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While sub-Riemannian geometry has been an increasing area of
study for a few decades, the infinite dimensional case is largely
unexplored.
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While sub-Riemannian geometry has been an increasing area of
study for a few decades, the infinite dimensional case is largely
unexplored.

In Riemannian geometry, 2 categories of Riemannian Banach
manifolds: the strong (Hilbert) case, which behaves almost exactly
like in finite dimensions, and the weak (pre-Hilbertian) case, for
which the distance between points may be 0 and the geodesic flow
may not exist.
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While sub-Riemannian geometry has been an increasing area of
study for a few decades, the infinite dimensional case is largely
unexplored.

In Riemannian geometry, 2 categories of Riemannian Banach
manifolds: the strong (Hilbert) case, which behaves almost exactly
like in finite dimensions, and the weak (pre-Hilbertian) case, for
which the distance between points may be 0 and the geodesic flow
may not exist.

We will see that for sub-Riemannian Banach manifolds, even the
strong case presents several significant difficulties preventing the
generalization of certain finite dimensional and/or Riemannian
results. In particular, there is no Pontryagin maximum principle,
hence some geodesics can be neither normal nor abnormal.
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Hamiltonians and geodesic flow

Relative tangent spaces

Let M be a smooth manifold. Usually, a sub-Riemannian structure
on M is a couple (H, g), where H is a sub-bundle of TM (i.e. a
distribution on M) and g a Riemannian metric on H. However,
this does not take into account rank-varying structures.
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Infinite dimensional sub-Riemannian geometry

Relative tangent spaces

Let M be a smooth manifold. Usually, a sub-Riemannian structure
on M is a couple (H, g), where H is a sub-bundle of TM (i.e. a
distribution on M) and g a Riemannian metric on H. However,
this does not take into account rank-varying structures.

Definition

A rank-varying distribution of subspaces on a Banach manifold M
of class C¥, also called a relative tangent space of class C¥, is a
couple (H,§), where H is a smooth Banach vector bundle on M
and € : H — TM is a vector bundle morphism of class C¥.
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Relative tangent spaces

Let M be a smooth manifold. Usually, a sub-Riemannian structure
on M is a couple (H, g), where H is a sub-bundle of TM (i.e. a
distribution on M) and g a Riemannian metric on H. However,
this does not take into account rank-varying structures.

Definition

A rank-varying distribution of subspaces on a Banach manifold M
of class C¥, also called a relative tangent space of class C¥, is a
couple (H,§), where H is a smooth Banach vector bundle on M
and € : H — TM is a vector bundle morphism of class C¥.

In other words, for g € M, &, is a linear mapping Hq — T4M.

The distribution of subspaces {(H) C TM is called the horizontal
bundle.
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Hamiltonians and geodesic flow

Définition

Definition

A sub-Riemannian structure on a Banach manifold M is a triple
(H, &, g), with (H,§) a relative tangent bundle on M and g a
smooth pre-Hilbertian metric on H.

Agrachev Boscain et al. 2010 [ABC*10]
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Infinite dimensional sub-Riemannian geometry Rashevski theorem

Hamiltonians and geodesic flow

Définition

Definition

A sub-Riemannian structure on a Banach manifold M is a triple
(H, &, g), with (H,§) a relative tangent bundle on M and g a
smooth pre-Hilbertian metric on H.

Agrachev Boscain et al. 2010 [ABC*10]

The structure is called strong when g defines a Hilbert norm on
each fiber, and weak in all other cases.
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Horizontal vector fields and curves

Horizontal vector fields and curves are those that are everywhere
tangent to £(H), i.e.

A vector field X € T(TM) is horizontal if

Juel(H), X(q)=E&u(q), geM.
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Horizontal vector fields and curves

Infinite dimensional sub-Riemannian geometry

Horizontal vector fields and curves are those that are everywhere
tangent to £(H), i.e.

