom)
transformation. The average image was spatially normalized to a ste-
reotactic space by registration to the ICBM atlas (Mazziotta et al.,
1995).

Histogram adjustment

In order to increase contrast among the tissue types of interest,
raters were instructed to adjust the window and level to optimize ap-
parent contrast between CSF, gray matter and white matter. Low in-
tensity background, and high intensity regions such as blood vessels
can reduce contrast between the cerebellar features when the con-
trast window covers the min and max intensities. Raters adjusted
the window based on the image histogram only and did not change
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Fig. 2. An illustration of the lobules VIIB through VIIIB being consistently (above) and inconsistently delineated (below). Fissures are indicated with red lines. The anatomical dif-
ferences between the two subjects were a significant source of error. In particular, the lower subject had an “extra” fissure that caused confusion among the inexpert raters.

it during the delineation process and thereby avoided a potential influ-
ence on their boundary choices (a concern described in (Steenbakkers
et al., 2005)).

Locking labels

After delineating the whole cerebellum (see below) it is further
subdivided in subsequent steps. Therefore, users are instructed to
"lock" labels that are in the background (complement) to the object
that they are currently subdividing. This simple step greatly expedites
the delineation process because 1) it prevents boundaries that have
already been established from changing, 2) it prevents accidental
mouse clicks from creating isolated, random labels from occurring

in remote regions, and 3) it permits larger brushes to be used when
delineating near existing boundaries.

Coarse delineation

Fig. 3 outlines the levels of the hierarchy our raters traverse as part
of the delineation protocol, the details of which are described below.

Whole cerebellum

For each scan a threshold is determined and employed when delin-
eating the whole cerebellum. This threshold is determined by examining
the intensity of the scan and selecting a threshold that includes the gray
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Fig. 3. A schematic showing the steps of the hierarchical delineation protocol.

matter but not the cerebrospinal fluid (CSF). In our experience, this
semi-automated thresholding allows raters to more consistently and ef-
ficiently separate cerebellar gray matter from the surrounding CSF.

The tentorium cerebelli (the thin layer of dura mater separating the
occipital lobe and cerebellum) is not included in the delineation, nor is
any other portion of the dura. The pattern and texture of white matter
and gray matter in the cerebellum are used to delineate the boundary
between the cerebellum and cerebrum. A layer of CSF between the cer-
ebellar and cortical gray matter is often visible. The boundary between
the white matter of the cerebellum and the spinal cord is defined as the
line in the sagittal plane connecting the most anterior of the dorsal and
ventral gray matter in the cerebellum.

Throughout the volume, the sagittal, coronal, and axial views are
routinely consulted in order to ensure the highest level of certainty
in the delineations and to produce smooth parcellations. In addition,
all boundaries are examined and corrected in each of the cardinal
planes to remove extraneously labeled voxels.

Corpus medullare

The corpus medullare (CM) is defined as the white matter on the in-
terior of the cerebellum that contains the deep cerebellar nuclei and
connects through the cerebellar peduncles to the brain stem. It is the
portion of white matter that cannot reasonably be assigned to any par-
ticular lobule. Delineation begins with a sagittal view near the midline
and proceeds laterally. The label for the CM does not extend into the
white matter branches in the lobules but rather connects the bottoms
of the deepest fissures. It includes all the white matter within these
limits and extends to the anterior boundary of the cerebellum and
brain stem. This volume is then adjusted in the sagittal, coronal, and
axial planes until it appears smooth in each.

Lobar delineation

The second level of the hierarchy parcellates the cerebellar gray
matter into three large structurally significant components: the anterior
lobules (I-V), the middle (superior-posterior) lobules (VI-VII), and
caudal (inferior-posterior and flocculonodular) lobules (VIII-X). These
are chosen because the fissures separating them are prominent and re-
liably delineated. These divisions also correspond roughly to important
functional specialization in the cerebellum, as the anterior lobules have
been identified as contributing to sensorimotor function (Ito, 1984;
Nitschke et al.,, 1996), the middle lobules seem to be involved in cogni-
tion (Middleton and Strick, 1994; Schmahmann, 1991), while the cau-
dal lobules (especially IX and X) are essential for ocular motor tasks
(Ito, 1984).

Primary and prebiventer fissures

At the midline of the sagittal plane, the primary (dorsal) and
prebiventer (ventral) fissures are readily identifiable. Raters define
these fissures by referencing examples in our protocol and the
Schmahmann et al. (1999, 2000) atlas. The primary fissure divides
lobules V and VI while the prebiventer fissure separates lobules VIIB
and VIIIA, creating a total of four regions: the anterior lobules (I-V),
the middle lobules (VI-VII), the caudal lobules (VIII-X), and the cor-
pus medullare. The remainder of the cerebellum is delineated by fol-
lowing these anatomical boundaries through the hemispheres. These
divisions are also examined and refined in the axial and coronal
planes.

Vermis

Vermal lobules VIIIA through X are delineated as a group. The vermis
is defined as a roughly symmetrical shape in the center of the cerebel-
lum and is best identifiable in the coronal plane. It is clearest in the
most posterior and most anterior planes. In the posterior planes of the
coronal view it appears as a circular shape between the two hemi-
spheres inferior to the CM. In the anterior planes it is more triangular
and appears to be “wedged” between the two hemispheres. There is typ-
ically uncertainty near the midline of the volume which can be clarified
using the sagittal plane to connect the posterior and anterior regions
delineated in the coronal view.

Lobule delineation

The finest level of the hierarchy is the delineation of lobules. We de-
fine all lobule boundaries using the Schmahmann et al. (2000) atlas. All
unchanging paint/labels remain locked and efforts are made to ensure
continuity of labels between hemispheres when possible. Raters typical-
ly proceed “clockwise” (rostral-to-caudal) in the sagittal view in order to
best take advantage of the label “locking” capability and to improve their
efficiency.

