
Simple LU and QR based Non-Orthogonal
Matrix Joint Diagonalization

Bijan Afsari

Institute for Systems Research and Department of Applied Mathematics
University of Maryland, College Park

20742 MD,USA
{bijan@glue.umd.edu}

This paper was presented in the Sixth International Conference on
Independent Component Analysis and Blind Source Separation held in Charleston,
SC in March 2006. It is also published in the proceedings of the Conference:
J. Rosca et al. (Eds.). ICA 2006, LNCS 3889, pp. 17, 2006.c Springer-Verlag
Berlin Heidelberg 2006

Abstract. A class of simple Jacobi-type algorithms for non-orthogonal
matrix joint diagonalization based on the LU or QR factorization is in-
troduced. By appropriate parametrization of the underlying manifolds,
i.e. using triangular and orthogonal Jacobi matrices we replace a high di-
mensional minimization problem by a sequence of simple one dimensional
minimization problems. In addition, a new scale-invariant cost function
for non-orthogonal joint diagonalization is employed. These algorithms
are step-size free. Numerical simulations demonstrate the efficiency of
the methods.

1 Introduction

The problem of matrix (approximate) Joint Diagonalization (JD) has found ap-
plications in many blind signal processing algorithms, see for example [4,6]. In
one formulation it can be presented as: given a set of n× n symmetric matrices
{Ci}N

i=1 find a non-singular B such that the matrices {BCiB
T }N

i=1 are “as diago-
nal as possible”. We call such a B a joint diagonalizer. In general diagonalization
can happen only approximately. If B is restricted to the set of orthogonal n× n
matrices O(n), the problem is referred to as orthogonal JD. Here, we are inter-
ested in non-orthogonal JD or NOJD, i.e. where B is in the set of non-singular
n × n matrices GL(n). The reader is referred to [2,8] for further references on
this subject. We remind that in [7] the NOJD problem is formulated differently.

A natural and effective cost function for orthogonal JD is [4]:

J1(Θ) =
n∑

i=1

∥∥ΘCiΘ
T − diag(ΘCiΘ

T)
∥∥2

F
(1)

where diag(X) is the diagonal part of matrix X, ‖.‖F is the Frobenius norm and
Θ ∈O(n). The algorithm introduced in [4], which is a part of the JADE algo-
rithm, to minimize J1(Θ) is an iterative minimization method using orthogonal

2 Bijan Afsari

Jacobi matrices. This algorithm breaks the n(n−1)
2 dimensional minimization

problem to a sequence of one dimensional minimization problems and also uses
the group structure of O(n) by using multiplicative updates. Here, we extend
this idea to the NOJD problem.

In many cases, such as noisy ICA, the joint diagonalizer sought can not as-
sumed to be orthogonal. The NOJD problem is more challenging than orthogonal
JD. It is natural to consider the NOJD as a minimization problem. Motivating
physical problems such as ICA and BSS suggest that a good cost function J for
NOJD should be invariant under permutation Π and under scaling by a non-
singular diagonal matrix Λ, i.e. J(ΛΠB) = J(B)1. If we extend J1 to GL(n)
then clearly J1(ΛB) 6= J1(B). In fact by reducing the norm of B we can reduce
J1(B) arbitrarily. In order to still use J1 we can extend J1 to a smaller subgroup
of GL(n) such as SL(n) [3] or as in [3,8] we can restrict the “reduction” of J1 only
to the directions that do not correspond to multiplication by diagonal matrices.
The latter results in updates of the form:

Bk+1 = (I + ∆k)Bk (2)

where I is the n × n identity matrix, diag(∆k) = 0 and ∆k is found such that
J1(Bk+1) is reduced at each step. This can be done, for example, from a gradient
descent step as in [3]. One consequence of the update in (2) is that if the norm of
∆k is small enough [8] we can guarantee invertibility of Bk+1. Also if we choose
∆k to be a triangular matrix with diag(∆k) = 0 and if B0 = I then det Bk+1 = 1
for all k and hence ‖Bk+1‖2 ≥ 1. The significance of the latter is that it ensures
that the cost J1 is not reduced merely due to reducing the norm of Bk. In this
article we consider triangular ∆k with only one non-zero element and we refer to
I + ∆k as a Jacobi triangular matrix. In Section 2, we describe a class of NOJD
methods using orthogonal and triangular Jacobi matrices which are based on
the LU or QR factorization of the sought diagonalizer.

