Sub-Riemannian geometry in groups of diffeomorphisms and shape spaces

Sylvain Arguillère, Emmanuel Trélat (Paris 6), Alain Trouvé (ENS Cachan), Laurent Younès (JHU)

May 2013

Sylvain Arguillère, Emmanuel Trélat (Paris 6), Alain Trouvé (EN Shape Meeting 2013

Sub-Riemannian geometry Sub-Riemannian geometry on shape spaces

Right-invariant sub-Riemannian geometry on a group of 2 diffeomorphisms

3 Sub-Riemannian geometry on shape spaces

Right-invariant sub-Riemannian geometry on a group of diffeomorp Sub-Riemannian geometry on shape spaces

Plan

2 Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

Sub-Riemannian geometry on shape spaces

Sylvain Arguillère, Emmanuel Trélat (Paris 6), Alain Trouvé (EN Shape Meeting 2013

Right-invariant sub-Riemannian geometry on a group of diffeomorp Sub-Riemannian geometry on shape spaces

Relative tangent spaces

Let M be a smooth manifold. Usually, sub-Riemannian structure on M is a couple (\mathcal{H}, g) , where \mathcal{H} is a sub-bundle of TM (i.e. a *distribution* on M) and g a Riemannian metric on \mathcal{H} . Not general enough for shape spaces: we need rank-varying distributions.

Definition 1

(Agrachev et al.) A rank-varying distribution of subspaces on M of class C^k , also called a relative tangent space of class C^k , is a couple (\mathcal{H}, ξ) , where \mathcal{H} is a smooth vector bundle on M and $\xi : \mathcal{H} \to TM$ is a vector bundle morphism of class C^k .

In other words, for $x \in M$, ξ_x is a linear map $\mathcal{H}_x \to \mathcal{T}_x M$.

The distribution of subspaces $\xi(\mathcal{H}) \subset TM$ is called the *horizontal* bundle.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Right-invariant sub-Riemannian geometry on a group of diffeomorp Sub-Riemannian geometry on shape spaces

Sub-Riemannian structures

Definition 2

A sub-Riemannian structure on M is a triplet (\mathcal{H}, ξ, g) , where (\mathcal{H}, ξ) is a relative tangent space and g a Riemannian metric on \mathcal{H} .

A vector field X on M is **horizontal** if $X = \xi e$, for some section e of \mathcal{H} , i.e. if it is tangent to the horizontal distribution.

A curve $q : [0,1] \to M$ with square-integrable velocity is horizontal if it is tangent to the distribution, that is, if there exists $u \in L^2(0,1;\mathcal{H})$ with $u(t) \in \mathcal{H}_{q(t)}$ such that $\dot{q}(t) = \xi_{q(t)}u(t)$.

Its energy is defined by $\frac{1}{2} \int_0^1 g_{q(t)}(u(t), u(t)) dt$. The sub-Riemannian length, distance and geodesics are defined just as in the Riemannian case.

Locally, we can take an orthonormal frame e_1, \ldots, e_k of \mathcal{H} and define the vector fields $X_i(x) = \xi_x e_i(x)$, so that horizontal curves satisfy

$$\dot{q}(t) = \sum_{i=1}^{k} u^{i}(t) X_{i}(q(t)), \quad u(t) = \sum_{i=1}^{k} u_{i}(t) e_{i}(q(t)).$$

Its energy is given by $\frac{1}{2} \sum_{i=1}^{k} \int_{0}^{1} u^{i}(t)^{2} dt$.

Horizontal vector fields satisfy

$$X(x) = \sum_{i=1}^k u_i(x)X_i(x), \quad x \in M, \quad u_i: M \to \mathbb{R}.$$

Right-invariant sub-Riemannian geometry on a group of diffeomorp Sub-Riemannian geometry on shape spaces

Accessibility

A Riemannian structure satisfies the Chow-Rashevski condition if any tangent vector on M is a linear combination of iterated Lie brackets of horizontal vector fields.

Theorem 1

(Chow-Rashevski) In this case, any two points in M can be joined by a horizontal geodesic. Moreover, the topology defined by the sub-Riemannian distance coincides with its intrinsic manifold topology.