Lobules I/1I

This is the smallest lobule and is visible only in several slices at the
midline of the sagittal plane. It is most readily identified in the sagittal
plane and appears as a thin curve of grey matter bordering the superior
cerebellar peduncle.

Lobule 111

This lobule is adjacent to I/Il and usually consists of only one major
white matter branch. In the axial view it terminates near the boundaries
of the spinal cord. It is typically shorter and smaller than both lobules [V
and V.

Lobule IV

This lobule is adjacent to Lobule IIl and is best recognized by locating
the next fissure (when proceeding clockwise from the fissure defining
the boundary between Ill and IV) that remains uninterrupted throughout
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the entirety of the hemisphere. This boundary is somewhat unreliable be-
cause such a boundary between the anterior edge and the primary fissure
is not present in every subject. In such cases the most prominent fissure
in the region to be sub-parcellated is chosen.

Lobule V

This lobule is trivially delineated once the previous four labels have
been applied as it lies between lobule IV and the primary fissure. It is
usually similar in size to lobule IV and is best labeled in the sagittal view.

Lobule VI

This lobule is bounded anteriorly by the primary fissure and posterior-
ly by Crus I through the majority of the hemisphere. Near the midline,
Crus is diminished, and lobule VI may directly abut Crus II. This boundary
is most readily identified roughly 15 mm from the midline in the sagittal
view. Lateral to the midline, Crus I is identified as the growing branch and
can be used to identify the boundary of lobule VI. We begin labeling the
hemisphere of the cerebellum and proceed laterally. Next, we return to
our starting point (15 mm from the midline) and proceed toward the
midline, creating a boundary following the anatomy.

VIIA-Crus 1

This lobule is not present in the midline sagittal plane and is best
identified by examining concurrent sagittal slices between the midline
and a slice roughly 15 mm lateral to the midline. Crus I is a large lobule
with only one branch, which appears several slices from the midline
and continues to grow, remaining present for the remainder of the
hemisphere.

VIIA-Crus 1l

This lobule is adjacent to VI and Crus I. We define the second boundary
as the most prominent fissure between Crus I and the prebiventer fissure.
This fissure must be present through the entirety of the hemisphere.
However, occasionally there exist two candidate fissures, neither of
which spans the hemisphere. In this case the fissure spanning the greater
portion of the hemisphere is selected.

Lobule VIIB
This lobule is trivially delineated as the remaining superior posterior
lobe after the previous three lobules are identified.

Lobule VIIIA

This lobule is adjacent to lobule VIIB and is distinguishable from
lobule VIIIB because it does not abruptly curve in the axial view. It
sometimes consists of two smaller branches that meet the point of
the vermis (see the axial view). It is best recognized in the axial
view and delineated in the sagittal view.

Lobule VIIIB

This lobule usually begins as one white matter branch at the center
of the cerebellum and becomes two branches as it extends laterally;
this behavior is best seen in the axial view. In the sagittal view it appears
to hook or curve around lobule IX, and it also borders lobule X. This
boundary is a smaller fissure and can be distinguished by the difference
in orientation between lobules VIIIB and X. It is best delineated in the
sagittal and axial views.

Lobule IX

Lobule X appears as a round structure at the anterior portion of the
cerebellum in the axial view. It is present only near the midline of the
cerebellum. In the coronal view it is the most medial lobule and appears
to extend horizontally towards the center of the cerebellum. It is easiest
to delineate in this view as the boundary is a straight line. It borders
primarily the vermis, lobule VIIIB, lobule IX of the other hemisphere,
and the spinal cord.

Lobule X

Lobule X is the anterior most lobule of the cerebellum. It is present
primarily half way in between the center and the outer edge. It is
smaller than most other lobes and is near the spinal cord. It appears
as a bump in the sagittal view, not prominent enough to be part of
lobule VIIIB.

Vermis VIIIA

This is the small posterior most part of the vermis and seems to take
only half of the posterior most white matter trunk. It is the lobule that
is present in the most lateral slices of the vermis and appears to meet
vermis VIIIA in the axial plane. It is best delineated in the sagittal plane.

Vermis VIIIB

This region consists of the other half of the posterior most white
matter branch and is present, laterally, nearly as long as the vermis
of VIIIA. It is also best delineated in the sagittal plane.

Vermis IX

This lobule is a triangular shape and is bordered on one side by
lobule VIIIB and on the other by X. It is the largest lobe in the sagittal
view of the midline. The border between IX and X is a fissure that
reaches the CM and can be determined by considering the difference
in the branches on either side. It is best delineated in the sagittal
plane.

Vermis X

Lobule X is the anterior most region of the vermis and contains no
fissures. It is usually slightly wider (laterally) than lobule IX. The fissure
separating vermis lobules IX and X is often wider in the more lateral
sagittal slices than in the medial. These lobules are sometimes separated
by lobule IX of the hemisphere. Lobule X of the vermis is disjoint from
lobule X of the hemisphere.

Rapid rater review

The consistency of the rater delineations for each subject was
established by manual examination using a method of “rapid rater re-
view”. An automated routine located all delineations of a single subject
completed by any rater and produced a series of mosaic images. Each
image displays, side-by-side, a slice of a single subject from each rater's
delineation (including repeat delineations by a single rater) as shown in
Fig. 4. Because errors tended to be large, representative slices were suf-
ficient to identify regions of disagreement. Note that this type of verifi-
cation depends on the fact that several human raters delineate each
subject. Specifically, this allows “rapid-reviewers” to assess delineations
for similarity to each other, rather than for accuracy. In this way,
rapid-reviewers could manually identify raters who were visibly incon-
sistent with either themselves or the other raters. Though the process is
unable to correct some inconsistent delineations found, it does flag
scans for redelineation or exclusion from further analysis. This was
done at the last stage of the hierarchy because most errors were found
there. When a particular label is found to be in inconsistent, only that
label is excluded while any other valid regions produced by that rater
for that subject remain.

