
Biomedical Data Science Lab

Fall 2019

Classification of cardiomyocites based on their action potentials

Benjamı́n Béjar Haro

Assistant Research Professor

Department of Biomedical Engineering

319B Clark Hall, Johns Hopkins University

E-mail: bbejar@jhu.edu

B. Béjar – Biomedical Data Science Lab

1 Lab Description

In this lab experience we will be looking at the problem of classifying cardiac cells
by looking at their Action Potentials (APs). For the purpose of this task we will be
using synthetically generated APs following the models in [1, 2].

1.1 Tasks

Task 1. [35 points] (Pre-processing and feature extraction)
In this first part we will be normalizing the data and extracting hand-crafted features
that will be later used for the classification task. Load the dataset Adult samples.mat

that contains examples of adult atrial and ventricular action potentials generated us-
ing the models in [1, 2]. For each of the two classes there are 1000 samples generated
with a sampling rate of fs = 500 Hz.

(a) (15 points) Data preparation and normalization.
Split the data between test and training sets by randomly selecting 10% of the
points as your training set. Make sure the two classes are well represented in the
training set (e.g., use the same number for both). Normalize the data so that
each AP has zero resting potential and unit maximum amplitude. Create an
array of corresponding labels for the data points. For ventricular type use the
class label +1 and −1 for atrial type. Make two plots displaying your normalized
training data for each of the classes. Use time units for the horizontal axis.

(b) (20 points) Hand-crafted features.
The Action Potential Duration (APD) at x% is defined as the time it takes
to reduce the maximum amplitude of the AP to x% of its value. Write a
function that computes APD at a given percentage x ∈ [0, 1]. Compute also
the Average of the Action Potential (AAP) and build two-dimensional features
by concatenating APD@0.5 and AAP. Make a scatter plot of the training data
using these two features. Use different colors and/or markers to represent each
class.

• Based on your scatter plot, is the training data using the above features
linearly separable? Why?

1

B. Béjar – Biomedical Data Science Lab

Task 2. [55 points] (Classification)
In this task we will be using hand-crafted features and learned features from the data
in order to classify cardiac cells based on their action potentials. You will be asked to
implement a 1-Nearest-Neighbor (NN) classifier as well as a simple two-layer neural
network.

(a) (15 points) Nearest-neighbor classifier.
Implement a 1NN classifier using the Euclidean distance. A 1NN classifier

works as follows: Given your training dataset D =
{

(xi, yi)
}N
i=1

, where N is the

number of training samples, xi ∈ RD is a feature vector and yi ∈ {−1, 1} its
associated label, and a novel sample x, the 1NN classifier assigns to x the same
label as its closest point in the training set. That is, the estimated label ŷ of x
is such that:

ŷ(x) = yk∗ , k∗ = arg min
i∈{1,...,N}

‖xi − x‖2. (1)

• Compute and display the classification accuracy over the test set using the
handcrafted training features of Task 1.

(b) (40 points) Two-layer Neural Network.
Implement a two-layer neural network classifier of the form:

ŷ = sign
(
fθ(φ(x))

)
, fθ(φ(x)) = wTφ(x) + b, θ =

[
w
b

]
,

where fθ(·) is a linear prediction function (i.e., classification layer) parametrized
by θ = [wT , b]T . The feature extraction part of the network consists of a linear
layer followed by a ReLu (rectified linear unit) non-linearity:

φ(x) = ReLu
(
W 1x + b1

)
, ReLu(x) =

{
x x > 0

0 else
.

In order to find the network’s parameters Θ = {W 1, b1,w, b} minimize the
following regularized empirical risk using PyTorch:

min
Θ

1

N

N∑
i=1

L
(
fθ(φ(xi)), yi

)
+ λ

(1

w
‖w‖2 +

1

W
‖W 1‖2

)
︸ ︷︷ ︸

C(Θ)

where the loss function L(f, y) = ‖y − f‖22) is the quadratic (square) loss, and
w,W , are the number of elements in w and W , respectively.

2

B. Béjar – Biomedical Data Science Lab

1. Define a network model in PyTorch according to the definition above. For
that purpose you can use ‘torch.nn.Sequential‘. Follow this example to
learn how to use it.

2. Run a gradient descent algorithm to minimize the cost function using λ = 1.
Carefully choose the step-size and number of iterations until you see the
method converges (i.e., the cost function gets to a “plateau”).

3. Make a scatter plot of the learned features (i.e., prior to classificaiton layer)
by your network model. Has your model learned features that are linearly
separable? Display in the scatter plot the decision boundary that you have
learned. Compute the classification accuracy over the test set.

4. Plot the weights of the learned linear layer. What has your network learned?

3

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#pytorch-nn

B. Béjar – Biomedical Data Science Lab

1.2 Python cheat sheet

Here goes a list of relevant python functions that you might want to use for this lab
experience. This list in only intended to be illustrative. For a detailed description
of the different functions, please refer to the particular package documentation.

Command Description

import numpy as np Imports numpy module with name np.

import matplotlib.pyplot as plt Imports numpy module with name np.

import random as rnd Imports random number generator

module with name rnd.

scipy.io.loadmat(’matfile.mat’) Load Matlab .mat file and

puts it into a dictionary.

plt.plot(x,y) Plot of y over x.

plt.scatter(x,y) Scatter plot of y over x.

rnd.sample(population,n) Samples n elements at random from

population array.

np.concatenate(x,y,axis) Concatenates x and y along specified axis.

np.argmax(x) Returns the index where x is maximum.

np.sign(x) Retruns sign of x (entry-wise).

np.dot(x,y) Computes the inner product of x and y.

np.outer(x,y) Outer (tensor) product of x and y.

np.matmul(x,y) Matrix multiplication of x and y.

np.linalg.eig(x) Returns the eigenvalues/eigenvectors of x.

np.mean(x), np.std(x) Computes mean/std value of x.

np.where(x) Returns non-zero support of x.

np.arange(N) Gives a list of numbers 0, . . . , N − 1.

np.abs(x) Computes the absolute value of x.

4

B. Béjar – Biomedical Data Science Lab

References

[1] A. Nygren, C. Fiset, L. Firek, J. Clark, D. S Lindblad, R. Clark, and W. R Giles.
Mathematical model of an adult human atrial cell : The role of k+ currents in
repolarization. Circulation research, 82:63–81, 01 1998.

[2] T. O’Hara, L. Virág, A. Varró, and Y. Rudy. Simulation of the undiseased
human cardiac ventricular action potential: Model formulation and experimental
validation. PLOS Computational Biology, 7(5):1–29, 05 2011.

R-1

