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Relative tangent spaces

Let M be a smooth manifold. Usually, sub-Riemannian structure
on M is a couple (H, g), where H is a sub-bundle of TM (i.e. a
distribution on M) and g a Riemannian metric on H. Not general
enough for shape spaces: we need rank-varying distributions.

Definition 1

(Agrachev et al.) A rank-varying distribution of subspaces on M
of class Ck , also called a relative tangent space of class Ck , is a
couple (H, ξ), where H is a smooth vector bundle on M and
ξ : H → TM is a vector bundle morphism of class Ck .

In other words, for x ∈ M, ξx is a linear map Hx → TxM.

The distribution of subspaces ξ(H) ⊂ TM is called the horizontal
bundle.
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Sub-Riemannian structures

Definition 2

A sub-Riemannian structure on M is a triplet (H, ξ, g), where
(H, ξ) is a relative tangent space and g a Riemannian metric on
H.

A vector field X on M is horizontal if X = ξe, for some section e
of H, i.e. if it is tangent to the horizontal distribution.

A curve q : [0, 1]→ M with square-integrable velocity is horizontal
if it is tangent to the distribution, that is, if there exists
u ∈ L2(0, 1;H) with u(t) ∈ Hq(t) such that q̇(t) = ξq(t)u(t).

Its energy is defined by 1
2

∫ 1
0 gq(t)(u(t), u(t))dt. The

sub-Riemannian length, distance and geodesics are defined just as
in the Riemannian case.
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Locally, we can take an orthonormal frame e1, . . . , ek of H and
define the vector fields Xi (x) = ξxei (x), so that horizontal curves
satisfy

q̇(t) =
k∑

i=1

ui (t)Xi (q(t)), u(t) =
k∑

i=1

ui (t)ei (q(t)).

Its energy is given by 1
2

∑k
i=1

∫ 1
0 ui (t)2dt.

Horizontal vector fields satisfy

X (x) =
k∑

i=1

ui (x)Xi (x), x ∈ M, ui : M → R.
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Accessibility

A Riemannian structure satisfies the Chow-Rashevski condition if
any tangent vector on M is a linear combination of iterated Lie
brackets of horizontal vector fields.

Theorem 1

(Chow-Rashevski) In this case, any two points in M can be
joined by a horizontal geodesic. Moreover, the topology defined by
the sub-Riemannian distance coincides with its intrinsic manifold
topology.
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Hamiltonian

The Hamiltonian of the structure H : T ∗M → R is defined by

H(x , p) = sup
u∈Hx

p(ξxu)− 1

2
gx(u, u) = sup

u∈Rk

k∑
i=1

uip(Xi (x))− 1

2
(ui )2.

Note that the Xi (x) are linearly independent, then

H(x , p) =
1

2

k∑
i=1

p(Xi (x))2.
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Geodesic equations

Theorem 1

Let (q, p) : [0, 1]→ T ∗M satisfying the Hamiltonian equations

q̇(t) = ∂pH(q(t), p(t)), ṗ(t) = −∂qH(q(t), p(t)).

Then q is a geodesic on small enough intervals.

Contrarily to the Riemannian case, the converse is not true.
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The group of H s diffeomorphisms

Let M be a complete manifold of bounded geometry. This lets us
define the space Γs(TM) of vector fields of class Hs ,
s > dim(M)/2 + 1.

Let Ds(M) = exp(Γs(TM)) ∩ Diff1(M).

This space is a Hilbert manifold and a topological group for the
composition law, with

TϕDs(M) = Γs(TM) ◦ ϕ.
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Right-invariant vector fields

The mapping ϕ 7→ ϕ ◦ ψ is smooth for every ψ.

While ϕ 7→ ψ ◦ ϕ is of class Ck whenever ψ is actually of class
Hs+k .

So if X ∈ Γs+k(TM), then ϕ ∈ Ds(M) 7→ X ◦ ϕ ∈ TϕDs(M) is of
class Ck .

Consequence: If t 7→ ϕ(t) is a C1-curve Ds(M) starting at IdM ,
then ϕ(t) is the flow of the time dependent vector field
X (t) = ϕ̇(t) ◦ ϕ(t)−1, that is,

ϕ̇(t) = X (t) ◦ ϕ(t).

Moreover, t 7→ X (t) is continuous in time.
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Right-invariant SR structures

Let (V , 〈·, ·〉) be a Hilbert space of vector fields with continuous
inclusion in Γs+k(TM).