Rapid reviewers also classified error into three categories: “sloppi-
ness,” “disagreement,” and “misattribution.” An inconsistency was la-
beled “sloppy,” when a raters delineation failed to follow either
anatomical or image based cues. Examples of sloppiness included: isolat-
ed pixels assigned to a label, unsmooth label boundaries, or label bound-
aries that did not follow either tissue or fissure boundaries (e.g., bias
caused by not properly following the correct intensity value). Errors
were assigned to “disagreement,” when appropriate cues were followed,
but a rater chose a different feature to follow relative to the others (Fig. 2
shows a typical example of this). Finally, a “misattribution” error oc-
curred when a rater correctly delineated boundaries, but assigned an
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Rater 1 (1)

Rater 1 (2)

Sagittal
slice 70

Axial
slice 35

Coronal
slice 155

Coronal
slice 152

Rater 2 (1)

Rater 2 (2) Rater 3 (1) Rater 3 (2)

Fig. 4. Example of an automatically generated montage of rater delineations used for rapid rater review. The first example shows examples of axial, coronal, and sagittal slices for
one subject delineated twice by three raters. All raters were consistent with themselves and with each other. The second example shows a “misattribution” error, in which Rater 3

delineated the boundaries correctly but switched the labels for the left and right.

incorrect label. For example, assigning the lobule Crusl-right label to
Crus1-left was considered a misattribution error. An example is shown
in Fig. 4, where Rater 3 exchanged the right and left labels. Misattribution
errors were corrected by reassigning the correct labels to the rater
delineations.

Rater fusion

Statistical label fusion methods can produce more accurate delinea-
tions by combining the labels produced by multiple raters. We report
results using the STAPLER algorithm (Landman et al., 2012b), a robust
extension of “Simultaneous Truth and Performance Level Estimation”
(STAPLE) (Warfield et al., 2004). STAPLE models the performance of
each rater as a confusion matrix, where element (i,j)indicates the prob-
ability that the rater assigned object i when the true label was objectj. A
“consensus” labeling can then be estimated using the probability of
every label for each voxel given the performances of all raters. The esti-
mation gives more weight to raters that were deemed more accurate for
particular labels. The rater performances are then re-estimated using
the consensus label probabilities from all voxels, and the whole process
is iterated to convergence. This scheme differs from majority vote in
that raters are weighted unequally according to how well they agree
with the consensus, where this agreement is estimated globally. Fur-
thermore, it can resolve situations in which all raters assign different la-
bels by selecting the label assigned by the best (most accurate) rater.

STAPLER follows a similar procedure but includes prior knowledge
that regulates the performance estimation in order to avoid unlikely
label configurations that result from poor estimates of the rater perfor-
mance. It can also handle cases where there are irregularities in the
numbers of raters or their labels, but this feature was not used here.
We performed experiments comparing STAPLER with the STAPLE algo-
rithm and a majority vote fusion scheme, and found that the STAPLER
method performed best among these three. Note that while it did not
uniformly improve upon the other methods, its performance was supe-
rior across all labels and several measures (see the Methods and results

section for the evaluation metrics). A discussion of the types and extent
of errors that can be corrected by statistical fusion can be found in the
Discussion section.

We used the publicly available implementation of the multi-
compartment STAPLER algorithm (http://www.nitrc.org/projects/masi-
fusion), initialized with the empirical label probability map. Convergence
was declared when the normalized trace of the confusion matrix changed
less than 10~ between iterations. The value of the rater performance
bias parameter was set to 0.5 for all raters, where [ is the identity matrix.

Methods and results

Three human raters completed the protocol on 48 subjects. These
raters were undergraduate students at Johns Hopkins University, Bal-
timore, MD. Each student underwent approximately 150 h of training
in the protocol before their results were considered valid. The train-
ing consisted of a study of the protocol document and delineation of
training subjects followed by expert feedback and subsequent correc-
tion by the student. The cohort consisted of 18 healthy control sub-
jects, six subjects diagnosed with spinocerebellar ataxia (SCA) type
6, 22 subjects with a non-genetic cerebellar ataxia, and two subjects
with other diagnoses. One expert rater (with approximately 5000 h
of experience) delineated 15 subjects from the cohort, and was con-
sidered the “gold standard.” This expert has been shown to have ex-
ceptional reliability (inter-rater ICC with another expert of 0.991)
based on delineation of 23 regions for 22 subjects (Jung et al.,
2011). The amount of time required for the finest parcellation of a
single subject is roughly equivalent for multiple inexpert raters and
one expert rater: three raters each taking about 15 h per subject, ver-
sus the expert rater taking approximately 50 h per subject.

The inexpert raters underwent rapid review by two independent
human judges. They found that approximately 4% of the regions pro-
duced by the three raters we used in this study had an error of some
sort detected (216 errors out of 5376 rater-regions) by this process.
These included both “sloppiness” and “disagreement” errors. Over
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half (113) of these errors came from lobules VIIB through VIIIA. Ex-
amples of a “disagreement” and “misattribution” errors discovered
by this review process are shown in Figs. 2 and 3, respectively. See
the Rapid rater review section for definitions of these error types.

Label fusion using STAPLER was run on the delineations provided
by three inexpert raters. Since our raters repeated the delineations of
some subjects there were often many unique groups of three ratings
that could be used to produce a label fusion result. We therefore fused
all groups of three raters available to us and were able to provide an
indication of the variability in a label fusion result given inexpert
raters.

The reliability of the volume measurements obtained from the de-
lineations were measured using the intraclass correlation coefficient
(ICC) (Shrout and Fleiss, 1979; McGraw and Wong, 1996). We used
the icc function in the irr package for the R software to compute the
ICC. We selected the “one way” option because the lobule volumes
for each subject are considered random effects, but not the raters.
All other options were left to their default values. The mathematical
details of this ICC can be found in Table 4 in McGraw and Wong
(1996), under the designation “ICC(1)”. This type of ICC measures
the absolute agreement between different raters' volumes, as we
are interested in determining whether the volumes produced by dif-
ferent raters were identical (rather than consistent). These and all
measures of delineation quality were computed at all levels of the
label hierarchy. Note that the reliability measures tend to be greater
at coarse parcellations and lesser for finer parcellations. Specific
explanations for this behavior are given in the Discussion section.

