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Infinite dimensional sub-Riemannian geometry
Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

While sub-Riemannian geometry has been an increasing area of
study for a few decades, the infinite dimensional case is largely
unexplored.

In Riemannian geometry, 2 categories of Riemannian Banach
manifolds: the strong (Hilbert) case, which behaves almost exactly
like in finite dimensions, and the weak (pre-Hilbertian) case, for
which the distance between points may be 0 and the geodesic flow
may not exist.

We will see that for sub-Riemannian Banach manifolds, even the
strong case presents several significant difficulties preventing the
generalization of certain finite dimensional and/or Riemannian
results. In particular, there is no Pontryagin maximum principle,
hence some geodesics can be neither normal nor abnormal.
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Relative tangent spaces

Let M be a smooth manifold. Usually, a sub-Riemannian structure
on M is a couple (H, g), where H is a sub-bundle of TM (i.e. a
distribution on M) and g a Riemannian metric on H. However,
this does not take into account rank-varying structures.

Definition

A rank-varying distribution of subspaces on a Banach manifold M
of class Ck , also called a relative tangent space of class Ck , is a
couple (H, ξ), where H is a smooth Banach vector bundle on M
and ξ : H → TM is a vector bundle morphism of class Ck .

In other words, for q ∈ M, ξq is a linear mapping Hq → TqM.

The distribution of subspaces ξ(H) ⊂ TM is called the horizontal
bundle.
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Définition

Definition

A sub-Riemannian structure on a Banach manifold M is a triple
(H, ξ, g), with (H, ξ) a relative tangent bundle on M and g a
smooth pre-Hilbertian metric on H.

Agrachev Boscain et al. 2010 [ABC+10]

The structure is called strong when g defines a Hilbert norm on
each fiber, and weak in all other cases.
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Horizontal vector fields and curves

Horizontal vector fields and curves are those that are everywhere
tangent to ξ(H), i.e.:

Definition

A vector field X ∈ Γ(TM) is horizontal if

∃u ∈ Γ(H), X (q) = ξqu(q), q ∈ M.

A curve t 7→ q(t) of Sobolev class H1 is horizontal if

∃t 7→ u(t) ∈ Hq(t), q̇(t) = ξq(t)u(t)

for almost every t, with (q(·), u(·)) ∈ L2. The couple (q(·), u(·)) is
a horizontal system, q is the trajectory while u is the control.
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Example: the Heisenberg group

M = R3, and horizontal distribution generated by

X1 =
∂

∂x
− 1

2
y
∂

∂z
, X2 =

∂

∂y
+

1

2
x
∂

∂z
.

Horizontal vector field: X = uX1 + vX2, u, v : R3 → R3.

Horizontal curve: ż(t) = 1
2 (xẏ − ẋy), ẋ , ẏ ∈ L2(0, 1;R).
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Length and action

Length and action of a horizontal system (q, u):

L(q, u) =

∫ √
gq(t)(u(t), u(t))dt,

A(q, u) =
1

2

∫
gq(t)(u(t), u(t))dt.

Length of a curve q(·):

L(q) = inf
u,(q,u) horizontal

L(q, u).

For strong structures, there always exists a unique u such that
L(q, u) = L(q). However, easier to work on systems than on
curves.
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Sub-riemannian distance

Sub-riemannian distance:

∀q0, q1 ∈ M, d(q0, q1) = inf
(q,u)∈L2(0,1;H),
(q,u) horizontal,
q(0)=q0, q(1)=q1

L(q, u).

Semi-distance M ×M → [0,+∞], and always true distance
for strong structures.

Orbit of q0 ∈ M: Oq0 = {q | d(q0, q) < +∞}.
Geodesic: curve q for which there exists a control u such
that (q, u) minimizes the action A with fixed endpoints on
small enough intervalls.
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Lie algebra generated by the structure

Let L ⊂ Γ(TM) be the Lie algebra of vector fields generated by
smooth and horizontal vector fields. We can identify it with a
subset of TM using Lq = {X (q) | X ∈ L}.

Theorem (Chow-Rashevski)

For M connected and finite dimensional, if L = TM, then the
distance between any two points in M is finite (controlability).
Moreover, the topology induced by d coincides with its intrisic
manifold topology.

Belläıche 1996 [BR96], Montgomery 2002 [Mon02]

Open problem when dim(M) =∞. Moreover, Lq is rarely even a
closed subset of TqM, because L is generated algebraically.

