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Abstract. We present a set of gradient based orthogonal and non-
orthogonal matrix joint diagonalization algorithms. Our approach is to
use the geometry of matrix Lie groups to develop continuous-time flows
for joint diagonalization and derive their discretized versions. We employ
the developed methods to construct a class of Independent Component
Analysis (ICA) algorithms based on non-orthogonal joint diagonaliza-
tion. These algorithms pre-whiten or sphere the data but do not restrict
the subsequent search for the (reduced) un-mixing matrix to orthogonal
matrices, hence they make effective use of both second and higher order
statistics.

1 Introduction

Simultaneous or Joint Diagonalization (JD) of a set of estimated statistics matri-
ces is a part of many algorithms, especially in the field of ICA and Blind Source
Separation (BSS). The early methods developed for JD were those that restrict
the joint diagonalizer to belong to the compact Lie group of orthogonal matrices
O(n)[5]. Accordingly the JD problem is defined as minimization of a function of
the form:

J1(Θ) =
n∑

i=1

∥∥ΘCiΘ
T − diag(ΘCiΘ

T )
∥∥2

F
(1)

where {Ci}N
i=1 is the set of symmetric matrices to be diagonalized, Θ ∈ O(n)

is the joint diagonalizer sought, diag(A) is the diagonal part of A and ‖A‖F

denotes the Frobenius norm of matrix A. We remind the reader that due to
compactness of O(n) we know in advance that J1(Θ) has a minimum on O(n).
Different methods for minimization of this cost function in the context of Jacobi
methods [5],[3] and optimization on manifolds [10],[12] have been proposed. Here
we shall give a gradient flow expression for this problem, which to our knowledge
is referred to in some papers without explicit representation [9].
Non-orthogonal JD is very appealing in the context of noisy ICA. Consider the
standard ICA model:

xn×1 = An×nsn×1 + nn×1 = z + n (2)
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with n a Gaussian noise vector(all random variables are assumed to be of mean
zero). We know that if {Ci}N

i=1 is a collection of matrix slices of cumulant tensor
of x of order higher than two and B is an un-mixing matrix belonging to the Lie
group of non-singular matrices GL(n) then BCiB

T ’s are diagonal. The problem
of non-orthogonal JD has been addressed by few authors among them: [13] [11]
[14]. Defining a suitable cost function for non-orthogonal JD seems to be difficult
due to non-compactness of GL(n). In Section (3) we consider extension of J1 to
GL(n) or SL(n) (the group of non-singular matrices with unity determinant)
using the scale ambiguity inherent in the ICA problem and we shall derive gra-
dient based continuous flows and their discrete versions for non-orthogonal JD.
Although these algorithms are general, they perform much better if the matrix
sought is close to orthogonal or a perturbation of the initial condition (the iden-
tity matrix in most cases). This is a manifestation of the fact the JD problem is
easier to solve on a compact set or locally. Based on this observation, in Section
(4) we develop an ICA algorithm based on non-orthogonal JD. These algorithms
have the property that although they first sphere the data they do not confine
the JD search afterwards to O(n), i.e. they perform non-orthogonal JD after the
data is whitened. In Section (5) we present some simulations comparing the per-
formance of the developed ICA algorithms and the celebrated JADE algorithm
[5] in noise.
Notation: In the sequel tr(A) is the trace of the matrix A, ẋ denotes the time
derivative of the variable x, TpM represents the tangent space to the manifold
M at point p and In×n is the n×n identity matrix. All random variables are in
boldface small letters and are assumed to be zero mean.

2 Gradient Based Orthogonal JD

Considering O(n) as a Riemannian Lie group with the Riemannian metric de-
fined as 〈ξ, η〉Θ = tr((ξΘT )T ηΘT ) = tr(ξT η) for ξ, η ∈ TΘO(n) and, following
[8], it is easy to find the gradient flow for minimization of J1(Θ) as:

Θ̇ = −∆Θ =
N∑

i=1

[
diag(ΘCiΘ

T ), ΘCiΘ
T
]
Θ, Θ(0) = In×n (3)

where [X,Y ] = XY − Y X is the Lie bracket. In [6], a result is given which is
essentially the same as (3) but with a different point of view and representation.
In discretization of a flow on O(n) it is difficult to ensure that the updates
keep the answer always orthogonal. Different methods have been proposed to
address this [4], [10], [12]. We mention that in the context of ICA an Euler
discretization with small enough fixed step-size, which is equivalent to steepest
descent algorithm, is promising.