Table 1 shows computed intra-rater ICC values for a coarse group-
ing of labels that was described in Makris et al. (2005), and for the full
lobule parcellation. The 95% confidence interval for the estimate is
given in parentheses. For the coarse grouping, the inexpert raters
achieve good intra-rater ICCs for the corpus medullare and anterior
and posterior lobes (estimates range from 0.62 to 0.99). By this
measure, STAPLER performed well on the flocculonodular lobe
(intra-rater ICC range from 0.89 to 0.94), despite the fact that inex-
pert raters were less reliable (—0.67 to 0.82). There is a similar
trend for the lobule reliabilities; the STAPLER results tend to be
more reliable than individual raters. Intra-rater ICCs for the inexpert
raters ranged from 0.26 to 0.96 for rater one, —0.07 to 0.87 for rater
two, and —0.66 to 0.98 for rater three. The STAPLER fused results
had ICCs ranging from 0.71 to 0.99, and indicate that the fused results
are much more reliable than the individual raters.

Table 2 shows the inter-rater ICCs for the lobar and lobule
parcellation of the cerebellum. This measure was always computed
relative to the expert rater. For the corpus medullare and anterior
and posterior lobes, inter-rater ICCs ranged from 0.49 to 0.98 for the
inexpert raters, and from 0.94 to 0.99 for STAPLER. For the remaining
lobules, ICCs ranged from —0.04 to 0.98 for the inexpert raters and
from —0.19 to 0.99 for STAPLER.

In contrast with the ICC, the Dice similarity coefficient (DSC) mea-
sures the degree of spatial overlap of two delineations and for this
reason is a stricter measure of similarity. Fig. 5 shows the boxplots
of the DSC of the inexpert raters and the fusion results with the expert
rater. Note that the DSC will give a result equal to sensitivity and pos-
itive predictive value when the volumes of expert and rater are equal.
The fusion results tend to have higher similarity coefficients than the
inexpert raters, as well as more compact distributions.

We also computed the signed volume difference given by: SVD =
(Vg — VE)/VE, where Vg and Vi are the volumes of a region delineated
by the rater and expert, respectively. This quantity measures the frac-
tional difference of the rater's volume in comparison to the expert. A
delineator that agrees with the expert would achieve an SVD of zero,
while raters that consistently overestimate or underestimate the vol-
umes of certain regions would have positive and negative SVDs, re-
spectively. We report this measure to show that the volumes of the
structures found are similar in absolute terms in addition to being

consistent (as measured by the ICC). Fig. 6 shows the boxplots of the
SVD score for all the inexpert raters and the fused results. In general,
the results of label fusion have compact distributions around zero,
whereas the inexpert raters' volume measurements are more spread
out. This indicates that fusion produces volume measurements similar
to the expert more often than the raw inexpert raters. We further
report in Table 3 the nominal volumes (mean and standard deviation)
for normal subjects of the structures described here obtained by
expert rater delineation and STAPLER fused inexpert delineation.

Discussion

This is the first study to demonstrate that relatively inexperienced
human raters, when given a hierarchical protocol, can produce delinea-
tions close to those of an expert rater. As inexpert raters are easier to
train and less expensive to employ than expert raters, our methodology
could facilitate the accurate labeling of very large data sets in a practical
fashion. Given the approximate training and delineation times we have
compiled during this study, we can report a rough estimate of the time
and cost savings achievable using this methodology. Training time for
the inexperts was reduced by about 75% because the three raters
could be trained in parallel and because their training was faster,
consisting simply of learning the protocol. This suggests that having
this hierarchical protocol enables raters to be quickly mobilized for a
particular study. After training, the three inexperts can complete a sub-
ject in about 70% less time than the expert, primarily because they are
able to work in parallel. Furthermore, we observed cost savings of 95%
for training and 60% per subject delineation after taking into account
the amount of time spent on training and delineation and typical hourly
wages for researchers in metropolitan areas and for undergraduate in-
terns. Of course, it is important that this methodology produce results
as close as possible to those of the expert.

Agreement with an expert rater can be achieved by employing a
three-stage approach. A hierarchical delineation protocol reduces rater
variability by limiting the number of decisions a rater needs to make
at any given moment. Gross errors are isolated using rapid review and
verification of consensus. Raters tend to make “sloppiness” errors inde-
pendently (in a statistical sense), and so often fit the error model of sta-
tistical fusion algorithms. This explains the improvement of accuracy
and reliability gained from using the fused results.

This leads to an important discussion regarding the types of rater
errors that can be discovered and corrected using our methodology.
As our methodology does not employ expert raters, we rely on the
“consensus” of the inexperts to determine locations of possible errors.
As a result, boundaries that have been delineated incorrectly (relative
to the truth) but identically (i.e., a consensus was reached) by all
raters are not detectable as errors. Nevertheless, the quality of our re-
sults suggests that this situation does not occur very often, and when
a rater makes an error, there is usually disagreement regarding the
boundary's location.

We present data defining the inherent tradeoff between granularity
and accuracy. Understanding this choice could facilitate the statistical
design of hypothesis-driven cerebellar parcellation protocols in the fu-
ture. Our results show that the overlap and volume repeatability mea-
sures degrade as raters complete finer stages of the labeling hierarchy
(see Figs. 5 and 6 and Tables 1 and 2). This can be caused by reduced
or lack of contrast between small structures or inter-subject differences
in anatomy. This in turn results in differences in rater judgment in those
regions, and denoted a “disagreement” error by rapid reviewer. In par-
ticular, the most prominent fissures give rise to significant image con-
trast, are stable from subject to subject, and therefore are reliably
delineated. On the other hand, the boundaries between some lobules
are small fissures between the corresponding folia that produce only a
small amount of image contrast. As was noted in the Cerebellum
delineation/parcellation protocol section, when fissures are not visible
in the image, their presence had to be inferred from the positions of
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Fig. 5. Box plots of Dice similarity coefficient with the expert rater for the human raters and label fusion by STAPLER. The upper and lower plots show overlaps for the lobar

parcellation and lobule parcellations of Fig. 1, respectively.

white matter branches. This judgment is largely dependent on experi-
ence and anatomical knowledge.