Sylvain Arguillère (CIS, Johns Hopkins University) Geometry Seminar, Texas A&MInfinite dimensional sub-Riemannian geometry



Infinite dimensional sub-Riemannian geometry
Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

Definitions and examples
Accessibility and the Chow-Rashevski theorem
Hamiltonians and geodesic flow

Lie algebra generated by the structure

Let L ⊂ Γ(TM) be the Lie algebra of vector fields generated by
smooth and horizontal vector fields. We can identify it with a
subset of TM using Lq = {X (q) | X ∈ L}.

Theorem (Chow-Rashevski)

For M connected and finite dimensional, if L = TM, then the
distance between any two points in M is finite (controlability).
Moreover, the topology induced by d coincides with its intrisic
manifold topology.
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Example: product of Heisenberg groups

M = `2(N,R3) =

{
(xn, yn, zn)n∈N |

∞∑
n=0

x2
n + y2

n + z2
n < +∞

}
.

Horizontal curves:

żn =
1

2
(xnẏn − ẋnyn), n ∈ N.

Then

d(0, (xn, yn, zn))2 '
∞∑
n=0

x2
n + y2

n + |zn|.

Hence O0 = `2(N;R2)× `1(N;R) is only dense with empty interior
in M: approximate controllability.
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Conditions for approximate controllability

Theorem (Conditions for approximate controllability)

If M is connected and if L is dense in TM then every orbit is dense.

Dubnikov Samborskii 1980

The proof makes use of the following lemma.

Lemma

Assume M connected. Let B ⊂ M be a closed subset such that
TqB (velocities at q of curves in B) is dense in TqM. Then
B = M.

Recently generalized to convenient spaces by Grong, Markina et
Vasil’ev.
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Conditions for exact controllability

Let X1, . . . ,Xr be smooth horizontal vector fields. For
I = (i1, . . . , ik) define

XI = [Xik , [Xik−1
, . . . , [Xi2 ,Xi1 ] . . . ].

We say that the structure satisfies the strong Chow-Rashevski
property at q ∈ M if,

∃n ∈ N, ∀Z (q) ∈ TqM, Z (q) =
n∑

k=0

∑
I∈{1,...,r}k

[YI ,XI ](q)

with each YI a horizontal vector field.

Example: M = R× `2(N,R2), and horizontal vector fields
generated by

X (x , yn, zn) =
∂

∂x
, Yn(x , yn, zn) =

∂

∂yn
+ x

∂

∂zn
.
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Conditions for exact controllability

When this property is satisfied, one can adapt the finite
dimensional proof and obtain:

Theorem

Assume M is connected and the structure satisfies the strong
Chow-Rashevski theorem at every x ∈ M. Then M is an orbit, and
the topology induced by the sub-Riemannian distance is coarser
than the intrisic manifold topology (for strong structure, the
topologies coincide, and M is Hilbert).
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Set of horizontal systems

Let q0 ∈ M be fixed. Define

ΩHq0
= {(q, u) ∈ L2(0, 1;H) | (q, u) horizontal q(0) = q0}

To equip ΩHq0
with a manifold structure, we would need a local

addition on M (exists for Lie groups for example).

However, on U ⊂ M open such that H|U ' U×H, one can identify
horizontal systems in H|U with an open subset of L2(0, 1;H).
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Endpoint mapping

Definition

Soit q0 ∈ M. The endpoint mapping end : ΩHq0
→ M is given by

end(q, u) = q(1). Its regularity is the same as that of ξ.

We have Oq0 = end(ΩHq0
).
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Constrained optimisation

Lemma

Let M be a Banach manifold, F :M→ R a smooth cost and
C :M→ M smooth constraints. If u ∈M minimizes F on
C−1(q), then d(F ,C )(u) = (dF (u), dC (u)) is not surjective.

If dim(M) <∞, the conclusion is equivalent to

∃λ ∈ {0, 1}, p ∈ T ∗qM, λdF (u) = dC (u)∗p,

with λ or p non-zero. However, if dim(M) =∞, the image of
d(F ,C )(u) may be dense.
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Three kinds of geodesics

We apply this lemma with F = A and C = end.

Lemma

Let (q, u) ∈ ΩHq0
be a minimizing geodesic connecting q0 and

end(q, u) = q1. Then one of the following statements is true:

1 ∃(λ, p1) ∈ {0, 1} × T ∗q1
M \ {(0, 0)},

λdA(q, u) = dend(q, u)∗p1.