3 Non-Orthogonal JD Based on the Gradient of J1

Consider a set of symmetric matrices {Ci}N
i=1 that are assumed to have an exact

joint diagonalizer in GL(n). Then the cost function J1(B) with B ∈GL(n) has
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a minimum of zero. It may seem appropriate to define this as a cost function
for JD in the non-orthogonal case. However we can see that this cost function
can be reduced by reducing the norm of B. In other words this cost function is
not scale-invariant, i.e. J1(ΛB) 6= J1(B) for non-singular diagonal Λ. By scale-
invariance for a JD cost function in terms of un-mixing matrix B, we mean that
it does not change under left multiplication of the argument by diagonal matrices
in the same manner that mutual information is scale-invariant. In the following
we provide some remedies to deal with scale variability of J1(B).
We consider GL(n) as a Riemannian manifold with the Riemannian metric (also
known as Natural Riemannian metric [2]):

〈
ξ, η

〉
B

= tr((ξB−1)T ηB−1) = tr(B−T ξT ηB−1) = tr(η(BT B)−1ξT ) (4)

for ξ, η ∈ TBGL(n). Again it is easy to see that the gradient flow for minimization
of J1(B) is:

Ḃ = −∆B (5)

with

∆ =
N∑

i=1

(
BCiB

T − diag
(
BCiB

T
))

BCiB
T (6)

and B(0) ∈ GL(n). An interesting observation is that the equilibria of this
flow found by letting ∆ = 0 satisfy BCiB

T = diag(BCiB
T ) for all 1 ≤ i ≤

N . Therefore unless Ci’s have an exact joint diagonalizer flow in (5) has no
equilibria, which confirms our argument that J1(B) is not a suitable criterion
for non-orthogonal JD. We recall that in [11] a scale invariant cost function is
introduced that is applicable only for positive definite Ci’s.

One way to ameliorate the problem with non-compactness of GL(n) and scale
variability of J1(B) is to consider minimization of J1(B) over SL(n). Obviously
SL(n) is not a compact group and det(B) = 1 does not put any upper bound
on ‖B‖, but it requires ‖B‖2 ≥ 1 and this prevents converging to the trivial
infimum of J1(B) at B = 0. By restricting B to be in SL(n), we identify all
matrices of the form αB for α ∈ R − {0} with B. It is easy to show that the
orthogonal projection of any matrix An×n on the space of matrices with zero
trace is given by: A0 = A− tr(A)

n In×n. Accordingly the projection of the gradient
flow found in (5) to SL(n) is the gradient flow:

Ḃ = −∆0B, B(0) = I (7)

with ∆ as in (6).
A more general way to deal with non-compactness of GL(n) and scale-

variability of J1(B) is to project its gradient on to a subspace such that the
projection does not reduce the cost function due to row scaling. This approach
maybe considered as equivalent to identifying B and ΛB for all non-singular
diagonal Λ. This method leads to a nonholonomic flow [1]. The projected flow is
derived from (5) by projecting ∆ in (6) to the space of zero diagonal matrices.
Letting ∆⊥ = ∆− diag(∆), the projected flow is given by:

Ḃ = −∆⊥B, B(0) = In×n (8)
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where ∆ is the same as in (6). From the definition of gradient with respect to
the Riemannian metric (4) we have, along trajectories of (8):

J̇1 = tr((∇J1B
−1)T ḂB−1) = −tr(∆T ∆⊥) = −tr(∆⊥T ∆⊥) = −

∑

i6=j

∆2
ij ≤ 0

(9)
So, as long as ∆ is not diagonal, (8) is a descent flow. Note that the equilibria
of the flow (8) is exactly the set {B ∈ GL(n)|∆ is diagonal}. On the other hand
if B(0) ∈ SL(n) then (8) restricts to a flow on SL(n) and ‖B(t)‖2 ≥ 1.