Definition
A vector field X € T(TM) is horizontal if

Juel(H), X(q)=&qu(q), qeM.
A curve t — q(t) of Sobolev class H! is horizontal if
Jt = u(t) € Howy,  4(t) = Eqeryu(t)

for almost every t, with (q(-), u(:)) € L2. The couple (q(-), u(-)) is
a horizontal system, q is the trajectory while u is the control.
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shevski theorem
Hamiltonians and geodesic flow

Example: the Heisenberg group

M = RR3, and horizontal distribution generated by
o 10 0 10
L= ox ~ 2Yoz 2T oy 270z

e Horizontal vector field: X = uX; + vXo, u, v : R3 — R3.

o Horizontal curve: 2(t) = 1(xy — xy), %,y € L?(0,1;R).
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Length and action

Length and action of a horizontal system (q, u):

10.0) = [ /e u(e).u(e))et.

Ag.0) = 5 [ gato(wl0) u(®)et
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Length and action

Length and action of a horizontal system (q, u):

10.0) = [ /e u(e).u(e))et.

1

Ag.0) = 5 [ gato(wl0) u(®)et

Length of a curve g(-):

L(q) = inf L(q, u).
u,(q,u) horizontal
For strong structures, there always exists a unique u such that

L(q, u) = L(q). However, easier to work on systems than on
curves.
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Hamiltonians and geodesic flow

Sub-riemannian distance

@ Sub-riemannian distance:

Yqo,q1 € M, d(qo, q1) = inf L(q,u).
(q,u)€L?(0,1H),
(g,u) horizontal,
q(0)=q0, 9(1)=q1

Semi-distance M x M — [0, 40|, and always true distance
for strong structures.
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Infinite dimensional sub-Riemannian geometry shevski theorem

Hamiltonians and geodesic flow

Sub-riemannian distance

@ Sub-riemannian distance:

Yqo,q1 € M, d(qo, q1) = inf L(q,u).
(q,u)€L?(0,1H),
(g,u) horizontal,
q(0)=q0, 9(1)=q1

Semi-distance M x M — [0, 40|, and always true distance
for strong structures.

e Orbit of go € M: Og, = {q | d(q0,q) < +00}.
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Infinite dimensional sub-Riemannian geometry

Sub-riemannian distance

@ Sub-riemannian distance:

Yqo,q1 € M, d(qo, q1) = inf L(q,u).
(q,u)€L?(0,1H),
(g,u) horizontal,
q(0)=q0, 9(1)=q1

Semi-distance M x M — [0, 40|, and always true distance
for strong structures.

e Orbit of go € M: Og, = {q | d(q0,q) < +00}.

@ Geodesic: curve g for which there exists a control u such
that (g, u) minimizes the action A with fixed endpoints on
small enough intervalls.
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e Infinite dimensional sub-Riemannian geometry

@ Accessibility and the Chow-Rashevski theorem
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Lie algebra generated by the structure

Infinite dimensional sub-Riemannian geometry

Let £ C I'(TM) be the Lie algebra of vector fields generated by
smooth and horizontal vector fields. We can identify it with a
subset of TM using L4 ={X(q) | X € L}.

Theorem (Chow-Rashevski)

For M connected and finite dimensional, if L = TM, then the
distance between any two points in M is finite (controlability).
Moreover, the topology induced by d coincides with its intrisic
manifold topology.

Bellaiche 1996 [BR96], Montgomery 2002 [Mon02]
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Lie algebra generated by the structure

Infinite dimensional sub-Riemannian geometry

Let £ C I'(TM) be the Lie algebra of vector fields generated by
smooth and horizontal vector fields. We can identify it with a
subset of TM using L4 ={X(q) | X € L}.

Theorem (Chow-Rashevski)

For M connected and finite dimensional, if L = TM, then the
distance between any two points in M is finite (controlability).
Moreover, the topology induced by d coincides with its intrisic
manifold topology.

Bellaiche 1996 [BR96], Montgomery 2002 [Mon02]

Open problem when dim(M) = co. Moreover, L, is rarely even a
closed subset of Tq¢M, because L is generated algebraically.
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Example: product of Heisenberg groups

o0
M = 2(N,R®) = < (Xn, Y, Zn)neN | ZX?, +y2 4+ 22 < 400
n=0
Horizontal curves:

. 1, . .
Zy = E(xny,7 — XnYn), n€N.
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Example: product of Heisenberg groups

o0
M = 2(N,R®) = < (Xn, Y, Zn)neN | ZX?, +y2 4+ 22 < 400
n=0

Horizontal curves:
) 1 . .
Zy = E(xny,7 — XnYn), n€N.

