
Biomedical Data Science Lab

Fall 2019

Introduction to digital signal processing in Python

Benjamı́n Béjar Haro

Assistant Research Professor

Department of Biomedical Engineering

320A Clark Hall, Johns Hopkins University

E-mail: bbejar@jhu.edu

B. Béjar – Biomedical Data Science Lab

1 Pre-Lab Description

In this pre-lab we will get familiar with the working environment (Google Colab)
and we will acquire the basic Python programming skills, as well as the necessary
digital signal processing background (see Section 2 of this document) to solve Lab
I. This pre-lab assignment needs to be solved in the companion IPython Notebook.

Getting started. Go to the class website BMDS Lab and download the IPython
notebook for this pre-lab assignment. The notebook is a file with an extension
.ipynb. Go to Google Colaboratory and upload (File → Upload notebook) the
downloaded IPython notebook. You will need to create a Google (gmail) account
to access Colab. Follow the instructions in the notebook and on this manual to
complete the assignment. Each exercise below is worth 10 points.

Exercise 1. Create a sequence (list) of numbers corresponding to sampled values
of the function sin(2πt) over one period, and with a sampling frequency fs = 8 Hz.
In other words, create a sequence:

xn = sin(2πnT), n = 0, 1, . . . , bfsc, T =
1

fs
,

where bxc denotes the largest integer smaller than x. Print the sequence of values.
For evaluating math functions you can use the ‘math‘ module of Python. You will
need to import the corresponding module before invoking the sin(·) function as
shown in the example below:

import math

x = math.sin(math.pi/2)

print(x)

Exercise 2. Create two sequences xn and yn by sampling sin(2πt) and cos(4πt)
with sampling rate fs = 64 Hz, and store them in two separate lists. Write a function
add sequence(x,y) that returns the addition of the two lists. Plot the result of the
addition in a graph adding the corresponding labels for the axes. Repeat the addition
task before using vector array operations with the numpy module.

Exercise 3. Using the definition of the DTFT show the property that convolution
in time is equivalent to multiplication in the frequency domain. In other words, show
that for yn = xn ∗ hn, its DTFT Y (ejω) = X(ejω)H(ejω).

Exercise 4. Generate two box sequences as defined below:

xn =

{
1 0 ≤ n ≤ 10

0 else
, hn =

{
1 0 ≤ n ≤ 20

0 else
, n = 0, . . . , 63.

1

http://www.cis.jhu.edu/~bbejar/bmds/lab.html
https://colab.research.google.com/notebooks/welcome.ipynb

B. Béjar – Biomedical Data Science Lab

Compute yn = xn ∗ hn using numpy.convolve and plot (plt.stem) the resulting
sequence yn. Compute the DFT Yk and plot its magnitude over the frequency
range [−π, π]. (Hint. Use numpy.fft.fftshift). Label the horizontal and vertical
axes.

Exercise 5. For this exercise, generate the sequence defined by the following finite
difference equation:

xn = αxn−1 + βxn−2 + εn, x0 = x1 = 0, n = 0, 1, . . . , 127,

where the driving noise sequence εn consists of independent and identically dis-
tributed random numbers from a standard, normal distribution numpy.random.randn.
For the coefficients, generate three random pairs of (α, β) where α, β ∼ U(−1, 1)
(uniformly distributed between -1 and 1). Plot the three time-series on the same
figure. Include a title, axis labels, and a legend that lists the generated (α, β) values
of each time-series.

Exercise 6. In this exercise you will perform a basic denoising operation by fil-
tering a noisy signal with a low-pass filter. You are provided with a function
get noisy signal() that returns a signal corrupted with noise. Let a Gaussian
filter gn be defined as:

gn =
1

K
e−(n/σ)

2
, −10 ≤ n ≤ 10,

where K is a constant such that the weights of the filter add up to 1, and where σ
is a parameter. Filter the signal for three different values of σ = 1, 5, 10. Observe
the trade-off between denoising and sharpness of the signal. Compare the original
signal with its denoised versions by plotting them in the same figure. Add labels
and legends as appropriate. Why do we loose sharp transitions when filtering with
a wider kernel?.

2

B. Béjar – Biomedical Data Science Lab

2 Background Notes on Digital Signal Processing

This notes are intended to provide a brief overview of the necessary signal process-
ing tools for successfully completing this lab experience. For a more detailed and
thorough treatment of the subject we refer the interested reader to the excellent
book [1].

In these notes, we start by introducing discrete-time signals and their representa-
tion using the delta sequence δn. We then introduce linear operations on sequences
and their Fourier domain characterization.

2.1 Sequences

A sequence x ∈ CZ is an ordered list of (complex) numbers xn that take values on
the integers Z = {. . . ,−1, 0, 1, 2, . . .}. The delta sequence is defined as:

δn =

{
1 n = 0
0 n 6= 0

, n ∈ Z. (1)

Basic operations. The basic operations on sequences are scaling, shifting by
some integer, and addition. For sequences x = {xn}n∈Z and y = {yn}n∈Z these
operations are defined, respectively as:

αx = {αxn}n∈Z, α ∈ C (2)

Skx = {xn−k}n∈Z, k ∈ Z (3)

x+ y = {xn + yn}n∈Z. (4)

For notational convenience we will often refer to a sequence as xn where we make
explicit the dependence on the “time” index n. Likewise, we will often use xn−k as
a shorthand for Sk x.

