Infinite dimensional sub-Riemannian geometry

Sylvain Arguillère (CIS, Johns Hopkins University)

Geometry Seminar, Texas A&M

September 15th, 2014

While sub-Riemannian geometry has been an increasing area of study for a few decades, the infinite dimensional case is largely unexplored.

While sub-Riemannian geometry has been an increasing area of study for a few decades, the infinite dimensional case is largely unexplored.

In Riemannian geometry, 2 categories of Riemannian Banach manifolds: the strong (Hilbert) case, which behaves almost exactly like in finite dimensions, and the weak (pre-Hilbertian) case, for which the distance between points may be 0 and the geodesic flow may not exist.

While sub-Riemannian geometry has been an increasing area of study for a few decades, the infinite dimensional case is largely unexplored.

In Riemannian geometry, 2 categories of Riemannian Banach manifolds: the strong (Hilbert) case, which behaves almost exactly like in finite dimensions, and the weak (pre-Hilbertian) case, for which the distance between points may be 0 and the geodesic flow may not exist.

We will see that for sub-Riemannian Banach manifolds, even the strong case presents several significant difficulties preventing the generalization of certain finite dimensional and/or Riemannian results. In particular, there is no Pontryagin maximum principle, hence some geodesics can be neither normal nor abnormal.

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Plan

Infinite dimensional sub-Riemannian geometry

• Definitions and examples

- Accessibility and the Chow-Rashevski theorem
- Hamiltonians and geodesic flow

Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

- Definition and first results
- Chow-Rashevski on $\mathcal{D}^{s}(M)$
- Reproducing kernel and the geodesic flow

・ 同 ト ・ ヨ ト ・ ヨ

<日本

Relative tangent spaces

Let M be a smooth manifold. Usually, a sub-Riemannian structure on M is a couple (\mathcal{H}, g) , where \mathcal{H} is a sub-bundle of TM (i.e. a *distribution* on M) and g a Riemannian metric on \mathcal{H} . However, this does not take into account rank-varying structures.

Relative tangent spaces

Let M be a smooth manifold. Usually, a sub-Riemannian structure on M is a couple (\mathcal{H}, g) , where \mathcal{H} is a sub-bundle of TM (i.e. a *distribution* on M) and g a Riemannian metric on \mathcal{H} . However, this does not take into account rank-varying structures.

Definition

A rank-varying distribution of subspaces on a Banach manifold M of class C^k , also called a **relative tangent space** of class C^k , is a couple (\mathcal{H}, ξ) , where \mathcal{H} is a smooth Banach vector bundle on M and $\xi : \mathcal{H} \to TM$ is a vector bundle morphism of class C^k .

(4月) (1日) (日)

< ロ > < 同 > < 回 > < 回 >

Relative tangent spaces

Let M be a smooth manifold. Usually, a sub-Riemannian structure on M is a couple (\mathcal{H}, g) , where \mathcal{H} is a sub-bundle of TM (i.e. a *distribution* on M) and g a Riemannian metric on \mathcal{H} . However, this does not take into account rank-varying structures.

Definition

A rank-varying distribution of subspaces on a Banach manifold M of class C^k , also called a **relative tangent space** of class C^k , is a couple (\mathcal{H}, ξ) , where \mathcal{H} is a smooth Banach vector bundle on M and $\xi : \mathcal{H} \to TM$ is a vector bundle morphism of class C^k .

In other words, for $q \in M$, ξ_q is a linear mapping $\mathcal{H}_q \to T_q M$.

The distribution of subspaces $\xi(\mathcal{H}) \subset TM$ is called the *horizontal* bundle.

Définition

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Definition

A sub-Riemannian structure on a Banach manifold M is a triple (\mathcal{H}, ξ, g) , with (\mathcal{H}, ξ) a relative tangent bundle on M and g a smooth pre-Hilbertian metric on \mathcal{H} .

Agrachev Boscain et al. 2010 [ABC⁺10]

<ロト <部 > < 注 > < 注 >

Définition

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Definition

A sub-Riemannian structure on a Banach manifold M is a triple (\mathcal{H}, ξ, g) , with (\mathcal{H}, ξ) a relative tangent bundle on M and g a smooth pre-Hilbertian metric on \mathcal{H} .

Agrachev Boscain et al. 2010 [ABC⁺10]

< ロ > < 同 > < 回 > < 回 >

The structure is called **strong** when g defines a Hilbert norm on each fiber, and **weak** in all other cases.

Horizontal vector fields and curves

Horizontal vector fields and curves are those that are everywhere tangent to $\xi(\mathcal{H})$, i.e.:

Definition

A vector field $X \in \Gamma(TM)$ is horizontal if

$$\exists u \in \Gamma(\mathcal{H}), \quad X(q) = \xi_q u(q), \quad q \in M.$$

・ 同・ ・ ヨ・

(日) (同) (三) (三)

Horizontal vector fields and curves

Horizontal vector fields and curves are those that are everywhere tangent to $\xi(\mathcal{H}),$ i.e.:

Definition

A vector field $X \in \Gamma(TM)$ is horizontal if

$$\exists u \in \Gamma(\mathcal{H}), \quad X(q) = \xi_q u(q), \quad q \in M.$$

A curve $t \mapsto q(t)$ of Sobolev class H^1 is horizontal if

$$\exists t \mapsto u(t) \in \mathcal{H}_{q(t)}, \quad \dot{q}(t) = \xi_{q(t)}u(t)$$

for almost every t, with $(q(\cdot), u(\cdot)) \in L^2$. The couple $(q(\cdot), u(\cdot))$ is a horizontal system, q is the trajectory while u is the control.