Then -
d(ov (Xna)/nazn))Z = ZXS +yr? + ’Zﬂ|'
n=0

Hence O = /?(N;R?) x (1(N;R) is only dense with empty interior
in M: approximate controllability.
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Conditions for approximate controllability

Theorem (Conditions for approximate controllability)

If M is connected and if L is dense in TM then every orbit is dense.

Dubnikov Samborskii 1980
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Infinite dimensional sub-Riemannian geometry

Conditions for approximate controllability

Theorem (Conditions for approximate controllability)

If M is connected and if L is dense in TM then every orbit is dense.

Dubnikov Samborskii 1980

The proof makes use of the following lemma.

Assume M connected. Let B C M be a closed subset such that
T4B (velocities at q of curves in B) is dense in T¢M. Then
B =M.
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Conditions for approximate controllability

Theorem (Conditions for approximate controllability)
If M is connected and if L is dense in TM then every orbit is dense.

Dubnikov Samborskii 1980

The proof makes use of the following lemma.

Assume M connected. Let B C M be a closed subset such that
T4B (velocities at q of curves in B) is dense in T¢M. Then
B =M.

Recently generalized to convenient spaces by Grong, Markina et
Vasil'ev.
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Conditions for exact controllability

Let Xi,..., X, be smooth horizontal vector fields. For
I = (i1,...,ix) define

Xi = Xy [Xi oo s X Xa .

k—1 29
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Conditions for exact controllability

Let Xi,..., X, be smooth horizontal vector fields. For
I = (i1,...,ix) define

X = [Xi., [Xi

PER R

[Xi, Xit] - -]
We say that the structure satisfies the strong Chow-Rashevski
property at g € M if,

IneN, VZ(q) € T,M,  Z(q Z > YL Xil(g)
k=01e{1,...,r}k

with each Y a horizontal vector field.
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Infinite dimensional sub-Riemannian geometry

Conditions for exact controllability

Let Xi,..., X, be smooth horizontal vector fields. For
I = (i1,...,ix) define

X = [Xi., [Xi

PER R

[Xi, Xit] - -]
We say that the structure satisfies the strong Chow-Rashevski
property at g € M if,

IneN, VZ(q) € T,M,  Z(q Z > YL Xil(g)
k=01e{1,...,r}k

with each Y; a horizontal vector field.

Example: M = R x (?(N,R?), and horizontal vector fields
generated by

0 0
Oyn | 0zy

0
X(X,yn,Zn) = &7 Yn(X,y,-,,Zn) =
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Conditions for exact controllability

When this property is satisfied, one can adapt the finite
dimensional proof and obtain:

Assume M is connected and the structure satisfies the strong
Chow-Rashevski theorem at every x € M. Then M is an orbit, and
the topology induced by the sub-Riemannian distance is coarser
than the intrisic manifold topology (for strong structure, the
topologies coincide, and M is Hilbert).
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e Infinite dimensional sub-Riemannian geometry

@ Hamiltonians and geodesic flow
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Set of horizontal systems

Let go € M be fixed. Define
Q¥ = {(q,u) € L(0,1:H) | (g, u) horizontal q(0) = qo}

To equip Q?fo with a manifold structure, we would need a local
addition on M (exists for Lie groups for example).
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Infinite dimensional sub-Riemannian geometry

Set of horizontal systems

Let go € M be fixed. Define
Q¥ = {(q,u) € L(0,1:H) | (g, u) horizontal q(0) = qo}

To equip Q?fo with a manifold structure, we would need a local
addition on M (exists for Lie groups for example).

However, on U C M open such that H y >~ U X H, one can identify
horizontal systems in H,y with an open subset of L2(0,1; H).
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Endpoint mapping

Definition
Soit qo € M. The endpoint mapping end : Q1 — M is given by
end(q, u) = q(1). Its regularity is the same as that of &.

We have Oq, = end(QX).

Infinite dimensional sub-Riemannian geometry
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Constrained optimisation

Let M be a Banach manifold, F : M — R a smooth cost and
C : M — M smooth constraints. If u € M minimizes F on
C~Y(q), then d(F, C)(u) = (dF(u),dC(u)) is not surjective.

If dim(M) < oo, the conclusion is equivalent to
INe{0,1},pe TIM, AdF(u) = dC(u)"p,

with A or p non-zero. However, if dim(M) = oo, the image of
d(F, C)(u) may be dense.
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Three kinds of geodesics

We apply this lemma with F = A and C = end.

