
REGISTRATION OF MULTIPLE SHAPES USING CONSTRAINED OPTIMAL CONTROL
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ABSTRACT. Lagrangian particle formulations of the large deformation diffeomorphic metric mapping algorithm (LDDMM)
only allow for the study of a single shape. In this paper, we introduce and discuss both a theoretical and practical setting for
the simultaneous study of multiple shapes that are either stitched to one another or slide along a submanifold. The method
is described within the optimal control formalism, and optimality conditions are given, together with the equations that are
needed to implement augmented Lagrangian methods. Experimental results are provided for stitched and sliding surfaces.

1. INTRODUCTION

The large deformation diffeomorphic metric mapping (LDDMM) approach to shape matching is a powerful topology-
preserving registration method with an increasing record of successful applications in medical imaging. It was
first described in [38] for point sets and in [17, 61, 46, 8] for images, and has become widely used in the med-
ical imaging literature and other applications. While deeper understanding and extensions of the underlying the-
oretical framework was pursued [47, 22, 10, 48, 72, 21, 73, 9, 2] and alternative numerical methods were designed
[5, 14, 62, 50, 29, 66, 4, 28, 18], LDDMM has been applied to medical imaging data including brain [45, 79, 53, 11, 56],
heart [1, 6] and lung [58, 55, 52, 67] images. This algorithm provides a non-rigid registration method between various
types of objects (point sets, curves surfaces, functions, vector fields. . . ) within a unified framework driven by Grenan-
der’s concept of deformable templates [25]. It optimizes a flow of diffeomorphisms that transform an initial object
(shape) into a target one.

The practical importance of shape registration is underlined by the increasing amount of work that has flourished
in the literature over the past few years. LDDMM is one among many methods that have been proposed to perform
this task. Several such methods are based on elastic matching energies [7, 16], and other, like LDDMM, inspired
by viscous fluid dynamics [12, 59, 64, 3, 65, 49]. For surfaces, which will be our main focus, several authors have
developed approaches to find approximate conformal parametrizations with respect to the unit disk or sphere [33,
31, 36, 26, 37, 70, 34, 27, 35]. More recently, quasi-conformal parametrizations based on the minimization of the
Beltrami coefficient have been designed [77, 41, 69]. Another class of non-rigid registration methods include those
based on optimal mass transportation [30, 32, 39, 40], while [44, 42, 43] introduce comparison methods based on
Gromov–Hausdorff or Gromov–Wasserstein distances. Computational methods based on integer programming and
graph optimization have also been recently introduced [78, 80, 23]. We also refer the reader to the survey papers
[81, 15, 71, 74] and textbooks [24, 73] for additional entries on the literature.

In this paper, we discuss an extension of the LDDMM framework, in which multiple shapes are registered simul-
taneously within a deformation scheme involving –in a restricted form– contact constraints among the shapes. This
is represented and solved as a constrained optimal control problem, in the spirit of the general framework recently
introduced in [2].

Indeed, one of the characteristics of LDDMM is that it derives shape deformation from a global diffeomorphisms
of the whole ambient space considered as a homogeneous medium, and does not allow for a differentiation of the
deformation properties assumed by the shapes, or, more precisely, the objects they represent. This crude modeling may
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provide results that are not realistic in some applications. Consider the situation in which one studies several shapes,
representing, for example, different sub-structures of the brain. In this case, if one assumes that all shapes are deformed
by a single flow of diffeomorphisms, shapes coming too close to one another will undergo a tremendous deformation,
which creates artifacts that can mislead subsequent analyses. One would rather associate a different diffeomorphism
to each shape, independent from the others, but the issue is that the resulting collection of diffeomorphisms may not
be consistent: the shapes could overlap along the deformation. The solution briefly introduced in [2] and developed
in this paper is the following: embed the shapes into a ”background”, complement of the shapes, deformed by a
new, independent deformation, and add constraints such that, as all the shapes are simultaneously transformed, their
boundary moves with the boundary of the background so that the configuration consistency is preserved. This is the
approach that we develop here, focusing on surface registration. Note that a multi-diffeomorphism approach has been
recently developed for image matching [57], each diffeomorphism being restricted to a fixed region of the plane. The
main (and fundamental) contrast with what we develop here is that, in our case, these subregions are variable and
optimized, while they were fixed in [57]. The models along which sliding constraints are addressed in this paper and
ours also differ. Certain approaches for sliding images have been investigated in [58, 55, 52] without the LDDMM
viewpoint.