Right-invariant sub-Riemannian geometry on a group of diffeomorp Sub-Riemannian geometry on shape spaces

Hamiltonian

The Hamiltonian of the structure $H: T^*M \to \mathbb{R}$ is defined by

$$H(x,p) = \sup_{u \in \mathcal{H}_x} p(\xi_x u) - \frac{1}{2} g_x(u,u) = \sup_{u \in \mathbb{R}^k} \sum_{i=1}^k u^i p(X_i(x)) - \frac{1}{2} (u^i)^2.$$

Note that the $X_i(x)$ are linearly independent, then

$$H(x,p) = \frac{1}{2} \sum_{i=1}^{k} p(X_i(x))^2.$$

Sylvain Arguillère, Emmanuel Trélat (Paris 6), Alain Trouvé (EN Shape Meeting 2013

Right-invariant sub-Riemannian geometry on a group of diffeomorp Sub-Riemannian geometry on shape spaces

Geodesic equations

Theorem 1

Let $(q, p) : [0, 1] \rightarrow T^*M$ satisfying the Hamiltonian equations

$$\dot{q}(t) = \partial_p H(q(t), p(t)), \quad \dot{p}(t) = -\partial_q H(q(t), p(t)).$$

Then q is a geodesic on small enough intervals.

Contrarily to the Riemannian case, the converse is not true.

Plan

2 Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

Sub-Riemannian geometry on shape spaces

Sylvain Arguillère, Emmanuel Trélat (Paris 6), Alain Trouvé (EN Shape Meeting 2013

The group of H^s diffeomorphisms

Let *M* be a complete manifold of bounded geometry. This lets us define the space $\Gamma^{s}(TM)$ of vector fields of class H^{s} , s > dim(M)/2 + 1.

Let
$$\mathcal{D}^{s}(M) = \exp(\Gamma^{s}(TM)) \cap \text{Diff}^{1}(M)$$
.

This space is a Hilbert manifold and a topological group for the composition law, with

$$T_{\varphi}\mathcal{D}^{s}(M)=\Gamma^{s}(TM)\circ\varphi.$$

Right-invariant vector fields

The mapping $\varphi \mapsto \varphi \circ \psi$ is smooth for every ψ .

While $\varphi \mapsto \psi \circ \varphi$ is of class \mathcal{C}^k whenever ψ is actually of class H^{s+k} .

So if $X \in \Gamma^{s+k}(TM)$, then $\varphi \in \mathcal{D}^{s}(M) \mapsto X \circ \varphi \in T_{\varphi}\mathcal{D}^{s}(M)$ is of class \mathcal{C}^{k} .

Consequence: If $t \mapsto \varphi(t)$ is a \mathcal{C}^1 -curve $\mathcal{D}^s(M)$ starting at Id_M , then $\varphi(t)$ is the flow of the time dependent vector field $X(t) = \dot{\varphi}(t) \circ \varphi(t)^{-1}$, that is,

 $\dot{\varphi}(t) = X(t) \circ \varphi(t).$

Moreover, $t \mapsto X(t)$ is continuous in time.

Right-invariant SR structures

Let $(V, \langle \cdot, \cdot \rangle)$ be a Hilbert space of vector fields with continuous inclusion in $\Gamma^{s+k}(TM)$.

The mapping $(\varphi, X) \mapsto X \circ \varphi$ from $\mathcal{D}^{s}(M) \times V$ into $T\mathcal{D}^{s}(M)$ defines a \mathcal{C}^{k} relative tangent space, which, in addition to the Hilbert product $\langle \cdot, \cdot \rangle$, then *defines a strong sub-Riemannian structure* on $\mathcal{D}^{s}(M)$.

Horizontal curves $t \mapsto \varphi(t)$ are those such that there exists $X \in L^2(0, 1; V)$ such that, almost everywhere,

$$\dot{\varphi}(t) = X(t) \circ \varphi(t).$$

So they are just flows of time-dependent vector fields of V. The energy is

$$\frac{1}{2}\int_0^1 \langle X(t), X(t)\rangle \, dt.$$

Sub-Riemannian distance

We also define length, sub-Riemannian distance, and geodesics as usual.

Proposition 1

The sub-Riemannian distance is right-invariant, complete, and any two diffeomorphisms with finite distance from one another can be connected by a minimizing geodesic.

Moreover, $G^{V} = \{\varphi \in \mathcal{D}^{s}(M) \mid d(\mathrm{Id}_{M}, \varphi) \leq \infty\}$ is a subgroup of $\mathcal{D}^{s}(M)$.

Remark: Almost every infinite dimensional LDDMM methods are actually sub-Riemannian, not Riemannian. This does not make the methods wrong, because the control theoritic/Hamiltonian point of view are used, which do not depend on a Riemannian setting.

Horizontal flows

Let X_1, \ldots, X_r be smooth vector fields on M satisfying the Chow-Rashevski bracket generating condition. This defines a sub-Riemannian structure on M.

Assume that V is the set of vector fields X of the form

$$X(x) = \sum_{i=1}^{k} u^{i}(x)X_{i}(x), \quad u^{i} \in H^{s}(M),$$

that is, the set of horizontal vector fields of class H^s .

This means that $t \mapsto \varphi(t)$ is horizontal if and only if each curve $t \mapsto \varphi(t, x)$ is horizontal on M.