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

伺 ト イヨ ト イヨ

Example: the Heisenberg group

 $M = \mathbb{R}^3$, and horizontal distribution generated by

$$X_1 = \frac{\partial}{\partial x} - \frac{1}{2}y\frac{\partial}{\partial z}, \quad X_2 = \frac{\partial}{\partial y} + \frac{1}{2}x\frac{\partial}{\partial z}.$$

- Horizontal vector field: $X = uX_1 + vX_2, u, v : \mathbb{R}^3 \to \mathbb{R}^3$.
- Horizontal curve: $\dot{z}(t) = \frac{1}{2}(x\dot{y} \dot{x}y), \dot{x}, \dot{y} \in L^2(0, 1; \mathbb{R}).$

(日) (同) (三) (三)

э

Length and action

Length and action of a horizontal system (q, u):

$$L(q, u) = \int \sqrt{g_{q(t)}(u(t), u(t))} dt,$$
$$A(q, u) = \frac{1}{2} \int g_{q(t)}(u(t), u(t)) dt.$$

イロト イポト イラト イラト

Length and action

Length and action of a horizontal system (q, u):

$$L(q, u) = \int \sqrt{g_{q(t)}(u(t), u(t))} dt,$$
$$A(q, u) = \frac{1}{2} \int g_{q(t)}(u(t), u(t)) dt.$$

Length of a curve $q(\cdot)$:

$$L(q) = \inf_{u,(q,u) \text{ horizontal}} L(q, u).$$

For strong structures, there always exists a unique u such that L(q, u) = L(q). However, easier to work on systems than on curves.

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

- 4 同 2 4 日 2 4 日 2

Sub-riemannian distance

• Sub-riemannian distance:

$$orall q_0, q_1 \in M, d(q_0, q_1) = \inf_{\substack{(q,u) \in L^2(0,1;\mathcal{H}), \ (q,u) ext{ horizontal}, \ q(0) = q_0, \ q(1) = q_1}} L(q, u).$$

Semi-distance $M \times M \rightarrow [0, +\infty]$, and always true distance for strong structures.

Sub-riemannian distance

• Sub-riemannian distance:

$$orall q_0, q_1 \in M, d(q_0, q_1) = \inf_{\substack{(q,u) \in L^2(0,1;\mathcal{H}), \ (q,u) ext{ horizontal}, \ q(0) = q_0, \ q(1) = q_1}} L(q, u).$$

Semi-distance $M \times M \rightarrow [0, +\infty]$, and always true distance for strong structures.

• **Orbit of**
$$q_0 \in M$$
: $\mathcal{O}_{q_0} = \{q \mid d(q_0, q) < +\infty\}.$

- 4 同 2 4 日 2 4 日 2

< ロ > < 同 > < 回 > < 回 >

Sub-riemannian distance

• Sub-riemannian distance:

$$orall q_0, q_1 \in M, d(q_0, q_1) = \inf_{\substack{(q,u) \in L^2(0,1;\mathcal{H}), \ (q,u) ext{ horizontal}, \ q(0) = q_0, \ q(1) = q_1}} L(q, u).$$

Semi-distance $M \times M \rightarrow [0, +\infty]$, and always true distance for strong structures.

- Orbit of $q_0 \in M$: $\mathcal{O}_{q_0} = \{q \mid d(q_0, q) < +\infty\}.$
- **Geodesic:** curve q for which there exists a control u such that (q, u) minimizes the action A with fixed endpoints on small enough intervalls.

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Plan

Infinite dimensional sub-Riemannian geometry

- Definitions and examples
- Accessibility and the Chow-Rashevski theorem
- Hamiltonians and geodesic flow

Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

- Definition and first results
- Chow-Rashevski on $\mathcal{D}^{s}(M)$
- Reproducing kernel and the geodesic flow

・ 同 ト ・ ヨ ト ・ ヨ

Lie algebra generated by the structure

Let $\mathcal{L} \subset \Gamma(TM)$ be the Lie algebra of vector fields generated by smooth and horizontal vector fields. We can identify it with a subset of TM using $\mathcal{L}_q = \{X(q) \mid X \in \mathcal{L}\}$.

Theorem (Chow-Rashevski)

For M connected and finite dimensional, if $\mathcal{L} = TM$, then the distance between any two points in M is finite (controlability). Moreover, the topology induced by d coincides with its intrisic manifold topology.

Bellaïche 1996 [BR96], Montgomery 2002 [Mon02]

< ロ > < 同 > < 回 > < 回 >

Lie algebra generated by the structure

Let $\mathcal{L} \subset \Gamma(TM)$ be the Lie algebra of vector fields generated by smooth and horizontal vector fields. We can identify it with a subset of TM using $\mathcal{L}_q = \{X(q) \mid X \in \mathcal{L}\}$.

Theorem (Chow-Rashevski)

For M connected and finite dimensional, if $\mathcal{L} = TM$, then the distance between any two points in M is finite (controlability). Moreover, the topology induced by d coincides with its intrisic manifold topology.