This paper is organized as follows. We start by recalling the classical LDDMM algorithm in Section 2, setting
the definitions, notation and appropriate framework for the rest of the paper. Then, in Section 3, we introduce rig-
orously the concept of multishape, describe identity and sliding background constraints, and describe the augmented
Lagrangian algorithm for general constraints that will be used for in our numerical simulations. Section 4 follows,
specializing the algorithm to the case of identity and sliding constraints in great details. Finally, Section 6 applies our
method to synthetic examples to to real data as well.

2. LARGE DEFORMATION DIFFEOMORPHIC METRIC MAPPING

2.1. Notation. Throughout the paper, for any Banach space X , the notation (µ | v) will be used to designate the
application µ(v) of a linear form µ ∈ X∗ to a vector v ∈ X .

We define a shape as a Cp embedding q : M → Rd, where M is a compact manifold and p is a positive integer.
We denote byM the corresponding shape space (the space of all such embeddings), which is an open subset of the
Banach space Q = Cp(M,Rd).

Typical examples are as follows:

• M = {1, . . . , l} is finite, and q can be identified with a collection x1, . . . , xl of distinct points in Rd.
• M = [0, 1] and q is a curve in Rd.
• M = Sd−1 (the unit sphere in Rd) and q is a hypersurface.

In practice, continuous shapes need to be discretized, for example with a triangulation, making the first case the most
important.

Our goal is to discuss models in which several shapes can deform, while being subject to contact constraints.
The deformation process will be similar to the one designed for large deformation diffeomorphic metric mapping
(LDDMM), which can be formulated as an optimal control problem. Before introducing our general framework, it
will be easier to start with a description of the now well explored single-shape problem upon which we will build. For
this, we let (V, ‖ · ‖V ) be a Hilbert space of vector fields on Rd, assumed to be continuously embedded in the Banach
spaceCp0 (Rd,Rd) of vector fields on Rd going to 0 at infinity (that is, the completion of the space of smooth compactly
supported vector fields for the norm ‖ · ‖p,∞, which denotes the sum of supremum norms of derivatives of order p or
less, with p ≥ 1). Then V possesses a reproducing kernel: a mapping K : (x, y) ∈ (Rd)2 7→ K(x, y) ∈ Md(R),
where Md(R) denotes the space of d× d matrices, such that

K(·, y)a ∈ V with 〈K(·, y)a , w〉V = a · w(y),
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for all (a, y) ∈ (Rd)2 and w ∈ V . Moreover, all partial derivatives with order at most p with respect to each variable
exist. The LDDMM algorithm uses flows of time-dependent vector fields v(·) ∈ L2(0, 1;V ) with square-integrable
norms in V with respect to time.

In practice, one usually uses radial kernels, that is, kernels of the form K(x, y) = G( |x−y|
2

σ )IdRd , with G : R+ →
[0, 1] a smooth decreasing function. The positive number σ is called the scale of the kernel.

2.2. Registering Two Shapes Using LDDMM.

General Problem. The general LDDMM problem is formulated as the infinite-dimensional optimal control problem
consisting of minimizing the cost functional

(1) F̃ (v) =
1

2

∫ 1

0

‖v(t)‖2V dt+ U(q(1)),

subject to the constraint

∂tq(t) = v(t) ◦ q(t) for a.e. t ∈ [0, 1],

q(0) = qinit .
(2)

This differential constraint gives a control system, where the control is the time-dependent vector field v(·) ∈ L2(0, 1;V ),
the solution of which is q(t) = ϕ(t) ◦ qinit with ϕ is the flow of diffeomorphisms generated by v(·). Recall that this
flow is defined as the unique solution of the Cauchy problem ∂tϕ(t) = u(t) ◦ϕ(t), ϕ(0) = idRd . For every time t, we
have ϕ(t, ·) ∈ Diff p, the set of p-times differentiable diffeomorphisms in Rd.