If λ = 1: normal geodesic.
If λ = 0, (q, u) is a singular point of end: abnormal
geodesic.

2 Im(dA(q, u), d end(q, u)) is a proper dense subset of
R× Tq1M ( elusive geodesic).

In the end, this tells us nothing.
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Partial converse

Lemma

Let M be a Banach manifold, F :M→ R a smooth cost and
C :M→ M smooth constraints. Let u ∈M. Then

1 If there exists p ∈ T ∗qM such that dF (u) = dC (u)∗p, then u
is a critical point of F on C−1(q).

2 If there exists 0 6= p ∈ T ∗qM such that 0 = dC (u)∗p, then u is
a critical point of C .
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Converse

Let us apply our partial converse.

Lemma

Let (q, u) ∈ ΩHq0
with q(1) = q1 and p1 ∈ T ∗q1

M.

1 If dA(q, u) = d end(q, u)∗p1 then (q, u) is a critical point of
the action with fixed endpoints.

2 If p1 6= 0 and 0 = d end(q, u)∗p1, then (q, u) is a critical
point of end. We say that q is a singular curve.

Obviously, not every critical point of A with fixed endpoints have
this form.
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Hamiltonian

Let ω be the canonical weak symplectic form of T ∗M, and
λ ∈ {0, 1}. Define Hλ : T ∗M ⊕H → R :

Hλ(q, p, u) = (p | ξqu)− λ

2
gq(u, u).

If ∂uH
λ(q, p, u) = 0, then

∇ωHλ(q, p, u) = (∂pH,−∂qH) ∈ T(q,p)T
∗M

is defined intrinsically (since ∂pH(q, p, u) ∈ T ∗∗q M can be
identified to ξqu ∈ TqM).
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Hamiltonian formulation

Proposition

λdA(q, u) = d end(q, u)∗p1 ⇐⇒ ∃t 7→ p(t) ∈ T ∗q(t)M, p(1) = p1,{
0 = ∂uH

λ(q(t), p(t), u(t)),

(q̇(t), ṗ(t)) = ∇ωHλ(q(t), p(t), u(t)) = (∂pH
λ,−∂qHλ).
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Normal Hamiltonian

For λ = 0, (q, u) singular point of end: singular curve.

For λ = 1, q extremal point of the action: p(·) is the
momentum of q.

∂uH
1(q, p, u) = 0⇐⇒ gq(u, ·) = ξ∗qp ∈ H∗q

⇔ H1(q, p, u) = max
u′∈Hq

H1(q, p, u′) := h(q, p).

The mapping h : T ∗M → R ∪ {+∞} is the normal
Hamiltonian.
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Let us start with the strong case.

Let Kq : H∗q → Hq such that ∀α ∈ H∗q, α = gq(Kqα, ·). K is a
smooth vector bundle morphism.

Then

gq(u, ·) = ξ∗qp ⇐⇒ u = Kqξ
∗
qp,

so that h(q, p) = 1
2pξqKqξ

∗
qp is as smooth as ξ. Then

∂ph(q, p) ∈ T ∗∗q M can be identified to ξqKqξ
∗
qp ∈ TqM.

Consequence: h has a symplectic gradient, which is as smooth as
dξ.
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Geodesic flow

Theorem

For a strong structure with ξ of class C3, h admits a symplectic
gradient of classe C2, and for any initial condition
(q(0), p(0)) ∈ T ∗M, there exists a unique solution
t 7→ (q(t), p(t)) ∈ T ∗M such that

(q̇(t), ṗ(t)) = ∇ωh(q(t), p(t))

= (∂ph(q, p),−∂qh(q, p)).

Then q(·) is indeed a (normal) geodesic.
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Elusive geodesics

Remark: By restricting the structure to a stable proper dense
M ′ ⊂ M submanifold, we obtain bigger cotangent spaces and hence
”more” normal geodesics. Those geodesics were elusive in M.

Open problem: is there a ”right” cotangent space (such that
elusive geodesics disappear).

Example: on the infinite product of Heisenberg groups, as
O0 = `2(N,R2)× `1(N,R), taking p(0) in `2(N,R2)× `∞(N,R)
makes all minimizing geodesics into normal geodesics.
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The weak case and adapted cotangent sub-bundles

Difficulty: for weak structures, h(q, p) may be infinite.