Bellaïche 1996 [BR96], Montgomery 2002 [Mon02]

(日) (同) (三) (三)

Open problem when dim $(M) = \infty$. Moreover, \mathcal{L}_q is rarely even a closed subset of $\mathcal{T}_q M$, because \mathcal{L} is generated algebraically.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example: product of Heisenberg groups

$$M = \ell^2(\mathbb{N}, \mathbb{R}^3) = \left\{ (x_n, y_n, z_n)_{n \in \mathbb{N}} \mid \sum_{n=0}^{\infty} x_n^2 + y_n^2 + z_n^2 < +\infty \right\}.$$

Horizontal curves:

$$\dot{z}_n = \frac{1}{2}(x_n\dot{y}_n - \dot{x}_ny_n), \quad n \in \mathbb{N}.$$

(日) (同) (三) (三)

Example: product of Heisenberg groups

$$M = \ell^{2}(\mathbb{N}, \mathbb{R}^{3}) = \left\{ (x_{n}, y_{n}, z_{n})_{n \in \mathbb{N}} \mid \sum_{n=0}^{\infty} x_{n}^{2} + y_{n}^{2} + z_{n}^{2} < +\infty \right\}.$$

Horizontal curves:

$$\dot{z}_n = rac{1}{2}(x_n\dot{y}_n - \dot{x}_ny_n), \quad n \in \mathbb{N}.$$

Then

$$d(0,(x_n,y_n,z_n))^2 \simeq \sum_{n=0}^{\infty} x_n^2 + y_n^2 + |z_n|.$$

Hence $\mathcal{O}_0 = \ell^2(\mathbb{N}; \mathbb{R}^2) \times \ell^1(\mathbb{N}; \mathbb{R})$ is only dense with empty interior in *M*: **approximate controllability**.

Conditions for approximate controllability

Theorem (Conditions for approximate controllability)

If M is connected and if \mathcal{L} is dense in TM then every orbit is dense.

Dubnikov Samborskii 1980

- 4 同 ト 4 ヨ ト 4 ヨ ト

Conditions for approximate controllability

Theorem (Conditions for approximate controllability)

If M is connected and if \mathcal{L} is dense in TM then every orbit is dense.

Dubnikov Samborskii 1980

The proof makes use of the following lemma.

Lemma

Assume M connected. Let $B \subset M$ be a closed subset such that T_qB (velocities at q of curves in B) is dense in T_qM . Then B = M.

(日) (同) (三) (三)

Conditions for approximate controllability

Theorem (Conditions for approximate controllability)

If M is connected and if \mathcal{L} is dense in TM then every orbit is dense.

Dubnikov Samborskii 1980

(日) (同) (三) (三)

The proof makes use of the following lemma.

Lemma

Assume M connected. Let $B \subset M$ be a closed subset such that T_qB (velocities at q of curves in B) is dense in T_qM . Then B = M.

Recently generalized to **convenient spaces** by Grong, Markina et Vasil'ev.

Conditions for exact controllability

Let X_1, \ldots, X_r be smooth horizontal vector fields. For $I = (i_1, \ldots, i_k)$ define

$$X_I = [X_{i_k}, [X_{i_{k-1}}, \dots, [X_{i_2}, X_{i_1}] \dots].$$

- 4 同 6 4 日 6 4 日 6

- 同 ト - ヨ ト - - ヨ ト

Conditions for exact controllability

Let X_1, \ldots, X_r be smooth horizontal vector fields. For $I = (i_1, \ldots, i_k)$ define

$$X_I = [X_{i_k}, [X_{i_{k-1}}, \dots, [X_{i_2}, X_{i_1}] \dots].$$

We say that the structure satisfies the **strong Chow-Rashevski** property at $q \in M$ if,

$$\exists n \in \mathbb{N}, \ \forall Z(q) \in T_q M, \quad Z(q) = \sum_{k=0}^n \sum_{I \in \{1,\dots,r\}^k} [Y_I, X_I](q)$$

with each Y_I a horizontal vector field.

Conditions for exact controllability

Let X_1, \ldots, X_r be smooth horizontal vector fields. For $I = (i_1, \ldots, i_k)$ define

$$X_I = [X_{i_k}, [X_{i_{k-1}}, \ldots, [X_{i_2}, X_{i_1}] \ldots].$$

We say that the structure satisfies the strong Chow-Rashevski property at $q \in M$ if,

$$\exists n \in \mathbb{N}, \ \forall Z(q) \in T_q M, \quad Z(q) = \sum_{k=0}^n \sum_{I \in \{1, \dots, r\}^k} [Y_I, X_I](q)$$

with each Y_I a horizontal vector field.

Example: $M = \mathbb{R} \times \ell^2(\mathbb{N}, \mathbb{R}^2)$, and horizontal vector fields generated by

$$X(x, y_n, z_n) = \frac{\partial}{\partial x}, \quad Y_n(x, y_n, z_n) = \frac{\partial}{\partial y_n} + x \frac{\partial}{\partial z_n}.$$

(4月) (1日) (日)

Conditions for exact controllability

When this property is satisfied, one can adapt the finite dimensional proof and obtain:

Theorem

Assume M is connected and the structure satisfies the strong Chow-Rashevski theorem at every $x \in M$. Then M is an orbit, and the topology induced by the sub-Riemannian distance is coarser than the intrisic manifold topology (for strong structure, the topologies coincide, and M is Hilbert).