Let (q,u) € Qz;é be a minimizing geodesic connecting qo and
end(q, u) = q1. Then one of the following statements is true:

@ 3\, p1) €{0,1} x Tz M\ {(0,0)},

AdA(q, u) = dend(q, u)*p1.
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Infinite dimensional sub-Riemannian geometry

Three kinds of geodesics

We apply this lemma with F = A and C = end.

Let (q,u) € Qz;é be a minimizing geodesic connecting qo and
end(q, u) = q1. Then one of the following statements is true:

@ 3\, p1) €{0,1} x Tz M\ {(0,0)},
AdA(q, u) = dend(q, u)*p1.

If A = 1: normal geodesic.
If A =0, (g, u) is a singular point of end: abnormal
geodesic.
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Hamiltonians and geodesic flow

Three kinds of geodesics

We apply this lemma with F = A and C = end.

Let (q,u) € Qz;é be a minimizing geodesic connecting qo and
end(q, u) = q1. Then one of the following statements is true:

@ 3\, p1) €{0,1} x Tz M\ {(0,0)},
AdA(q, u) = dend(q, u)*p1.

If A = 1: normal geodesic.
If A =0, (g, u) is a singular point of end: abnormal

geodesic.

@ Im(dA(q, u),dend(q, u)) is a proper dense subset of
R x Tg,M (elusive geodesic).

In the end, this tells us nothing.
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Partial converse

Lemma

Let M be a Banach manifold, F : M — R a smooth cost and
C : M — M smooth constraints. Let u € M. Then

Q If there exists p € Ty M such that dF (u) = dC(u)*p, then u
is a critical point of F on C~1(q).

Q If there exists 0 # p € Ty M such that 0 = dC(u)*p, then u is
a critical point of C.
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Converse

Let us apply our partial converse.

Let (q,u) € Qz;é with q(1) = q1 and p1 € T; M.
Q@ IfdA(q,u) = dend(q, u)*p1 then (q, u) is a critical point of
the action with fixed endpoints.

@ Ifp1 #0 and 0 = dend(q, u)*p1, then (q,u) is a critical
point of end. We say that q is a singular curve.
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Infinite dimensional sub-Riemannian geometry

Converse

Let us apply our partial converse.

Lemma
Let (q,u) € Qz;é with q(1) = q1 and p1 € T; M.
Q@ IfdA(q,u) = dend(q, u)*p1 then (q, u) is a critical point of
the action with fixed endpoints.

@ Ifp1 #0 and 0 = dend(q, u)*p1, then (q,u) is a critical
point of end. We say that q is a singular curve.

Obviously, not every critical point of A with fixed endpoints have
this form.
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Hamiltonian

Let w be the canonical weak symplectic form of T*M, and
A € {0,1}. Define H* . T"M o H — R :

HA(qp.u) = (p | Equ) — 2gqlu, u).

N
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Infinite dimensional sub-Riemannian geometry

Hamiltonian

Let w be the canonical weak symplectic form of T*M, and
A € {0,1}. Define H* . T"M o H — R :

N[ >

HA(QvPa u)=(p| qu) - *gq(uv u).

|f auH)\(q’ p, U) = O, then
VYHN(q, p, u) = (0pH, —94H) € TapT™M

is defined intrinsically (since d,H(q, p,u) € Tg*M can be
identified to {qu € TyM).
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Hamiltonian formulation

Proposition

AdA(q, u) = dend(q, u)*p1 <= 3t = p(t) € Ty M, p(1) = p1,

{ 0 :auH/\(q(t),p(t),U(t)),
(4(2), B(8)) = VHN (1), p(2), u(£)) = (BpH", ~DgHP).
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Normal Hamiltonian

e For A =0, (g, u) singular point of end: singular curve.

@ For A =1, g extremal point of the action: p(-) is the
momentum of g.
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Normal Hamiltonian

e For A =0, (g, u) singular point of end: singular curve.

@ For A =1, g extremal point of the action: p(-) is the
momentum of g.