Another idea in devising NOJD algorithms is to use cost functions other than
J1. In [8,2] some different cost functions are mentioned. In [1] a scale-invariant
cost function is used for NOJD which has the form:

J2(B) =
N∑

i=1

∥∥Ci −B−1diag(BCiB
T)B−T

∥∥2

F
(3)

Note that J2(ΛB) = J2(B) for diagonal Λ and that J2(Θ) = J1(Θ) for Θ ∈ O(n).
J2 is the normalized version of J1 in the sense that:

J1(B)
n‖B‖4F

≤ J2(B) ≤ n‖B−1‖4F J1(B) (4)

A drawback of J2 is that in its calculation we need to compute the inverse of
B. In Section 3 we propose a simple algorithm for minimization of J2, too. In
Section 4 we test the developed methods numerically and provide a comparison
with one existing efficient NOJD method.
1 Intuitively, we do not expect that ΛΠCiΠ

T Λ can become more diagonal than Ci

Lecture Notes in Computer Science 3

2 Use of LU and QR factorizations in minimization of J1

Any non-singular matrix B admits the LU factorization:

B = ΠΛLU (5)

where Π is a permutation matrix, Λ is a non-singular diagonal matrix and L
and U are n × n unit lower and upper triangular matrices, respectively. By a
unit triangular matrix we mean a triangular matrix with diagonal elements of
one [5]. The factorization in (5) exactly matches the invariances in NOJD. On
the other hand the SVD factorization, for example, can not match this. Unit
lower and upper triangular matrices of dimension n, form Lie groups denoted by
L(n) and U(n), respectively. This fact simplifies the minimization process a lot.
B also admits the QR factorization:

B = ΛLΘ (6)

where Θ ∈O(n) and L ∈ L(n). The idea is to find L and U separately in the
LU form or L and Θ in the QR form such that J1 is reduced at each step
and repeat this till convergence. If the initial condition is the identity matrix,
by construction, the solution’s determinant will remain unity. Furthermore, we
replace each of these n(n−1)

2 dimensional minimization problems by a sequence
of simple one-dimensional problems by using triangular and orthogonal Jacobi
matrices.

2.1 Triangular and Orthogonal Jacobi Matrices

A lower triangular Jacobi matrix with parameter a corresponding to the position
(i, j), i > j is denoted by Lij(a). Lij(a) is an element of L(n) whose (i, j)th

entry is a and the rest of its off-diagonal entries are zero. In a similar fashion
we define the upper triangular Jacobi matrix with parameter a corresponding
to the position (i, j), i < j and denote it by Uij(a). Any element of L(n) (U(n))
can be represented as a product of lower (upper) triangular Jacobi matrices.
We replace the problem of minimization of J1(L) with L ∈ L(n) which is a
high dimensional problem with a sequence of simple one-dimensional quadratic
problems of finding the parameter of triangular Jacobi matrices for minimizing
J1. The following simple proposition solves the one-dimensional problem. For
brevity the proof is omitted.
Notation: (MATLAB’s indexing) For matrix A, A(k, index) where index is
a row vector denotes a row-vector whose elements are from the kth row of A
indexed by index. A(index, l) is defined similarly. Specificality we are interested
in vectors like A(l, [1 : i− 1, i + 1 : n]).