Definition

A dense sub-bundle τ∗M ↪→ T ∗M is said to be adapted to the
structure if the restriction of h to τ∗M is finite.

The restriction of ω to such a sub-bundle remains a weak
symplectic form. However, the restriction of h has a symplectic
gradient only when, in a local trivialization, we can write
∂qh(q, p) ∈ τ∗qM.

Example: for the Riemannian case H = TM, simply take
τ∗M = g(TM, ·).
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Geodesic flow

Theorem (page 39)

Let τ∗M be an adapted cotangent sub-bundle on which h
possesses a C2 symplectic gradient. Then for any initial condition
(q(0), p(0)) ∈ τ∗M, there exists a unique solution
t 7→ (q(t), p(t)) ∈ τ∗M such that

(q̇(t), ṗ(t)) = ∇ωh(q(t), p(t))

= (∂ph(q, p),−∂qh(q, p)).

In this case, q(·) is a local geodesic.
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The group of H s diffeomorphisms

Let M be a complete manifold of bounded geometry. This lets us
define the space Γs(TM) of vector fields of class Hs ,
s > dim(M)/2 + 1.

Let Ds(M) = exp(Γs(TM)) ∩ Diff1(M).

This space is a Hilbert manifold and a topological group for the
composition law, with

TϕDs(M) = Γs(TM) ◦ ϕ.
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Right-invariant vector fields

The mapping ϕ 7→ ϕ ◦ ψ is smooth for every ψ.

While ϕ 7→ ψ ◦ ϕ is of class Ck whenever ψ is actually of class
Hs+k .

So if X ∈ Γs+k(TM), then ϕ ∈ Ds(M) 7→ X ◦ ϕ ∈ TϕDs(M) is of
class Ck .

Consequence: If t 7→ ϕ(t) is a C1-curve Ds(M) starting at IdM ,
then ϕ(t) is the flow of the time dependent vector field
X (t) = ϕ̇(t) ◦ ϕ(t)−1, that is,

ϕ̇(t) = X (t) ◦ ϕ(t).

Moreover, t 7→ X (t) is continuous in time.
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Right-invariant SR structures

Let (V , 〈·, ·〉) be a Hilbert space of vector fields with continuous
inclusion in Γs+k(TM).

The mapping (ϕ,X ) 7→ X ◦ ϕ from Ds(M)× V into TDs(M)
defines a Ck relative tangent space, which, in addition to the
Hilbert product 〈·, ·〉, then defines a strong sub-Riemannian
structure on Ds(M).

Horizontal curves t 7→ ϕ(t) are those such that there exists
X ∈ L2(0, 1;V ) such that, almost everywhere,

ϕ̇(t) = X (t) ◦ ϕ(t).

So they are just flows of time-dependent vector fields of V . The
energy is

1

2

∫ 1

0
〈X (t),X (t)〉 dt.
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Sub-Riemannian distance

We also define length, sub-Riemannian distance, and geodesics as
usual.

Proposition

The sub-Riemannian distance is right-invariant, complete, and any
two diffeomorphisms with finite distance from one another can be
connected by a minimizing geodesic.

Moreover, OIdM = {ϕ ∈ Ds(M) | d(IdM , ϕ) <∞} is a subgroup
of Ds(M).

Sylvain Arguillère (CIS, Johns Hopkins University) Geometry Seminar, Texas A&MInfinite dimensional sub-Riemannian geometry



Infinite dimensional sub-Riemannian geometry
Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

Definition and first results
Chow-Rashevski on Ds (M)
Reproducing kernel and the geodesic flow

Plan

1 Infinite dimensional sub-Riemannian geometry
Definitions and examples
Accessibility and the Chow-Rashevski theorem
Hamiltonians and geodesic flow

2 Right-invariant sub-Riemannian geometry on a group of
diffeomorphisms

Definition and first results
Chow-Rashevski on Ds(M)
Reproducing kernel and the geodesic flow

Sylvain Arguillère (CIS, Johns Hopkins University) Geometry Seminar, Texas A&MInfinite dimensional sub-Riemannian geometry



Infinite dimensional sub-Riemannian geometry
Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

Definition and first results
Chow-Rashevski on Ds (M)
Reproducing kernel and the geodesic flow

Horizontal flows

Let X1, . . . ,Xr be smooth vector fields on M satisfying the
Chow-Rashevski bracket generating condition. This defines a
sub-Riemannian structure on M.