・ 同 ト ・ ヨ ト ・ ヨ

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Plan

Infinite dimensional sub-Riemannian geometry

- Definitions and examples
- Accessibility and the Chow-Rashevski theorem
- Hamiltonians and geodesic flow

Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

- Definition and first results
- Chow-Rashevski on $\mathcal{D}^{s}(M)$
- Reproducing kernel and the geodesic flow

▲□ ▶ ▲ □ ▶ ▲ □

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

くほし くほし くほう

Set of horizontal systems

Let $q_0 \in M$ be fixed. Define

$$\Omega_{q_0}^{\mathcal{H}} = \{(q,u) \in L^2(0,1;\mathcal{H}) \mid (q,u) ext{ horizontal } q(0) = q_0\}$$

To equip $\Omega_{q_0}^{\mathcal{H}}$ with a manifold structure, we would need a local addition on M (exists for Lie groups for example).

Set of horizontal systems

Let $q_0 \in M$ be fixed. Define

$$\Omega_{q_0}^{\mathcal{H}} = \{(q,u) \in L^2(0,1;\mathcal{H}) \mid (q,u) \text{ horizontal } q(0) = q_0\}$$

To equip $\Omega_{q_0}^{\mathcal{H}}$ with a manifold structure, we would need a local addition on M (exists for Lie groups for example).

However, on $U \subset M$ open such that $\mathcal{H}_{|U} \simeq U \times H$, one can identify horizontal systems in $\mathcal{H}_{|U}$ with an open subset of $L^2(0, 1; H)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Endpoint mapping

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

(日) (同) (三) (三)

Definition

Soit $q_0 \in M$. The endpoint mapping end : $\Omega_{q_0}^{\mathcal{H}} \to M$ is given by end(q, u) = q(1). Its regularity is the same as that of ξ . We have $\mathcal{O}_{q_0} = \text{end}(\Omega_{q_0}^{\mathcal{H}})$.

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Constrained optimisation

Lemma

Let \mathcal{M} be a Banach manifold, $F : \mathcal{M} \to \mathbb{R}$ a smooth cost and $C : \mathcal{M} \to \mathcal{M}$ smooth constraints. If $u \in \mathcal{M}$ minimizes F on $C^{-1}(q)$, then d(F, C)(u) = (dF(u), dC(u)) is not surjective.

If $dim(M) < \infty$, the conclusion is equivalent to

$$\exists \lambda \in \{0,1\}, p \in T^*_q M, \quad \lambda dF(u) = dC(u)^* p,$$

with λ or p non-zero. However, if $dim(M) = \infty$, the image of d(F, C)(u) may be dense.

(日) (同) (三) (三)

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Three kinds of geodesics

We apply this lemma with F = A and C = end.

Lemma

Let $(q, u) \in \Omega_{q_0}^{\mathcal{H}}$ be a minimizing geodesic connecting q_0 and end $(q, u) = q_1$. Then one of the following statements is true: $\exists (\lambda, p_1) \in \{0, 1\} \times T_{q_1}^* M \setminus \{(0, 0)\},$

 $\lambda dA(q, u) = d \operatorname{end}(q, u)^* p_1.$

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Three kinds of geodesics

We apply this lemma with F = A and C = end.

Lemma

Let $(q, u) \in \Omega_{q_0}^{\mathcal{H}}$ be a minimizing geodesic connecting q_0 and end $(q, u) = q_1$. Then one of the following statements is true: $\exists (\lambda, p_1) \in \{0, 1\} \times T_{q_1}^* M \setminus \{(0, 0)\},$

$$\lambda dA(q, u) = d \operatorname{end}(q, u)^* p_1.$$

If $\lambda = 1$: normal geodesic. If $\lambda = 0$, (q, u) is a singular point of end: abnormal geodesic.

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Three kinds of geodesics

We apply this lemma with F = A and C = end.

Lemma

Let $(q, u) \in \Omega_{q_0}^{\mathcal{H}}$ be a minimizing geodesic connecting q_0 and end $(q, u) = q_1$. Then one of the following statements is true: $\exists (\lambda, p_1) \in \{0, 1\} \times T_{q_1}^* M \setminus \{(0, 0)\},$

$$\lambda dA(q, u) = d \operatorname{end}(q, u)^* p_1.$$

If $\lambda = 1$: normal geodesic. If $\lambda = 0$, (q, u) is a singular point of end: abnormal geodesic.

 Im(dA(q, u), d end(q, u)) is a proper dense subset of ℝ × T_{q1}M (elusive geodesic).

In the end, this tells us nothing

Partial converse

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Lemma

Let \mathcal{M} be a Banach manifold, $F : \mathcal{M} \to \mathbb{R}$ a smooth cost and $C : \mathcal{M} \to M$ smooth constraints. Let $u \in \mathcal{M}$. Then

- If there exists $p \in T_q^*M$ such that $dF(u) = dC(u)^*p$, then u is a critical point of F on $C^{-1}(q)$.
- ② If there exists $0 ≠ p ∈ T_q^*M$ such that $0 = dC(u)^*p$, then u is a critical point of C.

・ロト ・同ト ・ヨト ・ヨト

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Let us apply our partial converse.

Lemma

Let
$$(q, u) \in \Omega^{\mathcal{H}}_{q_0}$$
 with $q(1) = q_1$ and $p_1 \in T^*_{q_1}M$.