Other situations in this labeling task arise in which image contrast
gives little or no information. It is not uncommon for two lobules to
sprout from a single white matter branch emanating from the corpus
medullare. Since white matter branches were included as part of the
lobule volume, the shared white matter branches were split between

the two lobules approximately equally. A related challenge is the ap-
pearance of marked fissures between different parts of the same lobule
(lobules often consist of multiple folia). Consequently, raters must dis-
tinguish between fissures or other image features corresponding to lob-
ule boundaries and fissures that separate different parts of a single
lobule. To make matters worse, the size and depth of the fissure may
or may not be a reliable feature in determining which fissures separate
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parcellation and lobule parcellations of Fig. 1, respectively.

lobules. (i.e., fissures within a single lobule can appear larger/deeper
than fissures separating two lobules). As a result, raters occasionally
choose to follow different image features in delineating the same lobule
boundary. This phenomenon explains some large discrepancies be-
tween raters that we observed, and the surprisingly wide confidence in-
tervals of ICC for some lobules. Future work in improving the rapid
review process could help alleviate the effect of these outliers.

We now will present several examples of anatomical features of the
cerebellum that confound accurate parcellation. Fig. 2 shows an example

of this phenomenon focusing on the labeling of lobules Crus II, VIIB,
VIIIA, and VIIIB. Notice that the first subject has three fissures separating
four regions, and the second subject has four fissures separating five re-
gions. All inexpert raters agree with the expert rater on the first subject
since the image features indicate the anatomical divisions. The labeling
task for the second subject is much more difficult, since raters needed
to determine which of the image features correspond to anatomical
divisions. In this case, the expert determined that VIIIA (pictured in
orange) contained two branches. All of the inexpert raters correctly
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Intra-rater ICCs for coarse (lobe) and fine (lobules) parcellations (see Fig. 1).

Lobule Intra-rater ICC
Rater 1 Rater 2 Rater 3 STAPLER
™M 0.62 (033, 0.81) 0.79 (0.60, 0.89) 0.93 (0.65, 0.99) 0.99 (0.96, 1.00)
Anterior R+L 0.95 (0.90, 0.98) 0.79 (0.61, 0.90) 0.99 (0.93, 1.00) 1.00 (0.99, 1.00)
L 0.95 (0.89, 0.97) 0.84 (0.70, 0.92) 0.94 (0.69, 0.99) 0.99 (0.97, 1.00)
R 0.95 (0.89, 0.98) 0.75 (0.53, 0.87) 0.89 (0.49, 0.98) 0.99 (0.96, 1.00)
Posterior R+L 0.84 (0.69, 0.92) 0.71 (048, 0.85) 0.86 (0.37, 0.98) 0.97 (0.92, 0.99)
L 0.90 (0.80, 0.95) 0.74 (0.52, 0.87) 0.88 (0.45, 0.98) 0.99 (0.96, 1.00)
R 0.77 (0.55, 0.89) 0.69 (0.44, 0.84) 0.76 (0.11, 0.96) 0.95 (0.86, 0.98)
)| L 0.72 (0.47, 0.86) 0.67 (0.41, 0.82) 0.97 (0.85, 1.00) 0.98 (0.95, 0.99)
R 0.61 (0.31, 0.80) 0.41 (0.07, 0.67) 0.98 (0.89, 1.00) 0.97 (0.92, 0.99)
v L 0.76 (0.54, 0.88) 0.79 (0.60, 0.89) 0.98 (0.90, 1.00) 0.98 (0.93, 0.99)
R 0.74 (0.51, 0.87) 0.66 (0.40, 0.82) 0.73 (0.03, 0.96) 0.97 (0.92, 0.99)
\Y L 0.77 (0.56, 0.89) 0.86 (0.72, 0.93) 0.81 (0.24, 0.97) 0.95 (0.85, 0.98)
R 0.72 (0.48, 0.86) 0.86 (0.73, 0.93) 0.93 (0.63, 0.99) 0.98 (0.93, 0.99)
VI L 0.96 (0.92, 0.98) 0.82 (0.66, 0.91) 0.92 (0.62, 0.99) 0.99 (0.97, 1.00)
R 0.95 (0.90, 0.98) 0.73 (0.50, 0.86) 0.89 (0.47, 0.98) 0.97 (0.91, 0.99)
VIIA L 0.88 (0.76, 0.94) 0.76 (0.56, 0.88) 0.91 (0.54, 0.99) 0.99 (0.98, 1.00)
Crusl R 0.66 (0.39, 0.83) 0.70 (0.46, 0.84) 0.62 (—0.17, 0.94) 0.98 (0.93, 0.99)
VIIA L 0.46 (0.11, 0.71) 0.67 (0.41, 0.83) 0.30 (—0.53, 0.86) 0.80 (0.51, 0.93)
Crus2 R 0.18 (—0.21, 0.52) 0.63 (0.36, 0.80) 0.89 (0.47, 0.98) 0.89 (0.72, 0.96)
VIIB L 0.28 (—0.10, 0.59) 0.53 (0.22, 0.75) 0.34 (—0.49, 0.87) 0.97 (0.90, 0.99)
R 0.38 (0.01, 0.66) 0 54 (0.23, 0.75) 0.89 (0.47, 0.98) 0.86 (0.65, 0.95)
VIIIA L 0.57 (0.25, 0.78) 44 (0.11, 0.69) 0.79 (0.18, 0.97) 0.72 (0.35, 0.89)
R 0.36 (—0.01, 0.65) 051 (0.19, 0.73) 0.89 (0.47, 0.98) 0.89 (0.70, 0.96)
VIIIB L 0.62 (0.33, 0.81) 0.56 (0.25, 0.76) 0.58 (—0.22, 0.93) 0.85 (0.62, 0.95)
R 0.63 (0.35, 0.81) 0.73 (0.52, 0.86) 0.95 (0.76, 0.99) 0.97 (0.93, 0.99)
VI v 0.87 (0.73, 0.94) 0.64 (0.38, 0.81) 0.83 (0.30, 0.97) 0.98 (0.95, 0.99)
IX L 0.78 (0.57, 0.89) 0.87 (0.74, 0.93) 0.87 (0.42, 0.98) 0.96 (0.89, 0.99)
R 0.76 (0.55, 0.88) 0.68 (0.43, 0.83) 0.49 (—0.34,0.91) 0.97 (0.92, 0.99)
v 0.56 (0.24, 0.77) 0.42 (0.08, 0.67) 0.71 (—0.01, 0.95) 0.93 (0.80, 0.97)
X R+L 0.74 (0.51, 0.87) 0.52 (0.20, 0.74) —0.33 (—0.84, 0.56) 0.91 (0.77, 0.97)
L 0.63 (0.34, 0.81) 0.52 (0.21, 0.74) 0.25 (—0.57, 0.84) 0.89 (0.72, 0.96)
R 0.73 (0.50, 0.87) 0.50 (0.18, 0.72) —0.67 (—0.94,0.17) 0.94 (0.83, 0.98)
v 0.28 (—0.10, 0.59) 0.48 (0.16, 0.72) 0.82 (0.26, 0.97) 0.85 (0.62, 0.95)
Table 2

