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Goal: Adding constraints to shapes in order to better fit the
modeled object. (Ex: Shapes with constant volume, several
independent shapes that can’t overlap...)
Finding geodesic equations and minimization algorithms.

Method: Optimal control in finite and infinite dimensions.
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Deformations

Let S be a compact Riemannian manifold and M = C0(S ,Rd) be
our shape space.

Exemples:

When S = S1 the unit circle, M is the set of all continuous
closed curves.

When dim(S) = 0, S = (s1, . . . , sn) is a union of n points:
M = (Rd)n is the landmark space.
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Action of the group of diffeomorphisms

Left action: ϕ a diffeomorphism of class C1 acts on q ∈ M by
ϕ · q = ϕ ◦ q.

On landmarks: ϕ · (x1, . . . , xn) = (ϕ(x1), . . . , ϕ(xn)).

Infinitesimal action: v vector field of class C1 acts on M by
v · q = v ◦ q ∈ TqM.

On landmarks: v · (x1, . . . , xn) = (v(x1), . . . , v(xn)).

Momentum map: this map T ∗M → C1(Rd ,Rd)∗ is written
(q, p)→ µ(q, p), with

µ(q, p)(v) = p(v · q).

On landmarks: µ(x1, . . . , xn, p1, . . . , pn) = p1⊗ δx1 + · · ·+ pn⊗ δxn .
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Cost function

Let (V , 〈·, ·, 〉) be an RKHS of bounded vector fields, with kernel
K : Rd ×Rd → Mn(R). Also denote by KV the isometry V ∗ → V .

Cost function: for a fixed starting point q0 ∈ M and a data
attachment function g : M → R, we will want to minimize the cost
function J : L2([0, 1],V ) −→ R given by

J(v) =
1

2

∫ 1

0
‖v(t)‖2dt + g(q(1)),

with q(1) given by the control system

q(0) = q0 and q̇(t) = v(t) ◦ q(t).
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Remark

In finite dimensions, if v is of minimal norm among all vector fields
with the same infinitesimal action on the state q, then for some p,

v = KVµ(q, p) = K (·, x1)p1 + · · ·+ K (·, xn)pn.

Not true in infinite dimensions. (if range of µ is not closed)
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Semi-linear constraints

Addition of constraints: Let Y be a Banach space. Define
constraints C : M × V → Y linear in the second variable, i.e. of
the form C (q, v) = Cqv .
We will want to restrict ourselves to constrained trajectories:
Cq(t)v(t) = 0.

Particular cases:

1 ”Kinetic” constraints, i.e. constraints on the speed:
Cqq̇ = Cq(v · q).

2 State constraints C (q) = 0 are equivalent to the constraints
dCq(v · q) = 0.
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Multishapes

Consider several shapes S1, . . . ,Sk , boundaries of open sets
U1, . . . ,Uk of Rd , and S = S1 t · · · t Sk , boundary of
U = (U1 ∪ · · · ∪ Uk)c .
Each Ui : distinct shape, deformed by a distinct diffeomorphism ϕi .
U: ”background”, deformed by another difféomorphism ϕ.
We want all boundaries to keep glued together along the
deformation:

ϕi |Si = ϕ|Si , i = 1 . . . , k .

Application: studying simultaneously different parts of the brain.
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Multiformes

If we want the constraints to be independent of the
parametrisation of the boundaries, we need to allow sliding
constraints, reducing the constraints to

ϕi (Si ) = ϕ(Si ), i = 1 . . . , k.

Remark: This is a pure state constraint, but its discretization to
landmarks is not.
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Statement of the problem

Optimal control problem: We want to minimize

J(v) =
1

2

∫ 1

0
‖v(t)‖2dt + g(q(1)),

with q(1) given by the control system

q(0) = q0 and q̇(t) = v(t) · q(t),

among all v ∈ L2([0, 1],V ) such that

Cq(t)v(t) = 0 a.e. t ∈ [0, 1].
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Existence

Theorem 1

Assume

1 The norm on V satisfies ‖v‖1,∞ ≤ c‖v‖,
2 C est continuous,

3 g est continuous and admits a lower bound.

Then J admits a constrained minimizer v∗ ∈ L2([0, 1],V ).
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Hamiltonien

Hamiltonian: It is defined on T ∗M × V × Y ∗ by

H(q, p, v , λ) = p(v ◦ q)− 1

2
‖v‖2 − λ(Cqv),

with q ∈ M, p ∈ M∗ (Lagrange multiplier of q̇ = v ◦ q), v ∈ V
and λ ∈ Y ∗ ((Lagrange multiplier of Cqv = 0).
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Maximum principle

Theorem 2

Assume that

1 ‖v‖1,∞ ≤ c‖v‖,
2 C and g are of class C1,

3 Cq is onto for every q. (restrictive)

Then, for every constrained minimizer, there exists
p ∈ H1([0, 1],M∗) and λ ∈ L2([0, 1],Y ∗) such that
p(1) + dgq(1) = 0 and a.e. t ∈ [0, 1],

0 = ∂vH(q, p, v , λ)

q̇ = ∂pH(q, p, v , λ)

ṗ =− ∂qH(q, p, v , λ)

Moreover, t 7→ ‖v(t)‖ is constant.
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Reduction

First equation gives

∂vH(q, p, v , λ) = 0 ⇒ v = v(q, p) = KV (µ(q, p)− C ∗qλ).

Cqv = 0 implies

λ = λ(q, p) = (CqKVC
∗
q )−1CqKVµ(q, p).

Remark: In particular, when the constraints are kinetic, the first
equation becomes

v = KVµ(q, p − C ∗qλ) = KVµ(q, u).
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Geodesic equations

We get the constrained geodesic equations{
q̇ = ∂ph(q, p),

ṗ =− ∂qh(q, p),

with h(q, p) = H(q, p, v(q, p), λ(q, p)) is the reduced hamiltonian
and t 7→ ‖v(q(t), p(t))‖ is constant.

Minimization algorithm: we just minimize

J(v(q, p)) =
1

2
‖v(q(0), p(0))‖2 + g(q(1))

with respect to the initial momentum p(0).
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Thank you for your attention!
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Theorem 3

Let Cn : M × V → Y n be a sequence of continuous constraints
such that kerCn

q is decreasing and
⋂

n kerCn
q = kerCq.

Let gn : M → R be a sequence of continuous data attachment
maps that converges uniformly to g on every compact subset of
M, and let Jn the associated costs.
Let vn be minimizers of Jn along the constraints defined by Cn.
Then, up to the extraction of a subsequence, vn converges weakly
toward a minimizer v∗ of the original problem. Moreover, if there is
only one such minimizer, there is no need to extract a subsequence.
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