- If dA(q, u) = d end(q, u)*p₁ then (q, u) is a critical point of the action with fixed endpoints.
- ② If $p_1 \neq 0$ and $0 = d \operatorname{end}(q, u)^* p_1$, then (q, u) is a critical point of end. We say that q is a singular curve.

(日) (同) (三) (三)

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

(日) (同) (三) (三)

Let us apply our partial converse.

Lemma

Let
$$(q, u) \in \Omega^{\mathcal{H}}_{q_0}$$
 with $q(1) = q_1$ and $p_1 \in T^*_{q_1}M$.

- If dA(q, u) = d end(q, u)*p₁ then (q, u) is a critical point of the action with fixed endpoints.
- 2 If $p_1 \neq 0$ and $0 = d \operatorname{end}(q, u)^* p_1$, then (q, u) is a critical point of end. We say that q is a singular curve.

Obviously, not every critical point of A with fixed endpoints have this form.

Hamiltonian

Let ω be the canonical weak symplectic form of T^*M , and $\lambda \in \{0,1\}$. Define $H^{\lambda} : T^*M \oplus \mathcal{H} \to \mathbb{R}$:

$$H^{\lambda}(q,p,u) = (p \mid \xi_q u) - \frac{\lambda}{2}g_q(u,u).$$

- 4 同 2 4 日 2 4 日 2

Hamiltonian

Let ω be the canonical weak symplectic form of T^*M , and $\lambda \in \{0,1\}$. Define $H^{\lambda} : T^*M \oplus \mathcal{H} \to \mathbb{R}$:

$$H^{\lambda}(q,p,u) = (p \mid \xi_q u) - \frac{\lambda}{2}g_q(u,u).$$

If $\partial_u H^{\lambda}(q, p, u) = 0$, then

$$abla^\omega H^\lambda(q,p,u) = (\partial_p H, -\partial_q H) \in T_{(q,p)} T^*M$$

is defined intrinsically (since $\partial_p H(q, p, u) \in T_q^{**}M$ can be identified to $\xi_q u \in T_q M$).

- 4 同 ト 4 ヨ ト 4 ヨ ト

Infinite dimensional sub-Riemannian geometry Right-invariant sub-Riemannian geometry on a group of diffeomorp Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Hamiltonian formulation

Proposition

$$\lambda dA(q, u) = d \operatorname{end}(q, u)^* p_1 \iff \exists t \mapsto p(t) \in T^*_{q(t)}M, \ p(1) = p_1,$$

$$\begin{cases} 0 = \partial_u H^{\lambda}(q(t), p(t), u(t)), \\ (\dot{q}(t), \dot{p}(t)) = \nabla^{\omega} H^{\lambda}(q(t), p(t), u(t)) = (\partial_p H^{\lambda}, -\partial_q H^{\lambda}). \end{cases}$$

(日) (同) (三) (三)

э

Normal Hamiltonian

- For $\lambda = 0$, (q, u) singular point of end: singular curve.
- For λ = 1, q extremal point of the action: p(·) is the momentum of q.

Normal Hamiltonian

- For $\lambda = 0$, (q, u) singular point of end: singular curve.
- For λ = 1, q extremal point of the action: p(·) is the momentum of q.

$$\partial_u H^1(q, p, u) = 0 \iff g_q(u, \cdot) = \xi_q^* p \in \mathcal{H}_q^*$$

 $\Leftrightarrow H^1(q, p, u) = \max_{u' \in \mathcal{H}_q} H^1(q, p, u') := h(q, p).$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Normal Hamiltonian

- For $\lambda = 0$, (q, u) singular point of end: singular curve.
- For λ = 1, q extremal point of the action: p(·) is the momentum of q.

$$\partial_u H^1(q, p, u) = 0 \iff g_q(u, \cdot) = \xi_q^* p \in \mathcal{H}_q^*$$

 $\Leftrightarrow H^1(q, p, u) = \max_{u' \in \mathcal{H}_q} H^1(q, p, u') := h(q, p).$

The mapping $h: T^*M \to \mathbb{R} \cup \{+\infty\}$ is the normal Hamiltonian.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let us start with the strong case.

Let $K_q : \mathcal{H}_q^* \to \mathcal{H}_q$ such that $\forall \alpha \in \mathcal{H}_q^*, \ \alpha = g_q(K_q\alpha, \cdot)$. K is a smooth vector bundle morphism.

Let us start with the strong case.

Let $K_q : \mathcal{H}_q^* \to \mathcal{H}_q$ such that $\forall \alpha \in \mathcal{H}_q^*$, $\alpha = g_q(K_q\alpha, \cdot)$. K is a smooth vector bundle morphism. Then

$$g_q(u,\cdot) = \xi_q^* p \quad \Longleftrightarrow \quad u = K_q \xi_q^* p,$$

so that $h(q, p) = \frac{1}{2}p\xi_q K_q \xi_q^* p$ is as smooth as ξ . Then $\partial_p h(q, p) \in T_q^{**} M$ can be identified to $\xi_q K_q \xi_q^* p \in T_q M$.

Consequence: *h* has a symplectic gradient, which is as smooth as $d\xi$.