The function U : Q → R is a matching cost function, that is, a penalization that pushes the solution of (1)-(2)
towards a target. It will be assumed to be Fréchet differentiable from Q to R. To simplify the discussion, and because
this covers most of the interesting cases in practice, we will assume that there exists some fixed measure νM onM such
that the derivative of U , denoted dU(q) or dUq when evaluated at q ∈ Q, can be expressed in the form dUq = zqνM
for some (νM -measurable) zq : M → Rd, that is,

∀h ∈ Cp(M,Rd), (dUq |h) =

∫
M

h(m) · zq(m) dνM (m).

In most cases, U is an L2-norm, a measure norm or a current norm [63]. See Appendix A for more details. Under
these assumptions, the cost F̃ is Fréchet differentiable on the Hilbert space L2(0, 1;V ), and its differential can be
computed explicitly.

Derivative of a Cost Functional in Optimal Control: Hamiltonian Formulation. We briefly recall the method for the
computation of the derivative of a cost functionnal in the framework of control theory. We refer to [2] or [60] for
details, and just give the result. Consider a Hilbert space V and a Banach space B, a fixed point x0 ∈ B, functions
L : B × V → R and g : B → R, a mapping f : B × V → B, and a cost function of the form

E(u) =

∫ 1

0

L(x(t), u(t))dt+ g(x(1)),

where the control u belongs to L2(0, 1;V ), and x : [0, 1]→ B is the solution of the Cauchy problem x(0) = x0 and

ẋ = f(x, u)

almost everywhere. Then, assuming L, g and f are of class C1 and the Fréchet derivative of ∂uL(x, u) in u is bounded
by a continuous function of (x, u) that has linear growth as u goes to infinity,E is differentiable. This derivative can be
computed using the Hamiltonian H : B×B∗×V → R of the system, defined by H(q, p, u) = (p|f(q, u))−L(q, u).
Now, for a fixed control u and trajectory x, an integration by part shows that

∀ũ ∈ L2(0, 1;V ), (dEu|ũ) = −
∫ 1

0

(∂uH(q(t), p(t), u(t))|ũ(t))dt,
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where the costate p : [0, 1]→ B∗ is the solution of the Cauchy problem p(1) = −dg(x(1)) and ṗ(t) = −∂xH(x(t), p(t), u(t))
for almost every t in [0, 1].

Now, applying this method to our framework, we see that the Hamiltonian is given by (p|v ◦ q) − 1
2‖v‖

2. From
there, we easily get that, for p : [0, 1] ×M → Rd be the solution of the Cauchy problem p(1) = −zq(1) (so that
dUq(1) = p(1) dνM ), and ∂tp = −(dv ◦ q)T p, we have

∀X ∈ L2(0, 1;V ), (dFv|X) =

∫ 1

0

〈v(t), X(t)〉V dt−
∫ 1

0

∫
M

X(t, q(t,m)) · p(t,m)dνM (m)dt.

The properties of the reproducing kernel then yields

(dFv|X) =

∫ 1

0

〈
v(t)−

∫
M

K(·, q(t,m))p(t,m)dνM (m), X(t)

〉
V

dt.

We deduce the gradient ∇F̃ (v) of F̃ at v in L2(0, 1;V ) for its canonical Hilbert product. It is the time-dependent
vector field satisfying, for almost every t ∈ [0, 1], and every x ∈ Rd,

(3) ∇F̃ (v)(t, x) = v(t, x)−
∫
M

K(x, q(t,m))p(t,m) dνM (m).