Representation in terms of the delta sequence. Note that due to the spe-
cial form of the delta sequence we can use it to express any sequence as a linear
combination of scaled and shifted delta sequences since:

x = . . .+ x−2S−2 δn + x−1S−1 δn + x0δn + x1S1 δn + . . . =
∑
k∈Z

xk δn−k (5)

2.2 Filtering

Now suppose we want to perform some operations on our sequence and, for that
purpose, we pass our input sequence x through a system H and obtain an output
sequence y as a result. We denote this operation as y = Hx. Now, let us put
some restrictions on the type of systems that we consider. In particular, we will
be interested in linear and shift-invariant systems. Linearity implies that if the

3

B. Béjar – Biomedical Data Science Lab

input is a linear combination of two sequences then the output is the same linear
combination of the outputs to the individual sequences:

Linearity: H(αx+ βz) = αHx+ βHz. (6)

The system being shift-invariant means that the shifting and system operations
commute or, in other words, if a sequence x produces an output y then if we input
a shifted version of x then this will translate into the same shifting of the original
output:

Shift-invariant: Hx = y ⇐⇒ H
(
Sk x

)
= Sk

(
Hx
)

= {yn−k}n∈Z. (7)

Impulse response. Now recall the representation of a sequence x as a sum of
shifted and scaled delta sequences (5). Let us now use that representation and pass
it through the linear and shift-invariant system H:

y = Hx = H
(∑
k∈Z

xkSkδn
)

(a)
=
∑
k∈Z

xkH
(
Skδn

)
(b)
=
∑
k∈Z

xkSkH
(
δn
)︸ ︷︷ ︸

h

,

(8)

where (a) follows from linearity and (b) from the shift-invariant property of the
system.

Convolution. Now, if we denote the sequence h = Hδn = {hn}n∈Z as the impulse
response of the system H, then it follows from (8) that the output of the system
y = h ∗ x = {yn}n∈Z is a sequence whose entries are given by the convolution
equation:

yn = (h ∗ x)n =
∑
k∈Z

xk hn−k =
∑
k∈Z

hk xn−k . (9)

2.3 Fourier Transform

In this section we will introduce the Fourier transform for sequences and we will
illustrate its use in filtering.

Eigenfunctions and eigenvalues. Before that, let us continue our discussion
about linear and shift-invariant systems by introducing the concept of eigenfunction
of a system. In our case, and since our system deals with sequences can refer to

4

B. Béjar – Biomedical Data Science Lab

them as eigensequences. In general, an eigenfunction u of a system H is an input
such that the output of the system is again the same input up to scaling:

Hu = λu, (10)

where λ is called an eigenvalue associated to the eigenfunction u. Now consider a
complex exponential sequence of the form xn = ejωn and pass it through a linear
shift-invariant system with impulse response h. Then we have:

yn =
∑
k∈Z

hkxn−k =
∑
k∈Z

hke
−jω(n−k) = ejωn

∑
k∈Z

hke
−jωk = H(ejω)xn. (11)

From (11) we see that complex exponentials (actually all exponential sequences)
are eigenfunctions of linear shift-invariant systems. In particular, xn = ejωn has
an associated eigenvalue given by λ = H(ejω) =

∑
k∈Z hke

−jωk which is called the
transfer function of the system h at frequency ω. Note that for the transfer function
to be meaningful we need that the above sum converges. A sufficient condition for
H(ejω) to exist is that the sequence h is absolute summable (i.e.

∑
n |hn| < ∞).

Note also that for finite sequences that condition is trivially satisfied.

Discrete-Time Fourier Transform. The discrete-time Fourier transform (DTFT)
of a sequence is defined as:

Fx = X(ejω) =
∑
n∈Z

xn e
−jωn, ω ∈ R, (12)

where the notation X(ejω) is used to emphasize the 2π–periodicity of the DTFT.
The inverse DTFT of a 2π–periodic function X(ejω) is given by

xn =
1

2π

∫ π

−π
X(ejω) ejωn dω, n ∈ Z. (13)

Filtering in Fourier domain. The Fourier transform gives us an alternative
representation of the signal that is sometimes more convenient to work with. For
instance, a filtering operation (e.g. convolution) can also be characterized in the
frequency domain. Let y = h ∗ x be a sequence that is the output of a linear
shift-invariant filter h. Then, in the frequency domain we have that:

Fy = Y (ejω) = H(ejω)X(ejω), (14)

which means that convolution in time is equivalent to multiplication in frequency.

2.4 DSP with two-dimensional sequences (images)

All of the above definitions naturally extend to the case of multi-dimensional se-
quences such as images. We will state the definitions for two-dimensional sequences
since in practice we will be mostly dealing with images. Our sequences now will be
indexed by two elements (i.e. x = {xmn}m,n∈Z).

5

B. Béjar – Biomedical Data Science Lab

Convolutions in 2D. Analogous to the definition for 1D sequences, and assum-
ing linear and shift-invariant systems, we can define filtering of two-dimensional
sequences as:

ymn =
(
x ∗ h

)
mn

=
∑
m∈Z

∑
n∈Z

hk` xm−k,n−` =
∑
m∈Z

∑
n∈Z

xk` hm−k,n−`, (15)

where x is an input sequence and h is a two-dimensional filter (sequence).

Fourier Transform. Analogous to (12) and (17) we define the Fourier Transform
of two-dimensional sequences as:

Fx = X(ejω) =
∑
m,n∈Z

xmn e
−j(ω1m+ω2n), ω =

[
ω1

ω2

]
∈ R2, (16)

where ω is now a two-dimensional vector of frequencies.
The inverse Fourier Transform is then given by

xmn =
1

(2π)2

∫ π

−π

∫ π

−π
X(ejω) ej(ω1m+ω2n) dω1 dω2, m, n ∈ Z. (17)

6

B. Béjar – Biomedical Data Science Lab

References

[1] M. Vetterli, J. Kovačević, and V. K. Goyal. Foundations of Signal Processing.
Cambridge University Press, 2014.

R-1