(4月) (1日) (日)

Geodesic flow

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Theorem

For a strong structure with ξ of class C^3 , h admits a symplectic gradient of classe C^2 , and for any initial condition $(q(0), p(0)) \in T^*M$, there exists a unique solution $t \mapsto (q(t), p(t)) \in T^*M$ such that

$$egin{aligned} (\dot{q}(t),\dot{p}(t)) &=
abla^{\omega}h(q(t),p(t)) \ &= (\partial_p h(q,p),-\partial_q h(q,p)). \end{aligned}$$

Then $q(\cdot)$ is indeed a (normal) geodesic.

・ロト ・同ト ・ヨト ・ヨト

Elusive geodesics

- 4 回 ト 4 ヨト 4 ヨト

Remark: By restricting the structure to a stable proper dense $M' \subset M$ submanifold, we obtain bigger cotangent spaces and hence "more" normal geodesics. Those geodesics were elusive in M.

Elusive geodesics

- 4 同 6 4 日 6 4 日 6

Remark: By restricting the structure to a stable proper dense $M' \subset M$ submanifold, we obtain bigger cotangent spaces and hence "more" normal geodesics. Those geodesics were elusive in M.

Open problem: is there a "right" cotangent space (such that elusive geodesics disappear).

Elusive geodesics

イロト イポト イラト イラト

Remark: By restricting the structure to a stable proper dense $M' \subset M$ submanifold, we obtain bigger cotangent spaces and hence "more" normal geodesics. Those geodesics were elusive in M.

Open problem: is there a "right" cotangent space (such that elusive geodesics disappear).

Example: on the infinite product of Heisenberg groups, as $\mathcal{O}_0 = \ell^2(\mathbb{N}, \mathbb{R}^2) \times \ell^1(\mathbb{N}, \mathbb{R})$, taking p(0) in $\ell^2(\mathbb{N}, \mathbb{R}^2) \times \ell^\infty(\mathbb{N}, \mathbb{R})$ makes all minimizing geodesics into normal geodesics.

The weak case and adapted cotangent sub-bundles

Difficulty: for weak structures, h(q, p) may be infinite.

Definition

A dense sub-bundle $\tau^*M \hookrightarrow T^*M$ is said to be adapted to the structure if the restriction of h to τ^*M is finite.

The restriction of ω to such a sub-bundle remains a weak symplectic form. However, the restriction of h has a symplectic gradient only when, in a local trivialization, we can write $\partial_q h(q, p) \in \tau_q^* M$.

Example: for the Riemannian case $\mathcal{H} = TM$, simply take $\tau^*M = g(TM, \cdot)$.

Geodesic flow

Definitions and examples Accessibility and the Chow-Rashevski theorem Hamiltonians and geodesic flow

Theorem (page 39)

Let τ^*M be an adapted cotangent sub-bundle on which h possesses a C^2 symplectic gradient. Then for any initial condition $(q(0), p(0)) \in \tau^*M$, there exists a unique solution $t \mapsto (q(t), p(t)) \in \tau^*M$ such that

$$egin{aligned} & (\dot{q}(t),\dot{p}(t)) =
abla^{\omega}h(q(t),p(t)) \ &= (\partial_{p}h(q,p),-\partial_{q}h(q,p)). \end{aligned}$$

In this case, $q(\cdot)$ is a local geodesic.

・ロト ・同ト ・ヨト ・ヨト

Infinite dimensional sub-Riemannian geometry Right-invariant sub-Riemannian geometry on a group of diffeomorp

Plan

Infinite dimensional sub-Riemannian geometry

- Definitions and examples
- Accessibility and the Chow-Rashevski theorem
- Hamiltonians and geodesic flow

Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

- Definition and first results
- Chow-Rashevski on $\mathcal{D}^{s}(M)$
- Reproducing kernel and the geodesic flow

・ 同 ト ・ 三 ト ・

Definition and first results Chow-Rashevski on $\mathcal{D}^{s}(M)$ Reproducing kernel and the geodesic flow

The group of H^s diffeomorphisms

Let *M* be a complete manifold of bounded geometry. This lets us define the space $\Gamma^{s}(TM)$ of vector fields of class H^{s} , s > dim(M)/2 + 1.

Let
$$\mathcal{D}^{s}(M) = \exp(\Gamma^{s}(TM)) \cap \text{Diff}^{1}(M)$$
.

This space is a Hilbert manifold and a topological group for the composition law, with

$$T_{\varphi}\mathcal{D}^{s}(M)=\Gamma^{s}(TM)\circ\varphi.$$

イロト イポト イヨト イヨト

Right-invariant vector fields

The mapping $\varphi \mapsto \varphi \circ \psi$ is smooth for every ψ .

While $\varphi \mapsto \psi \circ \varphi$ is of class \mathcal{C}^k whenever ψ is actually of class H^{s+k} .

So if $X \in \Gamma^{s+k}(TM)$, then $\varphi \in \mathcal{D}^{s}(M) \mapsto X \circ \varphi \in T_{\varphi}\mathcal{D}^{s}(M)$ is of class \mathcal{C}^{k} .

Consequence: If $t \mapsto \varphi(t)$ is a \mathcal{C}^1 -curve $\mathcal{D}^s(M)$ starting at Id_M , then $\varphi(t)$ is the flow of the time dependent vector field $X(t) = \dot{\varphi}(t) \circ \varphi(t)^{-1}$, that is,

 $\dot{\varphi}(t) = X(t) \circ \varphi(t).$

Moreover, $t \mapsto X(t)$ is continuous in time.