Proposition 1. If â is such that:

â = −
∑N

i=1 Ci(k, [1 : l − 1, l + 1 : n])Ci(l, [1 : l − 1, l + 1 : n])T

∑N
i=1 ‖Ci(k, [1 : l − 1, l + 1, : n])‖2F

(7)

4 Bijan Afsari

then: with k < l, â minimizes J1(Llk(a)) and with k > l, â minimizes J1(Ulk(a)).
If

∑N
i=1 ‖Ci(k, [1 : l − 1, l + 1, : n])‖2F = 0 set â = 0, i.e. J1 can not be reduced

by that particular Llk or Ulk.

Similarly, if Θkl(θ) is the Jacobi rotation matrix corresponding to the position
(k, l) and a counter-clockwise rotation by θ, then we have that[4]:

Proposition 2. If θkl is such that v = [cos 2θkl sin 2θkl]T is a unit-norm eigen
vector corresponding to the larger eigen value of the matrix GT

klGkl where Gkl is
an N×2 matrix defined as Gkl(i, 1) = Ci(k, k)−Ci(l, l) and Gkl(i, 2) = 2Ci(k, l)
for 1 ≤ i ≤ N , then θkl minimizes J1(Θkl(θ)).

Based on these two propositions we can have two algorithms LUJ1D and
QRJ1D. We juxtapose the two algorithms together:

Algorithm LUJ1D (QRJ1D):

1. set B = I. set ε.
2. U-phase (Q-Phase): set U = I(Θ = I). for 1 ≤ l < k ≤ n:

– Find alk = arg mina J1(Ulk(a)) (θlk = arg minθ J1(Θlk(θ))) from Propo-
sition 1 (Proposition 2)

– Ci ← Ulk(alk)CiUlk(alk)T (Ci ← Θlk(θlk)CiΘlk(θlk)T) and U ←
Ulk(alk)U (Θ ← Θlk(θlk)Θ)

3. L-phase (R-Phase): set L = I. for 1 ≤ l < k ≤ n:
– Find akl = arg mina J1(Lkl(a)) from Proposition 1
– Update Ci ← Lkl(akl)CiLkl(akl)T and L ← Lkl(akl)L

4. if ‖LU − I‖F > ε (‖LΘ− I‖F > ε), then B ← LUB (B ← LΘB) and goto
2, else end

We could use other stoping criteria such as keeping track of J1 or J2. The
LUJ1D (as well as QRJ1D) algorithm is iterative in the sense that we find
the L and U matrices repetitively, and it is sequential in the sense that the
problem of finding a triangular matrix minimizing J1 has been replaced (or
approximated) by a finite sequence of one dimensional problems. Note that for
updating Ci, the matrix multiplications can be realized by few vector scalings
and vector additions. We also mention that, as other Jacobi methods, these
methods are suitable for parallel implementation. For parallel implementation
we may combine (multiply) all the lower triangular matrices corresponding to
the same column and find the minimizing parameters of this new matrix at one
shot 2.

2.2 Row Balancing

In practice, if the rows of the large matrix C = [C1, ...CN] are not balanced
in their norms, especially when n and N are large, the value found for a can
be inaccurate (see for example (7)). To alleviate this, after every few iterations,
we use updates Ci ← DCiD and B ← DB where D is a diagonal matrix that
2 This unit triangular matrix is also known as the Gauss transformation [5]

Lecture Notes in Computer Science 5

approximately balances the rows of C. We choose D(k, k) = 1√
‖C(k,:)‖F

where

C(k, :) is the kth row of C. With this modification, the algorithms perform
desirably. As mentioned we could keep track of the values of a cost function
(either J1 or J2) as a stopping criterion. Since J1 is not scale invariant and it
can change dramatically as a result of row balancing, J2 is more preferable in
this case.