0,H'(q.p ) =0 = gylu.) = Epp €

& |H(q, p,u) = max H'(q,p, ) == h(q, p).
u'EHqg
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Infinite dimensional sub-Riemannian geometry

Normal Hamiltonian

e For A =0, (g, u) singular point of end: singular curve.

@ For A =1, g extremal point of the action: p(-) is the
momentum of g.

0,H'(q.p ) =0 = gylu.) = Epp €

& |H(q, p,u) = max H'(q,p, ) == h(q, p).
u'EHqg

The mapping h: T*M — R U {400} is the normal
Hamiltonian.
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Hamiltonians and geodesic flow

Let us start with the strong case.

Let Ky : Hy — Hq such that Va € Hy, a = gq(Kya,-). Kis a
smooth vector bundle morphism.
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Hamiltonians and geodesic flow

Let us start with the strong case.
Let Ky : Hy — Hq such that Va € Hy, a = gq(Kya,-). Kis a
smooth vector bundle morphism. Then

g(u,") =&p = u=Kip,
so that h(q, p) = %pquqgsp is as smooth as . Then
Oph(q,p) € T;*M can be identified to {gK;ép € TqM.

Consequence: h has a symplectic gradient, which is as smooth as

de.
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Accessibility and the Chow-Rashevski theorem
Hamiltonians and geodesic flow

Infinite dimensional sub-Riemannian geometry

Geodesic flow

Theorem

For a strong structure with ¢ of class C3, h admits a symplectic
gradient of classe C?, and for any initial condition

(q(0), p(0)) € T*M, there exists a unique solution

t — (q(t), p(t)) € T*M such that

(4(t), p(t)) = V¥h(q(t), p(t))
= (8ph(q, p)a _6qh(q7 ,D))

Then q(-) is indeed a (normal) geodesic.
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Accessibility and the Chow-Rashevski theorem
Hamiltonians and geodesic flow

Infinite dimensional sub-Riemannian geometry

Elusive geodesics

Remark: By restricting the structure to a stable proper dense
M’ C M submanifold, we obtain bigger cotangent spaces and hence
"more” normal geodesics. Those geodesics were elusive in M.
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Infinite dimensional sub-Riemannian geometry

Elusive geodesics

Remark: By restricting the structure to a stable proper dense
M’ C M submanifold, we obtain bigger cotangent spaces and hence
"more” normal geodesics. Those geodesics were elusive in M.

Open problem: is there a "right” cotangent space (such that
elusive geodesics disappear).
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s and examples
Accessibility and the Chow-Rashevski theorem
Hamiltonians and geodesic flow

Infinite dimensional sub-Riemannian geometry

Elusive geodesics

Remark: By restricting the structure to a stable proper dense
M’ C M submanifold, we obtain bigger cotangent spaces and hence
"more” normal geodesics. Those geodesics were elusive in M.

Open problem: is there a "right” cotangent space (such that
elusive geodesics disappear).

Example: on the infinite product of Heisenberg groups, as
Oo = (?(N,R?) x /}(N, R), taking p(0) in ¢?(N,R?) x (*(N,R)
makes all minimizing geodesics into normal geodesics.
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Definitions and examples
Accessibility and the Chow-Rashevski theorem
Hamiltonians and geodesic flow

Infinite dimensional sub-Riemannian geometry

The weak case and adapted cotangent sub-bundles

Difficulty: for weak structures, h(g, p) may be infinite.

Definition

A dense sub-bundle T*M — T*M s said to be adapted to the
structure if the restriction of h to 7*M s finite.

The restriction of w to such a sub-bundle remains a weak
symplectic form. However, the restriction of h has a symplectic
gradient only when, in a local trivialization, we can write
dqh(q. p) € T4M.

Example: for the Riemannian case H = TM, simply take
"M = g(TM, ).
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Definitions and examples
Accessibility and the Chow-Rashevski theorem
Hamiltonians and geodesic flow

Infinite dimensional sub-Riemannian geometry

Geodesic flow

Theorem (page 39)

Let 7*M be an adapted cotangent sub-bundle on which h
possesses a C> symplectic gradient. Then for any initial condition
(g(0), p(0)) € 7*M, there exists a unique solution

t — (q(t), p(t)) € T*M such that

(q(2), p(t)) = V*h(q(t), (1))
= (9ph(a, p), =94h(q, p))-

In this case, q(-) is a local geodesic.
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Definition and first results
Chow-Ras on D*(M)

Right-invariant sub-Riemannian geometry on a group of diffeomorp é?;)r’o(illrir1 ernel and the geodesic flow

Plan

e Right-invariant sub-Riemannian geometry on a group of
diffeomorphisms
@ Definition and first results
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irst results
on D (M)

Right-invariant sub-Riemannian geometry on a group of diffeomorp Al endl e meadedie few

The group of H* diffeomorphisms

Let M be a complete manifold of bounded geometry. This lets us
define the space I'*( TM) of vector fields of class H®,
s> dim(M)/2 + 1.