Reduced Problem. An optimal control v must satisfy ∇F (v) = 0. Hence, there exists α : M → Rd such that for
almost every t in [0, 1] and every x in Rd,

(4) v(t, x) =

∫
M

K(x, q(t,m))α(t,m) dνM (m)

for some function α : [0, 1] ×M → Rd. It is therefore natural to parametrize v by α and use this function as a new
control. Now, for q in Q fixed, we define the inner product

〈α , β〉q =

∫
M×M

α(m) ·K(q(m), q(m̃))β(m̃) dνM (m) dνM (m̃)

between two measurable Rd-valued functions α and β defined on M . If v is given by (4), the reproducing property of
the kernel implies that ‖v‖2V = ‖α‖2q . The optimal control problem (1)-(2) is then equivalent to the reduced problem
consisting of minimizing the cost functional

(5) F (α) =
1

2

∫ 1

0

‖α(t)‖2q(t) dt+ U(q(1)),

subject to the constraint (control system)

(6) ∂tq(t,m) =

∫
M

K(q(t,m), q(t, m̃))α(t, m̃)dνM (m̃),

almost everywhere over the time interval [0, 1]. When M = {1, . . . , l} is a finite set, we have α : [0, 1]→ Rd, so this
formulation drastically reduces the type of controls to consider. According to [6, 13, 63, 75] (or just using the same
method as above), the gradient of F with respect to the inner product 〈· , ·〉q is

∇F (α) = α− p,

where p is a time-dependent vector-valued measurable function on M such that p(1)νM = −dUq(1) and

∂tp(t) = −∂q
(
〈p(t) , α(t)〉q − ‖α(t)‖2q(t)/2

)
.
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3. MULTIPLE SHAPE PROBLEMS

3.1. Motivating Examples. In the previous formulation, the shape evolution was controlled by a single, smooth
vector field v, inducing a single diffeomorphism of Rd restricted to the considered shape. This approach has been
successfully used to model variations of single, homogeneous shapes, and led to important applications in compu-
tational anatomy, including, among many other examples, the impact of pathologies like Huntington disease [76],
schizophrenia [54], and Alzheimer’s disease [68, 19, 56] on brain structures. This deformation model, however, is not
well adapted in situations in which several shapes interact, or situations in which shapes have heterogeneous parts.

More precisely, it is natural, when analyzing multiple organs in the human body, to consider multiple shapes, each
of them corresponding to a different organ, being relatively stable (only subject to small deformations) while their
position with respect to each other is subject to larger variations, so that the background (the intersection of their
complements) undergoes very large deformations (see Figure 1). This is not possible with the classical LDDMM
method. With this new model, the shapes would never come into contact, but they would only interact when they
come very close to one another, and only in such a way as to not overlap. One can see this as an approximation of a
contact problem [58, 55, 52].

FIGURE 1. Each colored area represents a different organ, and undergoes a small and very smooth
deformation, while the background is subject to much larger variations.

This suggests using multiple components to describe a shape, and multiple deformations applied separately to each
component of the considered model. Generalizing (1)-(2), consider parameter spacesM1, . . . ,Mn for an n-component
model. Each shape, or component, is a mapping q(k) ∈ Qk the space of embeddings of Mk in Rd of class Cp. The
space of states will then be Q = Q1 × · · · × Qn. To each shape, associate a control vk ∈ Vk, where Vk is an RKHS
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embedded in Cp0 (Rd,Rd) with the state evolution equation ∂tq(k) = vk ◦ q(k). We can then choose each Vk according
to how “wildly” we want to allow the k-th shape to deform.