The mapping (ϕ,X ) 7→ X ◦ ϕ from Ds(M)× V into TDs(M)
defines a Ck relative tangent space, which, in addition to the
Hilbert product 〈·, ·〉, then defines a strong sub-Riemannian
structure on Ds(M).

Horizontal curves t 7→ ϕ(t) are those such that there exists
X ∈ L2(0, 1;V ) such that, almost everywhere,

ϕ̇(t) = X (t) ◦ ϕ(t).

So they are just flows of time-dependent vector fields of V . The
energy is

1

2

∫ 1

0
〈X (t),X (t)〉 dt.
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Sub-Riemannian distance

We also define length, sub-Riemannian distance, and geodesics as
usual.

Proposition 1

The sub-Riemannian distance is right-invariant, complete, and any
two diffeomorphisms with finite distance from one another can be
connected by a minimizing geodesic.

Moreover, GV = {ϕ ∈ Ds(M) | d(IdM , ϕ) ≤ ∞} is a subgroup of
Ds(M).
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Remark: Almost every infinite dimensional LDDMM methods are
actually sub-Riemannian, not Riemannian. This does not make the
methods wrong, because the control theoritic/Hamiltonian point of
view are used, which do not depend on a Riemannian setting.
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Horizontal flows

Let X1, . . . ,Xr be smooth vector fields on M satisfying the
Chow-Rashevski bracket generating condition. This defines a
sub-Riemannian structure on M.

Assume that V is the set of vector fields X of the form

X (x) =
k∑

i=1

ui (x)Xi (x), ui ∈ Hs(M),

that is, the set of horizontal vector fields of class Hs .

This means that t 7→ ϕ(t) is horizontal if and only if each curve
t 7→ ϕ(t, x) is horizontal on M.
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Accessible set

Theorem 2

(No full proof yet) If M is compact, then GV = Ds
0(M). Moreover,

the topology induced by the sub-Riemannian distance coincides
with the manifold topology.

In other words, if any two points on M can be connected by a
horizontal curve, any two diffeomorphisms of M can be connected
by composition with the flow of a horizontal vector field.

This is very rare in infinite dimensional sub-Riemannian geometry.

Remark: Not true when M is not compact.
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Hamiltonian for M = Rd

On Rd , Ds(Rd) is the set of diffeomorphisms of the form
ϕ(x) = x + X (x), with X ∈ Hs(Rd ,Rd). So we can just write
TϕDs(Rd) = Hs(Rd ,Rd).

Hence, T ∗ϕDs(Rd) = H−s(Rd , (Rd)∗), that is, the set of
distributional valued 1-forms with coefficients in H−s , and

(p | X ) =

∫
Rd

p(x)X (x)dx .

The Hamiltonian H : T ∗Ds(Rd)→ R is

H(ϕ, p) = max
X∈V

∫
Rd

p(x)X (ϕ(x))dx − 1

2
〈X ,X 〉 .
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Hamiltonian for M = Rd

We can compute the Hamiltonian thanks to the kernel
K : Rd × Rd → L((Rd)∗,Rd):

H(ϕ, p) =
1

2

∫
Rd×Rd

p(x)K (ϕ(x), ϕ(y))p(y)dydx .

When V ↪→ Hs+2(Rd ,Rd), the Hamiltonian is C2, and the
Hamiltonian equations

ϕ̇(t) = ∂pH(ϕ(t), p(t)), ṗ(t) = −∂ϕH(ϕ(t), p(t))

have a unique solution for fixed (ϕ0, p0) ∈ T ∗Ds(M).
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Hamiltonian equations

Theorem 3

Let t 7→ (ϕ(t), p(t)) satisfy the geodesic equations

∂tϕ(t, x) =

∫
Rd

K (ϕ(t, x), ϕ(t, y))p(t, y)dy

and

∂tp(t, x) = −p(t, x)

∫
Rd

∂1K (ϕ(t, x), ϕ(t, y))p(t, y)dy .

Then, if H is of class C3, ϕ is a geodesic on small enough intervals.

H is of class C3, for example, when we have a continuous inclusion
of V in Hs+3(Rd ,Rd), but not only.
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Remarks

A lot of properties of p are preserved along the Hamiltonian
equations. In particular, the support of p is constant. This is
well-known, for example in landmarks: momentum can only be
exchanged between points that already had momentum to begin
with.

The (negative) Sobolev regularity of p as a distribution is also
preserved.
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Example: sub-Riemannian Gaussian kernels

On Rd , let X1, . . . ,Xr be smooth vector fields of polynomial
growth. Define

K (x , y)p = e−
|x−y|2

2σ

r∑
i=1

p(Xi (y))Xi (x).