Let D5(M) = exp(I'*(TM)) N Diff*(M).

This space is a Hilbert manifold and a topological group for the
composition law, with

T,D*(M) =T*(TM) o o.
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Right-invariant sub-Riemannian geometry on a group of diffeomorp el and the geodesic flow

Right-invariant vector fields

The mapping ¢ — @ o1 is smooth for every 1.

While ¢ + 1) 0 ¢ is of class C¥ whenever 1) is actually of class
Hs+k,

So if X € ISTk(TM), then ¢ € DS(M) +— X o p € T,D5(M) is of
class Ck.

Consequence: If t — (t) is a Cl-curve D5(M) starting at Idy,
then o(t) is the flow of the time dependent vector field
X(t) = ¢(t) o p(t)7L, that is,

p(t) = X(t) o p(t).

Moreover, t — X(t) is continuous in time.
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Definition and first results
Chow- i on D°(M)

Right-invariant sub-Riemannian geometry on a group of diffeomorp Remon rnel and the geodesic flow

Right-invariant SR structures

Let (V, (-,-)) be a Hilbert space of vector fields with continuous
inclusion in TSTK(TM).

The mapping (¢, X) — X o ¢ from D*(M) x V into TD*(M)
defines a C¥ relative tangent space, which, in addition to the
Hilbert product (-,-), then defines a strong sub-Riemannian
structure on D*(M).
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Right-invariant sub-Riemannian geometry on a group of diffeomorp el and the geodesic flow

Right-invariant SR structures

Let (V, (-,-)) be a Hilbert space of vector fields with continuous
inclusion in TSTK(TM).

The mapping (¢, X) — X o ¢ from D*(M) x V into TD*(M)
defines a C¥ relative tangent space, which, in addition to the
Hilbert product (-,-), then defines a strong sub-Riemannian
structure on D*(M).

Horizontal curves t — ¢(t) are those such that there exists
X € L2(0,1; V) such that, almost everywhere,

p(t) = X(t) o p(t).

So they are just flows of time-dependent vector fields of V. The
energy is
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first results
i on D*(M)

Reproduc el and the geodesic flow

Right-invariant sub-Riemannian geometry on a group of diffeomorp

Sub-Riemannian distance

We also define length, sub-Riemannian distance, and geodesics as
usual.

Proposition

The sub-Riemannian distance is right-invariant, complete, and any
two diffeomorphisms with finite distance from one another can be
connected by a minimizing geodesic.

Moreover, O1q,, = {¢ € D*(M) | d(Idpm, ¢) < oo} is a subgroup
of D(M).
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Plan

e Right-invariant sub-Riemannian geometry on a group of
diffeomorphisms

@ Chow-Rashevski on D*(M)
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Definition and first results
Chow-Rashevski on D*(M)

Right-invariant sub-Riemannian geometry on a group of diffeomorp Reproducing kernel and the geodesic flow

Horizontal flows

Let Xi,..., X, be smooth vector fields on M satisfying the
Chow-Rashevski bracket generating condition. This defines a
sub-Riemannian structure on M.

Assume that V is the set of vector fields X of the form

k
X(x)=>_u'(x)Xi(x), u €H (M),
i=1

that is, the set of horizontal vector fields of class H®.

This means that t — ¢(t) is horizontal if and only if each curve
t — ¢(t, x) is horizontal on M.
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Definition and first results
Chow-Ra ki on D°(M)

Right-invariant sub-Riemannian geometry on a group of diffeomorp Resmerine ernel and the geodesic flow

Accessible set

If M is compact, then GV = D§(M). Moreover, the topology
induced by the sub-Riemannian distance coincides with the
manifold topology.