By picking small enough step-size we expect to have discretizations of (7)
and (8) that decrease the cost function at each step and keep the trajectory on
SL(n) as much as possible. These two flows have the general form:

Ḃ = −XB (10)

where X is defined accordingly. The Euler discretization will be:

Bk+1 = (I − µkXk)Bk, B0 = I k ≥ 0 (11)

In practice we can choose a fixed small step-size and change it if we observe
instability. A pseudo code for this algorithm is:
Algorithm 1:

1. set µ and ε.
2. set B0 = In×n or “to a good initial guess”.
3. while ‖Xk‖F > ε do

Bk+1 =
(
I − µXk

)
Bk

if ‖Bk+1‖F is “big” then “reduce” µ and goto 2.
4. end

It is possible to modify the flow (8) such that its discretization yields det(Bk) =
1, by construction. Let XL (XU ) denote a lower (upper) triangular matrix that
has the same lower (upper) part as X. Consider the lower-triangular version of
(8) Ḃ = −∆⊥LB. Note that by the Euler discretization Bk+1 = (I − µ∆⊥L

k )Bk

and if B0 = I then det(Bk) = 1, by construction. The same is true if we consider
the upper triangular version of (8). Therefore based on the LU factorization of
the un-mixing matrix we can have an iterative algorithm that alternatively looks
for upper and lower triangular factors of the un-mixing matrix and keeps the
determinant unity by construction. A pseudo code for this method is:
Algorithm 2:
Consider the set {Ci}N

i=1 of symmetric matrices. Let (a): U̇ = −∆⊥UU and (b):
L̇ = −∆⊥LL with B = U(0) = L(0) = I be the corresponding upper and lower
triangularized versions of (8).
1. Use Algorithm 1 to find U the solution to (a).
2. set Ci ← UCiU

T .
3. Use Algorithm 1 to find L the solution to (b)
4. set Ci ← LCiL

T .
5. set B ← L UB
6. if ‖LU − I‖F is “small” end, else goto 1
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4 A Family of ICA Algorithms Based on JD

Here we introduce a general scheme for an ICA algorithm. Consider the data
model (2). If we lack information about noise, we use the correlation matrix of
x instead of that of z to find a whitening or sphering matrix W . In this case the
sphered signal:

y = Wx = WAs + Wn = A1s + n1 (12)

is such that the reduced mixing matrix A1 can not assumed to be orthogonal
as in the noiseless case, however it can assumed to be close to orthogonal where
the orthogonality error depends on the signal and noise power and condition
number of the matrix A [7]. Note that, by Gaussianity of noise all the higher
order cumulant matrix slices of y are diagonalizable by A1. Applicability of the
JADE algorithm which jointly diagonalizes a set of fourth order cumulant slices
of y by an orthogonal matrix will be limited in this case because it reduces the
degrees of freedom in the optimization problem involved or in other words leaves
the bias introduced in the whitening phase un-compensated. An algorithm such
as JADE or mere “sphereing” brings the data (globally) close to independence
but we can proceed further by (locally) finding a non-orthogonal un-mixing ma-
trix and reduce mutual information further. This local un-mixing matrix can be
incorporated into the whole answer by multiplication due to the multiplicative
group structure of the ICA problem. We shall use this idea in developing a new
ICA method based on non-orthogonal JD. We emphasize that after whitening
although we look for a non-orthogonal joint diagonalizer the fact that it is close
to orthogonal makes the search much easier in practice.
Consider the data model (2). The general scheme for ICA based on non-orthogonal
JD of fourth (or higher) order cumulant slices is comprised of the following steps:

1. Whiten x, let W be a whitening matrix, compute y = Wx and set B = W .
2. Estimate C = {Ci}N

i=1 a subset of the fourth order cumulant matrix slices
of y.

3. Jointly diagonalize C = {Ci}N
i=1 by an orthogonal matrix Θ and set Ci ←

ΘCiΘ
T .

4. Jointly diagonalize C = {Ci}N
i=1 by a non-orthogonal matrix BJDN (using

any algorithm such as Algorithms 1 or 2), set Ci ← BJDNCiB
T
JDN and set

B ← BJDNΘB.
5. If necessary goto step (3)
6. Compute the recovered signal x̂ = Bx

Steps (1-3) comprise the JADE algorithm. In experiments that the model (2)
truly holds, inclusion of step (3) proves to be redundant, but in cases where the
model does not hold, compactness of O(n) can be helpful as well as repeating
steps (3) and (4). The justification for adopting this scheme is four-fold:

1. Usually by whitening the data the mutual information is reduced so the
whitened data is closer to independence.

2. In most cases whitening the data reduces the dynamic range of ‖Ci‖’s and
enables better convergence for numerical methods thereafter.
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3. Although estimation of the correlation matrix of z in (2) from observation
data x is biased it has less variance than the estimated higher order cumulant
slices (this is pronounced especially in small sample sizes). Therefore it is
meaningful to use as much information as possible from this correlation
matrix provided we can avoid the harm of the “bias” it introduces.