Then X ∈ V is horizontal for the sub-Riemannian structure on M
induced by the Xi s. The Hamiltonian becomes

H(ϕ, p) =
r∑

i=1

1

2

∫ ∫
e−|ϕ(x)−ϕ(y)|2p(Xi (ϕ(y)))p(Xi (ϕ(x)))dxdy

Remark: When r = d and Xi = ∂
∂xi

we get the diagonal Gaussian
kernel.
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Definition of a shape space

A ”shape space” is a rather vague concept. Let us give a rigorous
and general definition which unifies most cases (pretty much every
case except images). Let S be a Banach Manifold, and s0 smallest
integer greater than d/2. Let ` ∈ N∗ and assume that Ds0+`(M)
has a continuous action (q, ϕ) 7→ ϕ · q on S. Denote s = s0 + `.

Definition 3

S is a shape space of order ` ∈ N∗ if :

1 The mapping ϕ 7→ ϕ · q is smooth and Lipshitz for every q.
Its differential at IdRd is denoted ξq : Hs(Rd ,Rd)→ TqS and
is called the infinitesimal action.

2 The mapping ξ : S × Hs+k(Rd ,Rd)→ TS is of class Ck .

A state q has compact support if there exists U ⊂ Rd compact
such that ϕ · q only depends on ϕ|U .
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Exemples

1 Ds0+`(M) is a shape space of order ` for the composition on
the left.

2 Let S be a compact manifold. Then Emb`(S ,Rd) is a shape
space of order ` for the action by left composition
(ϕ, q) 7→ ϕ ◦ q.

3 For dim(S) = 0, S = {s1, . . . , sn} and
Emb`(S ,Rd) ' Lmkn(Rd) is a shape space of order 0, and
ϕ · (x1, . . . , xn) = (ϕ(x1), . . . , ϕ(xn)).

4 A product of shape spaces is a shape space.
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Shape spaces of higher order

The tangent bundle of a shape space of order ` is a shape space of
order `+ 1. For example, for S = Lmkn(Rd),
TS = Lmkn(Rd)× (Rd)n and ϕ · (x1, . . . , xn,w1, . . . ,wn) is given
by

(ϕ(x1), . . . , ϕ(xn), dϕ(x1)w1, . . . , dϕ(xn)wn).

This example can be used to model muscles: wi would be the
direction of the muscle fiber at xi .
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Induced sub-Riemannian structure

Let S be a shape space of order `, and V a Hilbert space of vector
fields with continuous inclusion in Hs+k(Rd ,Rd). Then
ξ : (q,X ) 7→ ξqX and 〈·, ·〉 define a sub-Riemannian structure on S
of class Ck .

A curve t 7→ q(t) is horizontal if there exists X ∈ L2(0, 1;V ),

q̇(t) = ξq(t)X (t).

In other words, q(t) = ϕX (t) · q(0) where t 7→ ϕX (t) is the flow of

X . The energy of q is 1
2

∫ 1
0 〈X (t),X (t)〉 dt. We then define the

sub-Riemannian length, the sub-Riemannian distance d and
geodesics as usual.
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Sub-Riemannian distance

Proposition 2

The sub-Riemannian distance is a true distance with values in
[0,+∞].
Let q0 ∈ S have compact support, and
Oq0 = {q ∈ S | d(q0, q) < +∞}. Then (Oq0 , d) is a complete
metric space, and any two points can be connected by a geodesic.
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Hamiltonian equations

The Hamiltonian H : T ∗S → R is

H(q, p) = max
X∈V

pξqX −
1

2
〈X ,X 〉 =

1

2
pξqKV ξ

∗
qp.

Denoting Kq = ξqKV ξ
∗
q : T ∗qS → TqS, we get H(q, p) = 1

2pKqp.

Proposition 3

Let t 7→ (q(t), p(t)) satisfy the Hamiltonian equations

q̇ = ∂pH(q(t), p(t)), ṗ = −∂qH(q(t), p(t)).

Then q(·) is a geodesic on small enough intervals.

The converse is not true.
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LDDMM

Proposition 4

Let t 7→ X (t) ∈ V minimize

J(X ) =

∫ 1

0
〈X (t),X (t)〉 dt + g(q(1)),

where q(t) = ϕX (t) · q0, q0 fixed, and g : S → R of class C1.
Then there exists t 7→ p(t) ∈ T ∗q(t)S such that (q(·), p(cdot))
satisfy the Hamiltonian equations.
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