In other words, if any two points on M can be connected by a
horizontal curve, any two diffeomorphisms of M can be connected
by composition with the flow of a horizontal vector field.

Remark: Not true when M is not compact.
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Chow-Rashevski on D°(M)

Right-invariant sub-Riemannian geometry on a group of diffeomorp Reproducing kernel and the geodesic flow

Plan

e Right-invariant sub-Riemannian geometry on a group of
diffeomorphisms

@ Reproducing kernel and the geodesic flow
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Chow-Rashevski on D°(M)

Right-invariant sub-Riemannian geometry on a group of diffeomorp Reproducing kernel and the geodesic flow

Hamiltonian for M = R¢

On RY, D5(RY) is the set of diffeomorphisms of the form
o(x) = x + X(x), with X € H5(RY,R?). So we can just write
T,D*(RY) = H5(RY, RY).

Hence, T;DS(R") = H75(RY, (RY)*), that is, the set of
distributional valued 1-forms with coefficients in H~°, and

(| X) = /R PLX(x)ox

The Hamiltonian H : T*D5(R9) — R is

1

i) = prax | X (o00)dk = 5 (X.X).
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Right-invariant sub-Riemannian geometry on a group of diffeomorp Reproducing kernel and the geodesic flow

Reproducing kernel

V — C°(RY,RY) implies that V* — V is obtained by convolution
with a kernel (x,y) — K(x,y) € R @ R¢.
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Definition and first results
Chow-Rashevski on D°(M)

Right-invariant sub-Riemannian geometry on a group of diffeomorp Reproducing kernel and the geodesic flow

Reproducing kernel

V — C°(RY,RY) implies that V* — V is obtained by convolution
with a kernel (x,y) — K(x,y) € R @ R¢.

Let p € HS(RY, R9)* = {1-forms on Rwith coefficients in
H=*} C V*. then

pv= (X & X0 = [ Kxypb)dy, xe M.
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Right-invariant sub-Riemannian geometry on a group of diffeomorp Reproducing kernel and the geodesic flow

Reproducing kernel

V — C°(RY,RY) implies that V* — V is obtained by convolution
with a kernel (x,y) — K(x,y) € R @ R¢.

Let p € HS(RY, R9)* = {1-forms on Rwith coefficients in

H=*} C V*. then

pv= (X & X0 = [ Kxypb)dy, xe M.

Conversely, any symmetric positive definite convolution kernel K
defines a unique Hilbert space of vector fields V.
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Right-invariant sub-Riemannian geometry on a group of diffeomorp Reproducing kernel and the geodesic flow

Hamiltonian for M = R¢

We can compute the Hamiltonian thanks to the kernel
K :R9 x RY — L((R)*,RY):

Hig.p) = 5 /R PG00, )Ly
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Chow-Rashevski on D°(M)

Right-invariant sub-Riemannian geometry on a group of diffeomorp Reproducing kernel and the geodesic flow

Hamiltonian for M = R¢

We can compute the Hamiltonian thanks to the kernel
K :R9 x RY — L((R)*,RY):

1

Hip.) =5 [ pOIK(ob). ol ))oly e

When V — HT2(R? R9), the Hamiltonian is C2, and the
Hamiltonian equations

p(t) = pH(p(t), p(t), p(t) = —0,H(p(t), p(t))

have a unique solution for fixed (o, po) € T*D*(M).
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Right-invariant sub-Riemannian geometry on a group of diffeomorp Reproducing kernel and the geodesic flow

Hamiltonian equations

Let t — ((t), p(t)) satisfy the geodesic equations
oipltx) = [ K(pltx).ple (e, y)dy
and

Oep(t, x) = —p(t, x) L 01K (p(t, x), ¢(t, y))p(t,y)dy.

Then, if H is of class C3, ¢ is a geodesic on small enough intervals.

H is of class C3, for example, when we have a continuous inclusion
of V in H*t3(R9 RY), but not only.
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Right-invariant sub-Riemannian geometry on a group of diffeomorp Reproducing kernel and the geodesic flow

Remarks

A lot of properties of p are preserved along the Hamiltonian
equations. In particular, the support of p is constant. This is
well-known, for example in landmarks: momentum can only be
exchanged between points that already had momentum to begin
with.

The (negative) Sobolev regularity of p as a distribution is also
preserved.
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