Inter-rater ICCs for coarse (lobe) and fine (lobules) parcellations (see Fig. 1). This measure compares a particular human rater or fusion method to the “gold standard” expert rater.

Lobule Inter-rater ICC with ground truth
Rater 1 Rater 2 Rater 3 STAPLER

™M 0.49 (—0.01, 0.80) 0.92 (0.79, 0.97) 0.76 (0.38, 0.92) 0.94 (0.81, 0.99)
Anterior R+L 0.98 (0.96, 0.99) 0.78 (0.59, 0.89) 0.79 (0.62, 0.89) 0.96 (0.85, 0.99)

L 0.98 (0.96, 0.99) 0.76 (0.55, 0.88) 0.80 (0.63, 0.89) 0.96 (0.86, 0.99)

R 0.95 (0.90, 0.97) 0.79 (0.61, 0.89) 0.74 (0.54, 0.86) 0.95 (0.83, 0.99)
Posterior R+L 0.93 (0.88, 0.96) 0.56 (0.26, 0.76) 0.63 (0.37, 0.80) 0.99 (0.95, 1.00)

L 0.96 (0.92, 0.98) 0.57 (0.27, 0.77) 0.64 (0.39, 0.81) 0.99 (0.96, 1.00)

R 0.90 (0.83, 0.94) 0.55 (0.24, 0.76) 0.60 (0.34, 0.78) 0.98 (0.92, 0.99)
[-1IT L 0.75 (0.40, 0.91) 0.45 (—0.04, 0.77) 0.67 (0.20, 0.89) 0.56 (—0.03, 0.87)

R 0.47 (—0.04, 0.79) 0.21 (—0.31, 0.64) 0.21 (—0.37,0.68) 0.27 (—0.37,0.75)
\% L 0.85 (0.61, 0.95) 0.82 (0.55, 0.93) 0.88 (0.64, 0.96) 0.96 (0.85, 0.99)

R 0.87 (0.66, 0.96) 0.91 (0.76, 0.97) 0.84 (0.56, 0.95) 0.96 (0.84, 0.99)
\Y L 0.78 (0.45, 0.92) 0.77 (0.46, 0.92) 0.67 (0.21, 0.89) 0.86 (0.57, 0.96)

R 0.86 (0.63, 0.95) 0.84 (0.60, 0.94) 0.73 (0.32,0.91) 0.83 (0.48, 0.95)
VI L 0.96 (0.88, 0.99) 0.99 (0.96, 1.00) 0.94 (0.81, 0.98) 0.97 (0.89, 0.99)

R 0.96 (0.89, 0.99) 0.97 (0.92, 0.99) 0.91 (0.73, 0.97) 0.95 (0.83, 0.99)
VIIA L 0.95 (0.85, 0.98) 0.98 (0.96, 0.99) 0.95 (0.84, 0.99) 0.99 (0.97, 1.00)
Crusl R 0.92 (0.77,0.97) 0.97 (0.93, 0.99) 0.88 (0.66, 0.96) 0.96 (0.86, 0.99)
VIIA L 0.90 (0.72, 0.97) 0.68 (0.29, 0.88) 0.75 (0.36, 0.92) 0.85 (0.53, 0.96)
Crus2 R 0.60 (0.14, 0.85) 0.65 (0.23, 0.86) 0.53 (—0.01, 0.84) 0.56 (—0.03, 0.87)
VIIB L 0.82 (0.54, 0.94) 0.11 (—0.40, 0.57) 0.60 (0.09, 0.86) 0.73 (0.27, 0.93)

R 0.51 (0.01, 0.81) 0.40 (—0.10, 0.75) 0.04 (—0.51, 0.58) 0.54 (—0.05, 0.86)
VIIA L 0.57 (0.10, 0.84) 0.86 (0.63, 0.95) 0.84 (0.54, 0.95) 0.81 (0.44, 0.95)

R 0.58 (0.11, 0.84) 0.64 (0.22, 0.86) 0.75 (0.37,0.92) 0.33 (—0.31,0.78)
VIIIB L 0.39 (—0.14, 0.75) 0.96 (0.90, 0.99) 0.80 (0.46, 0.94) 0.61 (0.04, 0.88)