These evolutions, however, must be consistent with each other, implying certain contact constraints. We will
consider two forms of such constraints:

• Identity constraints: These are constraints that make a subset of the k-th shape stay stitched to a subset of the
l-th shape, so that these subsets coincide in Rd and move identically along the deformation. In other words,
given some pair (k, l) ∈ {1, . . . , n}2, and given a one-to-one mapping gkl : Akl ⊂Mk → Alk = gkl(Akl) ⊂
Ml, one has q(k)(x) = q(l)(gkl(x)) for every x ∈ Akl.
• Sliding constraints: These are constraints that force a closed submanifold of the k-th shape to slide on a

corresponding submanifold of the l-th shape along the deformation, for all (k, l). Here, we assume that all
parameter spaces are orientable differential manifolds, and that all q(k)’s are immersions. Given some pair
(k, l) ∈ {1, . . . , n}, and a closed submanifold without boundary Akl ⊂ Mk, there exists a diffeomorphism
gkl : Akl → Alk ⊂Ml onto a fixed closed submanifold Alk of Ml such that q(k)(x) = q(l)(gkl(x)) for every
x ∈ Akl.

Let us give some quick examples. Consider a schematic representation of a kite, or a manta ray, composed with a two-
dimensional surface, representing the body, and an open curve attached to it representing the tail. When comparing
two such objects, the body is assumed to only show small differences in shape, while the tail can vary widely. This
leads us to take M1 = S2 and M2 = [0, 1], and, letting m0 represent the north pole in S2, impose the contact point
q(1)(m0) = q(2)(0). We can then assign different deformation models to q(1) and q(2) via the metrics on V1 and V2.

Now for studying n − 1 organs simultaneously, which is our main goal, we need n shapes, n − 1 of which are
associated with the organs, and the last of which represents the background, the medium in which the organs evolve.
For example, we can take Mk = S2, the sphere in R3, for k = 1, . . . , n− 1, and Mn = {1, . . . , n− 1} × S2. Then,
to ensure that the shapes do not intersect, we can define identity or sliding constraints for the background, enforcing
q(n)(k, ·) = q(k)(·) or q(n)({k} × S2) = q(k)(S2) for k ∈ {1, . . . , n − 1} during the deformation. Consequenlty,
while each shape evolves independently from the others, their movement must coincide with that of the background,
and therefore they cannot intersect. We can then choose a kernel space Vn inducing the background transformation
that allows larger variations. Figure 1 gives an example (in 2D) with 3 organs (n = 4).

Remarks on sliding constraints. The sliding constraints described in this paper are rather restrictive. They require
constant contact between certain submanifolds of each shape along the deformation. In particular, we do not consider
collision or separation of shapes. This could theoretically be accomplished with certain inequality constraints, but the
mathematical results (existence of optimal controls, first order optimality conditions) no longer hold for continuous
shapes, while such constraints are very hard to model for triangulations and landmarks.

However, in the case of several shapes evolving in a background, both identity and sliding constraints can be
considered as approximations of the collision and separation problem: the larger the deformation we allow on the
background, the closer the shapes will need to be to interact.

3.2. Induced Constraints on the Vector fields. The constraints defined in the previous section are hard to take into
account in a minimization algorithm. However, they can be reformulated as equality constraints involving the state
and control in a way that is much more suitable to optimization.

Identity constraints q(k)(x) = q(l)(g(x)) are equivalent (taking time derivatives) to vk(t, q(k)(t, x)) = vl(t, q
(l)(t, g(x)))

as soon as the constraints are satisfied at time t = 0, which we obviously assume.
Making the same assumption, sliding constraints simply mean that the normal part of the deformations coincide

along the embedded constrained manifolds. This can be expressed as

(7) N (k)(t, q(k)(t,m))T (vk(t, q(k)(t,m))− vl(t, q(k)(t,m))) = 0,

where N (k)(t, q(k)) is a d × (d − dim(Akl)) matrix consisting of independent vectors perpendicular to Tq(k)Bkl(t)
(e.g, a normal frame toBkl), withBkl = q(k)(Akl) for every (k, l). Do note how much easier this is to consider, partly
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because it only depends on one of the shapes. This will also be useful when considering triangulations of the surfaces
for practical applications. Let us briefly justify our statement.