Assume that V is the set of vector fields X of the form

X (x) =
k∑

i=1

ui (x)Xi (x), ui ∈ Hs(M),

that is, the set of horizontal vector fields of class Hs .

This means that t 7→ ϕ(t) is horizontal if and only if each curve
t 7→ ϕ(t, x) is horizontal on M.
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Accessible set

Theorem

If M is compact, then GV = Ds
0(M). Moreover, the topology

induced by the sub-Riemannian distance coincides with the
manifold topology.

In other words, if any two points on M can be connected by a
horizontal curve, any two diffeomorphisms of M can be connected
by composition with the flow of a horizontal vector field.

Remark: Not true when M is not compact.
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Hamiltonian for M = Rd

On Rd , Ds(Rd) is the set of diffeomorphisms of the form
ϕ(x) = x + X (x), with X ∈ Hs(Rd ,Rd). So we can just write
TϕDs(Rd) = Hs(Rd ,Rd).

Hence, T ∗ϕDs(Rd) = H−s(Rd , (Rd)∗), that is, the set of
distributional valued 1-forms with coefficients in H−s , and

(p | X ) =

∫
Rd

p(x)X (x)dx .

The Hamiltonian H : T ∗Ds(Rd)→ R is

H(ϕ, p) = max
X∈V

∫
Rd

p(x)X (ϕ(x))dx − 1

2
〈X ,X 〉 .
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Reproducing kernel

V ↪→ C0(Rd ,Rd) implies that V ∗ → V is obtained by convolution
with a kernel (x , y) 7→ K (x , y) ∈ Rd ⊗ Rd .

Let p ∈ Hs(Rd ,Rd)∗ = {1-forms on Rdwith coefficients in
H−s} ⊂ V ∗. then

p|V = 〈X , ·〉 ⇔ X (x) =

∫
M
K (x , y)p(y)dy , x ∈ M.

Conversely, any symmetric positive definite convolution kernel K
defines a unique Hilbert space of vector fields V .
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Hamiltonian for M = Rd

We can compute the Hamiltonian thanks to the kernel
K : Rd × Rd → L((Rd)∗,Rd):

H(ϕ, p) =
1

2

∫
Rd×Rd

p(x)K (ϕ(x), ϕ(y))p(y)dydx .

When V ↪→ Hs+2(Rd ,Rd), the Hamiltonian is C2, and the
Hamiltonian equations

ϕ̇(t) = ∂pH(ϕ(t), p(t)), ṗ(t) = −∂ϕH(ϕ(t), p(t))

have a unique solution for fixed (ϕ0, p0) ∈ T ∗Ds(M).

Sylvain Arguillère (CIS, Johns Hopkins University) Geometry Seminar, Texas A&MInfinite dimensional sub-Riemannian geometry



Infinite dimensional sub-Riemannian geometry
Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

Definition and first results
Chow-Rashevski on Ds (M)
Reproducing kernel and the geodesic flow

Hamiltonian for M = Rd

We can compute the Hamiltonian thanks to the kernel
K : Rd × Rd → L((Rd)∗,Rd):

H(ϕ, p) =
1

2

∫
Rd×Rd

p(x)K (ϕ(x), ϕ(y))p(y)dydx .

When V ↪→ Hs+2(Rd ,Rd), the Hamiltonian is C2, and the
Hamiltonian equations

ϕ̇(t) = ∂pH(ϕ(t), p(t)), ṗ(t) = −∂ϕH(ϕ(t), p(t))
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Hamiltonian equations

Theorem

Let t 7→ (ϕ(t), p(t)) satisfy the geodesic equations

∂tϕ(t, x) =

∫
Rd

K (ϕ(t, x), ϕ(t, y))p(t, y)dy

and

∂tp(t, x) = −p(t, x)

∫
Rd

∂1K (ϕ(t, x), ϕ(t, y))p(t, y)dy .

Then, if H is of class C3, ϕ is a geodesic on small enough intervals.

H is of class C3, for example, when we have a continuous inclusion
of V in Hs+3(Rd ,Rd), but not only.
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Remarks

A lot of properties of p are preserved along the Hamiltonian
equations. In particular, the support of p is constant. This is
well-known, for example in landmarks: momentum can only be
exchanged between points that already had momentum to begin
with.

The (negative) Sobolev regularity of p as a distribution is also
preserved.
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