R 0.73 (0.37,0.91) 0.90 (0.75, 0.97) 0.57 (0.05, 0.85) 0.84 (0.50, 0.96)
VIII \ 0.82 (0.53, 0.94) 0.70 (0.32, 0.89) 0.87 (0.61, 0.96) 0.80 (0.40, 0.94)
IX L 0.77 (0.45, 0.92) 0.91 (0.76, 0.97) 0.49 (—0.07,0.82) 0.90 (0.67, 0.97)

R 0.83 (0.57, 0.94) 0.95 (0.87, 0.98) 0.94 (0.82, 0.98) 0.94 (0.78, 0.98)

\ 0.85 (0.61, 0.95) 0.73 (0.38, 0.90) 0.85 (0.57, 0.95) 0.87 (0.59, 0.97)
X R+L 0.74 (0.57, 0.85) 0.57 (0.27, 0.77) 0.62 (0.35, 0.79) —0.15 (—0.68, 0.49)

L —0.04 (—0.53,0.48) 0.52 (0.04, 0.81) 0.46 (—0.10,0.81) —0.15 (—0.67, 0.49)

R 0.02 (—0.48, 0.53) 0.36 (—0.15, 0.73) 0.25 (—0.33,0.70) —0.19 (—0.69, 0.46)

\ 0.11 (—0.41, 0.59) 0.54 (0.08, 0.82) 0.46 (—0.11, 0.80) 0.41 (—0.22 0.81)
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Fig. 7. Examples of lobule X delineations. The inexpert rater delineations are labeled with Dice similarity coefficients with the expert delineation. Note that small absolute errors

translate to large relative errors due to the small size of the structure.

identified the fissures, but chose to split the five branches among the
four labels in ways that did not agree with the expert. This highlights
the importance of anatomical knowledge for certain aspects of this
delineation task. We found that a consensus labeling, determined by sta-
tistical fusion performs well and compensates, in part, for the relative
inexperience of raters.

A different challenge was faced by our inexpert raters when delineat-
ing lobule X (the flocculonodular lobe). These rather small regions on the
anterior part of the cerebellum are in very close proximity to other
nerves and connective tissue. The inexpert raters had difficulty in

distinguishing these structures and consistently over-estimated the
size of lobule X relative to the expert rater. The details can be observed
in Fig. 6; the signed volume difference is positive for lobule X for all inex-
pert raters and fused results. A specific example of this phenomenon is
given in Fig. 7. Despite the qualitative similarity of the inexpert and
expert delineations, the DSC (displayed in blue) is small due to the
small size of the lobule. Even though their errors were small on an abso-
lute scale, the small size of these structures caused unacceptably large
relative errors in volume. We plan to address this impediment in a sub-
sequent revision of our protocol, though this structure may be too

Table 3
Means and standard deviations (in parentheses) for the lobar and lobule parcellations of control subjects.
Lobule Expert Rater 1 Rater 2 Rater 3 STAPLER
™M 12.14 (0.57) 10.79 (2.16) 12.44 (1.45) 14.42 (1.36) 12.18 (1.84)
Anterior R+L 14.54 (1.71) 15.66 (2.97) 15.47 (2.80) 14.25 (2.81) 15.78 (2.46)
L 6.89 (0.92) 7.52 (1.36) 7.36 (1.58) 6.98 (1.51) 7.59 (1.30)
R 7.65 (1.27) 8.14 (1.86) 8.11 (1.67) 7.27 (1.80) 8.19 (1.55)
Posterior R+L 88.93 (7.46) 92.65 (13.63 97.80 (12.61) 94.67 (10.55) 92.55 (13.62)
L 46.18 (3.75) 48.17 (6.39) 50.50 (5.88) 48.78 (4.72) 48.20 (6.31)
R 42.75 (3.73) 44.48 (7.48) 47.54 (6.71) 46.01 (5.75) 44.34 (7.48)
I-111 L 0.77 (0.21) 0.80 (0.27) 0.57 (0.23) 0.66 (0.29) 0.78 (0.26)
R 0.74 (0.13) 0.91 (0.42) 0.71 (0.40) 0.67 (0.28) 1.13 (042)
I\ L 2.93 (0.58) 2.71 (0.64) 2.85 (0.90) 3.07 (0.83) 3.01 (0.91)
R 3.52 (1.14) 3.10 (1.01) 3.43 (0.97) 3.35(1.26) 3.11 (1.01)
\" L 3.20 (0.61) 4.00 (0.75) 3.94 (0.84) 3.25(0.83) 3.81(0.67)
R 3.39 (0.77) 4.12 (0.85) 3.97 (1.03) 3.25(0.83) 3.94 (0.76)
VI L 8.26 (1.71) 9.15 (1.86) 9.03 (2.18) 9.30 (2.05) 9.18 (2.12)
R 7.49 (1.73) 8.67 (1.93) 8.74 (1.76) 8.66 (1.45) 8.07 (1.76)
VIIA L 13.49 (1.77) 13.11 (2.25) 13.89 (2.51) 13.74 (2.34) 13.15 (1.82)
Crusl R 12.49 (1.36) 11.98 (2.42) 12.99 (2.69) 12.92 (2.43) 12.03 (3.17)
VIIA L 6.35 (0.97) 8.42 (2.70) 8.37 (1.62) 7.15 (1.60) 8.53 (1.50)
Crus2 R 7.71 (1.93) 8.02 (1.82) 9.72 (1.74) 7.60 (2.15) 6.96 (2.48)
VIIB L 4.64 (0.60) 4.49 (0.94) 5.46 (1.62) 5.81(1.83) 4.56 (2.36)
R 4.82 (0.68) 4.59 (1.74) 5.46 (1.61) 6.07 (1.60) 6.92 (1.41)
VIIA L 6.31 (0.55) 4.26 (1.57) 591 (1.77) 5.64 (1.67) 5.47 (2.07)
R 3.62 (1.20) 3.54 (0.86) 4.01 (0.95) 4.06 (1.20) 2.88 (1.04)
VIIIB L 4.05 (0.71) 5.26 (1.71) 4.32 (0.94) 3.69 (0.77) 3.58 (1.06)
R 3.44 (0.70) 437 (1.27) 3.87 (0.83) 3.28 (0.83) 4.36 (1.09)
VI v 1.83 (0.41) 0.64 (0.35) 0.74 (0.20) 0.55 (0.21) 0.91 (0.28)
IX L 3.08 (0.25) 3.60 (0.76) 3.74 (0.94) 3.45 (0.75) 3.74 (0.81)
R 3.18 (0.18) 3.54 (0.85) 3.27 (0.92) 3.34 (0.85) 3.12 (0.86)
v 0.99 (0.07) 1.09 (0.20) 0.92 (0.15) 0.95 (0.15) 1.15 (0.34)
X R+L 0.91 (0.19) 1.29 (0.17) 1.31 (0.30) 1.20 (0.29) 1.72 (0.31)
L 0.44 (0.10) 0.66 (0.08) 0.69 (0.18) 0.60 (0.19) 0.93 (0.27)
R 0.47 (0.10) 0.63 (0.11) 0.62 (0.14) 0.61 (0.13) 0.79 (0.10)
v 0.33 (0.02) 0.23 (0.09) 0.33 (0.07) 0.33 (0.06) 0.34 (0.08)
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Fig. 8. Box plots of Dice similarity coefficient for SUIT, multi-atlas segmentation and the proposed manual method using inexpert raters. The rightmost set of boxes shows the of the