(4月) (1日) (日)

Right-invariant SR structures

Let $(V, \langle \cdot, \cdot \rangle)$ be a Hilbert space of vector fields with continuous inclusion in $\Gamma^{s+k}(TM)$.

The mapping $(\varphi, X) \mapsto X \circ \varphi$ from $\mathcal{D}^{s}(M) \times V$ into $T\mathcal{D}^{s}(M)$ defines a \mathcal{C}^{k} relative tangent space, which, in addition to the Hilbert product $\langle \cdot, \cdot \rangle$, then *defines a strong sub-Riemannian structure* on $\mathcal{D}^{s}(M)$.

イロト イポト イラト イラト

Right-invariant SR structures

Let $(V, \langle \cdot, \cdot \rangle)$ be a Hilbert space of vector fields with continuous inclusion in $\Gamma^{s+k}(TM)$.

The mapping $(\varphi, X) \mapsto X \circ \varphi$ from $\mathcal{D}^{s}(M) \times V$ into $T\mathcal{D}^{s}(M)$ defines a \mathcal{C}^{k} relative tangent space, which, in addition to the Hilbert product $\langle \cdot, \cdot \rangle$, then *defines a strong sub-Riemannian structure* on $\mathcal{D}^{s}(M)$.

Horizontal curves $t \mapsto \varphi(t)$ are those such that there exists $X \in L^2(0, 1; V)$ such that, almost everywhere,

$$\dot{\varphi}(t) = X(t) \circ \varphi(t).$$

So they are just flows of time-dependent vector fields of V. The energy is

$$\frac{1}{2}\int_0^1 \langle X(t), X(t)\rangle \, dt.$$

Infinite dimensional sub-Riemannian geometry Right-invariant sub-Riemannian geometry on a group of diffeomorp Definition and first results Chow-Rashevski on $\mathcal{D}^{s}(M)$ Reproducing kernel and the geodesic flow

Sub-Riemannian distance

We also define length, sub-Riemannian distance, and geodesics as usual.

Proposition

The sub-Riemannian distance is right-invariant, complete, and any two diffeomorphisms with finite distance from one another can be connected by a minimizing geodesic.

Moreover, $\mathcal{O}_{\mathrm{Id}_M} = \{\varphi \in \mathcal{D}^s(M) \mid d(\mathrm{Id}_M, \varphi) < \infty\}$ is a subgroup of $\mathcal{D}^s(M)$.

(日) (同) (三) (三)

Infinite dimensional sub-Riemannian geometry Right-invariant sub-Riemannian geometry on a group of diffeomorp

Plan

Infinite dimensional sub-Riemannian geometry

- Definitions and examples
- Accessibility and the Chow-Rashevski theorem
- Hamiltonians and geodesic flow

Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

- Definition and first results
- Chow-Rashevski on $\mathcal{D}^{s}(M)$
- Reproducing kernel and the geodesic flow

・ 同 ト ・ 三 ト ・

< ロ > < 同 > < 回 > < 回 >

Horizontal flows

Let X_1, \ldots, X_r be smooth vector fields on M satisfying the Chow-Rashevski bracket generating condition. This defines a sub-Riemannian structure on M.

Assume that V is the set of vector fields X of the form

$$X(x) = \sum_{i=1}^{k} u^{i}(x)X_{i}(x), \quad u^{i} \in H^{s}(M),$$

that is, the set of horizontal vector fields of class H^s .

This means that $t \mapsto \varphi(t)$ is horizontal if and only if each curve $t \mapsto \varphi(t, x)$ is horizontal on M.

Infinite dimensional sub-Riemannian geometry Right-invariant sub-Riemannian geometry on a group of diffeomorp

Accessible set

Definition and first results **Chow-Rashevski on** $\mathcal{D}^{s}(M)$ Reproducing kernel and the geodesic flow

Theorem

If M is compact, then $G^V = \mathcal{D}_0^s(M)$. Moreover, the topology induced by the sub-Riemannian distance coincides with the manifold topology.

In other words, if any two points on M can be connected by a horizontal curve, any two diffeomorphisms of M can be connected by composition with the flow of a horizontal vector field.

Remark: Not true when *M* is not compact.

Infinite dimensional sub-Riemannian geometry Right-invariant sub-Riemannian geometry on a group of diffeomorp

Plan

Infinite dimensional sub-Riemannian geometry

- Definitions and examples
- Accessibility and the Chow-Rashevski theorem
- Hamiltonians and geodesic flow

Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

- Definition and first results
- Chow-Rashevski on $\mathcal{D}^{s}(M)$
- Reproducing kernel and the geodesic flow

・ 同 ト ・ ヨ ト ・ ヨ

Hamiltonian for $M = \mathbb{R}^d$

On \mathbb{R}^d , $\mathcal{D}^s(\mathbb{R}^d)$ is the set of diffeomorphisms of the form $\varphi(x) = x + X(x)$, with $X \in H^s(\mathbb{R}^d, \mathbb{R}^d)$. So we can just write $T_{\varphi}\mathcal{D}^s(\mathbb{R}^d) = H^s(\mathbb{R}^d, \mathbb{R}^d)$.