Accessible set

Theorem 2

(No full proof yet) If M is compact, then $G^V = \mathcal{D}_0^s(M)$. Moreover, the topology induced by the sub-Riemannian distance coincides with the manifold topology.

In other words, if any two points on M can be connected by a horizontal curve, any two diffeomorphisms of M can be connected by composition with the flow of a horizontal vector field.

This is very rare in infinite dimensional sub-Riemannian geometry.

Remark: Not true when *M* is not compact.

Hamiltonian for $M = \mathbb{R}^d$

On \mathbb{R}^d , $\mathcal{D}^s(\mathbb{R}^d)$ is the set of diffeomorphisms of the form $\varphi(x) = x + X(x)$, with $X \in H^s(\mathbb{R}^d, \mathbb{R}^d)$. So we can just write $T_{\varphi}\mathcal{D}^s(\mathbb{R}^d) = H^s(\mathbb{R}^d, \mathbb{R}^d)$.

Hence, $T^*_{\varphi}\mathcal{D}^s(\mathbb{R}^d) = H^{-s}(\mathbb{R}^d, (\mathbb{R}^d)^*)$, that is, the set of distributional valued 1-forms with coefficients in H^{-s} , and

$$(p \mid X) = \int_{\mathbb{R}^d} p(x)X(x)dx.$$

The Hamiltonian $H: T^*\mathcal{D}^s(\mathbb{R}^d) \to \mathbb{R}$ is

$$H(\varphi, p) = \max_{X \in V} \int_{\mathbb{R}^d} p(x) X(\varphi(x)) dx - \frac{1}{2} \langle X, X \rangle.$$

Hamiltonian for $M = \mathbb{R}^d$

We can compute the Hamiltonian thanks to the kernel $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathcal{L}((\mathbb{R}^d)^*, \mathbb{R}^d)$:

$$H(\varphi, p) = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} p(x) K(\varphi(x), \varphi(y)) p(y) dy dx.$$

When $V \hookrightarrow H^{s+2}(\mathbb{R}^d, \mathbb{R}^d)$, the Hamiltonian is \mathcal{C}^2 , and the Hamiltonian equations

 $\dot{\varphi}(t) = \partial_{p} H(\varphi(t), p(t)), \quad \dot{p}(t) = -\partial_{\varphi} H(\varphi(t), p(t))$

have a unique solution for fixed $(\varphi_0, p_0) \in T^*\mathcal{D}^s(M)$.

Hamiltonian equations

Theorem 3

Let $t \mapsto (\varphi(t), p(t))$ satisfy the geodesic equations

$$\partial_t \varphi(t,x) = \int_{\mathbb{R}^d} K(\varphi(t,x),\varphi(t,y)) p(t,y) dy$$

and

$$\partial_t p(t,x) = -p(t,x) \int_{\mathbb{R}^d} \partial_1 K(\varphi(t,x),\varphi(t,y)) p(t,y) dy.$$

Then, if H is of class C^3 , φ is a geodesic on small enough intervals.

H is of class C^3 , for example, when we have a continuous inclusion of *V* in $H^{s+3}(\mathbb{R}^d, \mathbb{R}^d)$, but not only.

イロト イボト イヨト イヨト

Remarks

A lot of properties of p are preserved along the Hamiltonian equations. In particular, the support of p is constant. This is well-known, for example in landmarks: momentum can only be exchanged between points that already had momentum to begin with.

The (negative) Sobolev regularity of p as a distribution is also preserved.

Example: sub-Riemannian Gaussian kernels

On \mathbb{R}^d , let X_1, \ldots, X_r be smooth vector fields of polynomial growth. Define

$$\mathcal{K}(x,y)p = e^{-\frac{|x-y|^2}{2\sigma}} \sum_{i=1}^r p(X_i(y))X_i(x).$$

Then $X \in V$ is horizontal for the sub-Riemannian structure on M induced by the X_i s. The Hamiltonian becomes

$$H(\varphi, p) = \sum_{i=1}^{r} \frac{1}{2} \int \int e^{-|\varphi(x)-\varphi(y)|^2} p(X_i(\varphi(y))) p(X_i(\varphi(x))) dx dy$$

Remark: When r = d and $X_i = \frac{\partial}{\partial x_i}$ we get the diagonal Gaussian kernel.

Plan

2 Right-invariant sub-Riemannian geometry on a group of diffeomorphisms

Sylvain Arguillère, Emmanuel Trélat (Paris 6), Alain Trouvé (EN Shape Meeting 2013

Definition of a shape space

A "shape space" is a rather vague concept. Let us give a rigorous and general definition which unifies most cases (pretty much every case except images). Let S be a Banach Manifold, and s_0 smallest integer greater than d/2. Let $\ell \in \mathbb{N}^*$ and assume that $\mathcal{D}^{s_0+\ell}(M)$ has a continuous action $(q, \varphi) \mapsto \varphi \cdot q$ on S. Denote $s = s_0 + \ell$.