3 Minimization of J2 for Joint Diagonalization

Now, we introduce LU and QR based algorithms using Jacobi matrices for mini-
mization of J2. The inverse of a Jacobi matrix is a linear function of its elements.
For example, the inverse of Lij(a) ∈ L is Lij(−a). This fact can mitigate the
effect of the presence of B−1 in J2. We, again, replace the high dimensional
minimization problem with a sequence of one dimensional problems involving
parameters of Jacobi matrices in LU or QR factorizations. The difference is that
here J2(Lij(a)) is a quadric function of a and in order to minimize it we need
to employ either an iterative scheme or the known formulae to find the roots of
the cubic polynomial ∂J2(Lij(a))

∂a . Proposition 3 gives J2(Llk(a)) and J2(Ulk(a))
in terms of the elements of Ci’s:

Proposition 3. If k < l then: J2(Llk(a)) = a4a
4 + a3a

3 + a2a
2 + a1a + a0 and

if k > l then J2(Ulk(a)) = a4a
4 + a3a

3 + a2a
2 + a1a + a0 , where:

a4 = 4
N∑

i=1

Ci(k, k)2, a3 = 8
N∑

i=1

Ci(k, k)Ci(k, l), a2 = 2
N∑

i=1

Ci(k, k)2+2Ci(k, l)2

and:

a1 = 4
N∑

i=1

Ci(k, l)Ci(k, k), a0 = 2
N∑

i=1

Ci(k, l)2 (8)

As mentioned the corresponding minimization is a straight forward task. Similar
to QRJ1D and LUJ1D we can have QRJ2D and LUJ2D algorithms by replacing
steps referring to Proposition 1 with steps referring to Proposition 3. As it can be
seen from the above formula the value of a in minimization of J2(Llk(a)) depends
only on the elements of the matrices {Ci}N

i=1 at positions (k, k) and (k, l). Note
that a for minimization of J1(Llk(a)) depends on the elements of {Ci} at other
positions too. As a result, assuming the computation cost in minimization of
J2(Llk(a)) is mainly due to calculating the coefficients, we can see that the
complexity of calculating a is of the order O(N), whereas for J1(Llk(a)) it is of
the order O(Nn). However, the complexity of one iteration (including the costly
update of the Ci’s) for all the methods is of the order O(Nn3). We mention that
here also row balancing proves to be useful.

6 Bijan Afsari

4 Numerical Experiments

We examine the performance of the developed methods by joint diagonalization
of a set of matrices that are generated as:

Ci = AΛiA
T + tNi, Λi = diag(randperm(n))

where diag(x) for a vector x denotes a diagonal matrix whose diagonal is x,
randperm(n) denotes a random permutation of the set {1, 2, ..., n}, Ni is the
symmetric part of a matrix whose elements are i.i.d standard normal random
variables and t measures the noise contribution. We try n = 10, N = 100 with
values for t = 0 and t = 0.1. A is randomly generated. We apply QRJ1D, LUJ1D,
QRJ2D and LUJ2D methods 3 with row balancing to find B. The row balancing
is performed once per each three iterations. The index:

Index(P) =
n∑

i=1

(
n∑

j=1

|pij |
maxk |pik| − 1) +

n∑

j=1

(
n∑

i=1

|pij |
maxk |pkj | − 1) (9)

which measures how far P = BA is from being permuted diagonal is used to
measure the performance. Plots (1.a) and (1.b) show the result. Note that for

0 5 10 15 20 25 30 35

10
−10

10
0

Performance Index(BA) vs. number of iterations with t=0 and for different methods

QRJ1D
LUJ1D
QRJ2D
LUJ2D

0 5 10 15 20 25

10
0

Performance Index(BA) vs. number of iterations with t=0.1 and for different methods

QRJ1D
LUJ1D
QRJ2D
LUJ2D

0 2 4 6 8 10 12 14 16 18

10
0

Performance Index(BA) vs. number of iterations with t=0.1 for QRJ2D and FFDIAG

QRJ2D
FFDIAG

a

b

c

Fig. 1. (a), (b) The performance index Index(BA) for different methods with two
noise levels t = 0 and t = 0.1, respectively. (c) Performance index vs. number of
iterations for QRJ2D and FFDIAG with noise level t = 0.1

t = 0 the index values are very small. Of course, t = 0.1 is a more realistic case
3 Matlab code is available at http://www.isr.umd.edu/Labs/ISL/ICA2006/