Hence, $T^*_{\varphi}\mathcal{D}^s(\mathbb{R}^d) = H^{-s}(\mathbb{R}^d, (\mathbb{R}^d)^*)$, that is, the set of distributional valued 1-forms with coefficients in H^{-s} , and

$$(p \mid X) = \int_{\mathbb{R}^d} p(x)X(x)dx.$$

The Hamiltonian $H: T^*\mathcal{D}^s(\mathbb{R}^d) \to \mathbb{R}$ is

$$H(\varphi, p) = \max_{X \in V} \int_{\mathbb{R}^d} p(x) X(\varphi(x)) dx - \frac{1}{2} \langle X, X \rangle.$$

伺 ト イヨト イヨト

Reproducing kernel

 $V \hookrightarrow \mathcal{C}^0(\mathbb{R}^d, \mathbb{R}^d)$ implies that $V^* \to V$ is obtained by convolution with a kernel $(x, y) \mapsto K(x, y) \in \mathbb{R}^d \otimes \mathbb{R}^d$.

- 4 同 6 4 日 6 4 日 6

Reproducing kernel

 $V \hookrightarrow \mathcal{C}^0(\mathbb{R}^d, \mathbb{R}^d)$ implies that $V^* \to V$ is obtained by convolution with a kernel $(x, y) \mapsto K(x, y) \in \mathbb{R}^d \otimes \mathbb{R}^d$.

Let $p \in H^{s}(\mathbb{R}^{d}, \mathbb{R}^{d})^{*} = \{1 \text{-forms on } \mathbb{R}^{d} \text{with coefficients in } H^{-s}\} \subset V^{*}$. then

$$p_{|V} = \langle X, \cdot \rangle \iff X(x) = \int_M K(x, y) p(y) dy, \quad x \in M.$$

・ロト ・同ト ・ヨト ・ヨト

イロト イポト イラト イラト

Reproducing kernel

 $V \hookrightarrow \mathcal{C}^0(\mathbb{R}^d, \mathbb{R}^d)$ implies that $V^* \to V$ is obtained by convolution with a kernel $(x, y) \mapsto K(x, y) \in \mathbb{R}^d \otimes \mathbb{R}^d$.

Let $p \in H^{s}(\mathbb{R}^{d}, \mathbb{R}^{d})^{*} = \{1 \text{-forms on } \mathbb{R}^{d} \text{with coefficients in } H^{-s}\} \subset V^{*}$. then

$$p_{|V} = \langle X, \cdot \rangle \iff X(x) = \int_M K(x, y) p(y) dy, \quad x \in M.$$

Conversely, any symmetric positive definite convolution kernel K defines a unique Hilbert space of vector fields V.

Infinite dimensional sub-Riemannian geometry Right-invariant sub-Riemannian geometry on a group of diffeomorp Definition and first results Chow-Rashevski on $\mathcal{D}^{s}(M)$ Reproducing kernel and the geodesic flow

Hamiltonian for $M = \mathbb{R}^d$

We can compute the Hamiltonian thanks to the kernel $\mathcal{K} : \mathbb{R}^d \times \mathbb{R}^d \to \mathcal{L}((\mathbb{R}^d)^*, \mathbb{R}^d)$:

$$H(\varphi, p) = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} p(x) K(\varphi(x), \varphi(y)) p(y) dy dx.$$

・ロト ・同ト ・ヨト ・ヨト

Hamiltonian for $M = \mathbb{R}^d$

We can compute the Hamiltonian thanks to the kernel $\mathcal{K} : \mathbb{R}^d \times \mathbb{R}^d \to \mathcal{L}((\mathbb{R}^d)^*, \mathbb{R}^d)$:

$$H(\varphi, p) = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} p(x) K(\varphi(x), \varphi(y)) p(y) dy dx.$$

When $V \hookrightarrow H^{s+2}(\mathbb{R}^d, \mathbb{R}^d)$, the Hamiltonian is \mathcal{C}^2 , and the Hamiltonian equations

 $\dot{\varphi}(t) = \partial_{p} H(\varphi(t), p(t)), \quad \dot{p}(t) = -\partial_{\varphi} H(\varphi(t), p(t))$

have a unique solution for fixed $(\varphi_0, p_0) \in T^*\mathcal{D}^s(M)$.

Definition and first results Chow-Rashevski on $\mathcal{D}^{s}(M)$ Reproducing kernel and the geodesic flow

(日) (同) (三) (三)

Hamiltonian equations

Theorem

Let $t \mapsto (\varphi(t), p(t))$ satisfy the geodesic equations

$$\partial_t \varphi(t,x) = \int_{\mathbb{R}^d} K(\varphi(t,x),\varphi(t,y)) p(t,y) dy$$

and

$$\partial_t p(t,x) = -p(t,x) \int_{\mathbb{R}^d} \partial_1 K(\varphi(t,x),\varphi(t,y)) p(t,y) dy.$$

Then, if H is of class C^3 , φ is a geodesic on small enough intervals.

H is of class C^3 , for example, when we have a continuous inclusion of *V* in $H^{s+3}(\mathbb{R}^d, \mathbb{R}^d)$, but not only.

Infinite dimensional sub-Riemannian geometry Right-invariant sub-Riemannian geometry on a group of diffeomorp

Remarks

Definition and first results Chow-Rashevski on $\mathcal{D}^{s}(M)$ Reproducing kernel and the geodesic flow

- 同 ト - ヨ ト - - ヨ ト

A lot of properties of p are preserved along the Hamiltonian equations. In particular, the support of p is constant. This is well-known, for example in landmarks: momentum can only be exchanged between points that already had momentum to begin with.

The (negative) Sobolev regularity of p as a distribution is also preserved.