Definition 3

 ${\mathcal S}$ is a shape space of order $\ell \in {\mathbb N}^*$ if :

The mapping φ → φ ⋅ q is smooth and Lipshitz for every q. Its differential at Id_{ℝ^d} is denoted ξ_q : H^s(ℝ^d, ℝ^d) → T_qS and is called the infinitesimal action.

2 The mapping $\xi : S \times H^{s+k}(\mathbb{R}^d, \mathbb{R}^d) \to TS$ is of class \mathcal{C}^k .

A state q has compact support if there exists $U \subset \mathbb{R}^d$ compact such that $\varphi \cdot q$ only depends on $\varphi_{|U}$.

Exemples

- $\mathcal{D}^{s_0+\ell}(M)$ is a shape space of order ℓ for the composition on the left.
- 2 Let S be a compact manifold. Then Emb^ℓ(S, ℝ^d) is a shape space of order ℓ for the action by left composition (φ, q) → φ ∘ q.
- For dim(S) = 0, $S = \{s_1, \ldots, s_n\}$ and $\operatorname{Emb}^{\ell}(S, \mathbb{R}^d) \simeq Lmk^n(\mathbb{R}^d)$ is a shape space of order 0, and $\varphi \cdot (x_1, \ldots, x_n) = (\varphi(x_1), \ldots, \varphi(x_n)).$
- A product of shape spaces is a shape space.

Shape spaces of higher order

The tangent bundle of a shape space of order ℓ is a shape space of order $\ell + 1$. For example, for $S = Lmk^n(\mathbb{R}^d)$, $TS = Lmk^n(\mathbb{R}^d) \times (\mathbb{R}^d)^n$ and $\varphi \cdot (x_1, \dots, x_n, w_1, \dots, w_n)$ is given by $(\varphi(x_1), \dots, \varphi(x_n), d\varphi(x_1)w_1, \dots, d\varphi(x_n)w_n).$

This example can be used to model muscles: w_i would be the direction of the muscle fiber at x_i .

Induced sub-Riemannian structure

Let S be a shape space of order ℓ , and V a Hilbert space of vector fields with continuous inclusion in $H^{s+k}(\mathbb{R}^d, \mathbb{R}^d)$. Then $\xi : (q, X) \mapsto \xi_q X$ and $\langle \cdot, \cdot \rangle$ define a sub-Riemannian structure on Sof class C^k .

A curve $t \mapsto q(t)$ is horizontal if there exists $X \in L^2(0, 1; V)$,

$$\dot{q}(t) = \xi_{q(t)} X(t).$$

In other words, $q(t) = \varphi^X(t) \cdot q(0)$ where $t \mapsto \varphi^X(t)$ is the flow of X. The energy of q is $\frac{1}{2} \int_0^1 \langle X(t), X(t) \rangle dt$. We then define the sub-Riemannian length, the sub-Riemannian distance d and geodesics as usual.

Sub-Riemannian distance

Proposition 2

The sub-Riemannian distance is a true distance with values in $[0, +\infty]$. Let $q_0 \in S$ have compact support, and $\mathcal{O}_{q_0} = \{q \in S \mid d(q_0, q) < +\infty\}$. Then (\mathcal{O}_{q_0}, d) is a complete metric space, and any two points can be connected by a geodesic.

Hamiltonian equations

The Hamiltonian $H: T^*\mathcal{S} \to \mathbb{R}$ is

$$H(q,p) = \max_{X \in V} p\xi_q X - \frac{1}{2} \langle X, X \rangle = \frac{1}{2} p\xi_q K_V \xi_q^* p.$$

Denoting
$$K_q = \xi_q K_V \xi_q^* : T_q^* S \to T_q S$$
, we get $H(q, p) = \frac{1}{2} p K_q p$.

Proposition 3

Let $t \mapsto (q(t), p(t))$ satisfy the Hamiltonian equations

$$\dot{q} = \partial_p H(q(t), p(t)), \quad \dot{p} = -\partial_q H(q(t), p(t)).$$

Image: A image: A

Then $q(\cdot)$ is a geodesic on small enough intervals.

The converse is *not* true.

LDDMM

Proposition 4

Let $t \mapsto X(t) \in V$ minimize

$$J(X) = \int_0^1 \langle X(t), X(t) \rangle \, dt + g(q(1)),$$

- 4 同 6 4 日 6 4 日 6

where $q(t) = \varphi^{X}(t) \cdot q_{0}$, q_{0} fixed, and $g : S \to \mathbb{R}$ of class C^{1} . Then there exists $t \mapsto p(t) \in T^{*}_{q(t)}S$ such that $(q(\cdot), p(cdot))$ satisfy the Hamiltonian equations.