average Dice similarity across all labels.

variable and challenging for inexpert raters to delineate reliably. Dedicat-
ed training for this lobule may be necessary. To summarize, the situations
described above rely on rater judgment and experience rather than ob-
serving image features. Therefore, differences between raters in this esti-
mation account for errors in the smaller lobules. Incorporating different
image features (for example diffusion weighted image contrasts) may
be useful in future efforts to provide image cues not present in the T1 im-
ages used here. Diffusion imaging in particular, could play a role in future
studies in sub-parcellating the cerebellar white matter and identifying
the deep nuclei.

The rapid-review and fusion aspects of this system are critical as well.
The review process was instrumental in identifying gross errors made by
inexpert raters. Statistical label fusion techniques (STAPLER) improved
the reliability of the final result by combining individual inexpert delinea-
tions. We have shown that the consensus labeling estimated using these
techniques tends to agree with a parcellation produced by an expert; an
example of this is given in Fig. 2. The results suggest that more robust
fusion techniques and/or more careful delineation may be necessary
when regions are small and/or difficult to delineate (e.g., lobule X).

Finally, our nominal volume measures reported in Table 3 generally
agree with those reported in Makris et al. (2005). For example, the
mean bilateral (R+ L) anterior lobe volume in Makris et al. (2005) was
13.68 (2.4), whereas the STAPLER fusion result here was 12.18 (1.84).
The difference observed could be due to the mean age of our cohort
(51 years), which is likely larger than the unreported mean age in
Makris et al. (2005). In many cases, the mean of the fused results tends
to be closer to the mean expert result than any of the individual inexpert
raters.

Conclusion

By using this protocol, inexpert raters can produce a parcellation of
the human cerebellum that agrees with experts when paired with a sys-
tem for review/verification and statistical label fusion. The hierarchical
nature of this protocol allows for researches to tailor the protocol to a
specific hypothesis by balancing reliability and parcellation coarseness.
Fusion of multiple inexpert delineations can produce a labeling that
approaches the reliability and accuracy of an expert. This is especially
useful since employing many inexpert raters may be more time and
cost-effective than employing a small number of experts. The efficiency
offered by this approach can enable larger scale studies of the cerebellum
in the future.
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Appendix A

The evaluation described used leave-one-out cross validation to
estimate the performance of the multiple-atlas segmentation framework.
Fifteen subjects were used (six controls), meaning that fourteen “atlases”
were used to label each subject. Registration was performed using the
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SyN algorithm (Avants et al., 2008), which was found to be a leading
method for the purposes of labeling the cortex (Klein et al., 2009). SyN
was run using the following parameters: cross correlation similarity
using a 32 bin square joint histogram, Gaussian regularization with
sigma of 3, a three level optimization using 30, 20, and 10 iterations at
the coarse-, mid-, and full-resolutions, respectively. Label fusion was
accomplished with the multi-category STAPLE algorithm (Warfield et
al., 2004) initialized with equal confusion matrices for all raters with
diagonal entries equal to 0.9999. Convergence was declared when the
difference of the normalized trace of the confusion matrix between
two iterations was less than 1072,

The SUIT algorithm was run using SUIT version 2.4 with SPM8. A
corpus medullare label was manually added to the SUIT template. A
whole cerebellum mask was generated using the suit_isolate command.
The SUIT template and subject cerebellum were deformably registered
using suit_normalize. Next, the lobule labels and cerebellum mask were
resampled into the subject space with suit_reslice_inv. Finally, we ap-
plied the cerebellum mask from the isolation step to the lobule labels
to refine the delineation near deep fissures.

The Dice similarity coefficient (DSC) with the expert's lobule labels
was computed for each of these 15 subjects for the multi-atlas, and
SUIT automated methods, and for the proposed method using inexpert
raters, a box plot of which is shown in Fig. 8. The median DSC of the pro-
posed method is higher for all lobules than either of the automatic
methods. We also computed the DSC using only the gray matter labels
after masking the gray matter labels for all methods with the true
(expert rater) gray matter. The mean (standard deviation) DSCs are:
0.63 (0.15) for SUIT, 0.82 (0.13) for multi-atlas, and 0.89 (0.09) for our
inexpert rater fusion. This indicates automated methods make errors
in assigning different gray matter labels that cannot be solved by incor-
porating a simple tissue segmentation.
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