4. As we mentioned before, solving the ICA or JD problem for y is more local
than the one for x . Also the fact that A1 in (12) is close to orthogonal makes
the non-orthogonal JD of the cumulant slices of y instead of those of x much
more efficient and easier.

In the sequel we consider ICA algorithms that are comprised of steps 1,2,4. An
algorithm with its JD part based on the discrete version of flow (7) is referred
to as SL(n)-JD, an algorithm with its JD part based on the discrete version of
flow (8) is referred to as NH-JD and an algorithm based on the LU factorization
(Algorithm 2) is referred to as LU-JD.

5 Simulations

In this section we compare the performance of the developed set of algorithms
with the standard JADE in the presence of noise. We consider

x = Asn×1 + σn (13)

where n is zero mean Gaussian noise with identity correlation matrix then σ2 in-
dicates the power of noise. We consider n = 5 sources. Two of them are uniformly
distributed in [− 1

2 , 1
2 ] and another two are two-side exponentially distributed

with parameter λ = 1 and mean zero and the fifth one is one-side exponential
with parameter λ = 1. The matrix A is randomly generated and to fit in the
page the entries are truncated to integers:

A =



−4 11 −1 1 2
−16 11 7 10 −13
1 0 −5 0 7
2 3 21 0 16
−11 1 −1 −8 −6




We generate T = 3500 samples of data and mix the data through A. Next we
run four ICA algorithms. Three algorithms SL(n)-JD, NH-JD and LU-JD in
addition to the standard JADE are applied to the data. N = n2 = 25 fourth
order cumulant matrix slices are used. For SL(n)-JD and NH-JD µ = .01 and
ε = .01 are used (see Algorithm 1). For LU-JD µ = .05, ε = .01 are used
(see Algorithm 2) and the LU iteration is performed five times. These values
are not optimal, they were chosen based on few tries. Implementations are in
MATLABr code and the MATLABr code for JADE was downloaded from:
http://tsi.enst.fr/c̃ardoso/icacentral/Algos. The performance measure used is
the distance of the product of the estimated un-mixing and the mixing matrix,
i.e. P = BA, from essential diagonality:

Index(P ) =
n∑

i=1

(
n∑

j=1

|pij |
maxk |pik| − 1) +

n∑

j=1

(
n∑

i=1

|pij |
maxk |pkj | − 1) (14)
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Fig. 1. (a) Average in-noise-performance index (every point is averaged over 100 trials) of different
JD based ICA algorithms. The average Index(P ) is plotted versus σ. (b) Index(P ) in terms of
iteration number for NH-JD algorithm for noise σ = 0.5, 1 and step-size µ = 0.04, 0.08

For each value of σ the experiment is run k = 100 times and the performance
measure is averaged over the trials. Figure (1.a) shows the results. We can see
that the introduced algorithms all have almost the same performance and out-
perform the standard JADE especially in high level Gaussian noise. In Figure
(1.b) we consider the behavior of Index(P ) in terms of number of iterations in
the JD part of the NH-JD algorithm for a single realization of data generated
as above. Two different values of σ = .5, 1 and step-size µ = .04, .08 are exam-
ined. All the initial conditions in the JD part (i.e. Algorithm 1) are B0 = I5×5.
As the figure illustrates more iterations are required as noise power increases.
By increasing step-size one may combat this, however dramatic increase of µ
may result in instability of the algorithm. The run-time for these algorithms
(in MATLABr code) is higher than JADE’s, although we expect faster per-
formance in low-level codes or DSPs. Part of this slower convergence can be
attributed to the nature of gradient based methods which have linear conver-
gence. One idea for speed improvement can be to use the result from JADE as
the initial condition for the non-orthogonal JD methods introduced here.

6 Conclusion

We introduced gradient based flows for orthogonal and non-orthogonal JD of
a set symmetric matrices and developed a family of ICA algorithms upon non-
orthogonal JD. The non-orthogonal flows are derived based on defining suitable
metrics and the geometry of the groups GL(n) and SL(n). The main drawback of
gradient based JD methods is their slow convergence but their implementation
requires only addition and multiplication. The developed ICA algorithms have
the property that after whitening the data they do not confine the search space
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to orthogonal matrices. This way we can take advantage of both second order
statistics (which has less variance) and higher order statistics which are blind to
Gaussian noise. Numerical simulations show better performance for the proposed
algorithms than for the standard JADE algorithm in Gaussian noise.
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