http://www.isr.umd.edu/Labs/ISL/ICA2006/�

Lecture Notes in Computer Science 7

for which the convergence is faster. For both t = 0 and t = 0.1 the QRJ2D
and LUJ2D outperform the J1 based methods. Yet, since in simulations this has
not been consistently observed we refrain from any comparison of the methods.
In another experiment we compare the QRJ2D method and the FFDIAG [8]
algorithm for which the available MATLAB code has been used. With t = 0.1
we repeat the previous example and apply both the algorithms. Plot (1.c) shows
the index for the two methods. QRJ2D outperform FFDIAG little bit, both
in terms of speed and performance. Again, this situation may vary in different
experiments. However, we can confirm comparable performance for FFDIAG
and the developed methods.

5 Conclusion

We presented simple NOJD algorithms based on the QR and LU factorizations.
Using Jacobi matrices we replaced high dimensional minimization problems with
a sequence of simple one-dimensional problems. Also a new scale invariant cost
function has been introduced and used for developing NOJD algorithms. A com-
parison with one efficient existing method shows the competence of the developed
methods. The idea of resorting to a matrix factorization and solving a sequence
of minimization sub-problems over one-parameter subgroups can be useful in
other minimization problems over matrix groups.

6 Acknowledgments

This research was supported in part by Army Research Office under ODDR&E
MURI01 Program Grant No. DAAD19-01-1-0465 to the Center for Communi-
cating Networked Control Systems (through Boston University). The author is
grateful to Dr. P.S. Krishnaprasad for his support as well as his comments on
this paper. The author would also like to thank Dr. U. Helmke for his helpful
hints and guidance during his September 2004 visit in College Park. The author
is also greatly indebted to the anonymous reviewers for their useful comments
on this work.

References

1. B. Afsari, P.S .Krishnaprasad: A Novel Non-orthogonal Joint Diagonalization Cost
Function for ICA, ISR technical report, 2005(Available at:http://techreports.
isr.umd.edu/reports/2005/TR 2005-106.pdf)

2. B. Afsari: Gradient Flow Based Matrix Joint Diagonalization for Independent Com-
ponenet Analysis, MS Thesis, ECE Department, University of Maryland, College
Park, May 2004.(Available at: http://techreports.isr.umd.edu/reports/2004/
MS 2004-4.pdf)

3. B. Afsari, P.S. Krishnaprasad: Some Gradient Based Joint Diagonalization Methods
for ICA, in C. G.Puntonet and A. Prieto(ed’s), Proceedings of ICA 2004, Springer
LNCS series, Vol. 3195, pp 437-444, 2004

http://techreports.isr.umd.edu/reports/2005/TR_2005-106.pdf�
http://techreports.isr.umd.edu/reports/2005/TR_2005-106.pdf�
http://techreports.isr.umd.edu/reports/2004/MS_2004-4.pdf�
http://techreports.isr.umd.edu/reports/2004/MS_2004-4.pdf�

8 Bijan Afsari

4. J.F. Cardoso and A. Soulumiac:Blind Beamforming For Non-Gauusian Signals, IEE-
Proceedings, Vol.140, No 6, Dec 1993

5. G. H. Golub, C. F. Van Loan: Matrix Computations, third eddition, Johns Hopkins
University Press, 1996

6. D.T. Pham and J.F. Cardoso: Blind separation of instantaneous mixtures of non
stationary sources, IEEE Trans. Signal Processing, pp 1837-1848, vol 49, no 9, 2001

7. A.Yeredor: Non-Orthogonal Joint Diagonalization in the Least-Squares Sense With
Application in Blind Source Separation, IEEE Transactions on Signal Processing,
Vol 50, No.7.July 2002.

8. A. Ziehe, M. Kawanabe, S. Harmeling, and K.-R. Mller: A Fast Algorithm for Joint
Diagonalization with Non-orthogonal Transformations and its Application to Blind
Source Separation. Journal of Machine Learning Research; 5(Jul):801–818, 2004