We express the sliding constraint as q(k)(t,m) = q(l)(t, g(t,m)) for some diffeomorphism g(t, ·) : Akl → Alk,
assuming a differentiable dependency on time. Taking time derivatives, we get

vk(t, q(k)(t,m)) = vl(t, q
(l)(t, g(t,m))) + dq(l)(t, g(t,m))∂tg(t,m), m ∈Mk.

Since q(l)(t, g(t,m)) = q(k)(t,m), we obtain

vk(t, q(k)(t,m))− vl(t, q(k)(t,m)) = dq(l)(t, g(t,m))∂tg(t,m)

= dq(k)(t,m)dg(t,m)−1∂tg(t,m),

which is tangent to Bkl at m. Note that, since the image of g(t, ·) is Alk for every time t, we do have ∂tg(t,m) ∈
Tg(t,m)Alk = dg(t,m)(TmAkl), so dg(t,m)−1∂tg(t,m) is well defined.

Conversely, assume that (7) holds for every x ∈ Akl, with q(k)(0, x) = q(l)(0, g0(x)) for some diffeomorphism
g0 : Akl → Alk ⊂Ml. Then for every time t, the mapping

w : x ∈ Akl 7→ dq(k)(t, x)−1(vk(t, q(k)(t, x))− vl(t, q(k)(t, x))︸ ︷︷ ︸
∈ T

q(k)(x)
Bkl

) ∈ TxAkl

defines a time-dependent vector field on Akl. Since Akl is a closed manifold, this vector field is complete, and we
denote its flow by h(t, ·) : Akl → Akl. Then

∂tq
(k)(t, h(t, x)) = vk(t, q(k)(t, h(t, x))) + dq(k)(t, h(t, x))∂th(t, x)

= vl(q
(k)(t, h(t, x))),

where the last identity holds for every x ∈ Akl, so that q(k)(t, h(t, x)) and q(l)(t, g0(x)) satisfy the same differential
equation with the same initial condition and therefore coincide. Hence, letting g(t, x) = g0(h−1(t, x)), we obtain
q(l)(t, g(t, x)) = q(k)(t, x) for every x ∈ Akl.

It is possible to extend this construction to the case where Akl is a compact manifold with boundary. In this case,
the matrix N (k)(t) must consist of a normal frame along ∂Bkl(t) and possesses therefore an extra column, and we get
an additional constraint along the boundary of Akl.

We will need the constraints to depend smoothly on q, and therefore we will need a smooth representation of the
normal space to q (a smooth map q 7→ N(q)) in order to be able to use (7). For this, we can introduce a new state
N (k)(t, x) evolving according to

(8) ∂tN
(k) = −dvk(q(k))TN (k),

such that, at time t = 0, N (k)(0, ·) is a normal frame along q(k)(0), which ensures that N (k)(t, x) remains perpendic-
ular to Tq(k)(t,x)Sk. The constraint N (k)(t, x)T (vk(t, q(k)(t, x)) − vl(t, q(k)(t, x))) is now a smooth function of the
extended state.

Infinite dimensional minimization. The two problems that we consider are special cases of the general problem con-
sidered in [2], which is the problem of minimizing a cost functional

(9)
1

2

n∑
k=1

∫ 1

0

‖vk(t)‖2Vk dt+

n∑
k=1

Uk(q(k)(1)),

subject to constraints of the form

(10) ∂tq
(k)(t) = vk(t, q(k)(t)), and C(q(t))v(t) = 0,

almost everywhere over the time interval [0, 1], where C :M→ L(V,Y) takes values in the space of bounded linear
operators from V to a Banach space Y . Here, we have V = V1 × · · · × Vn and q = (q(1), . . . , q(n)). Let us note that,
according to [2, Theorem 1], there always exists at least one solution of (9)-(10) satisfying the constraints.
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Our constrained optimization algorithm uses the augmented Lagrangian method (see, e.g., [51]). In a nutshell, in
order to minimize a function u 7→ F (u) subject to multi-dimensional equality constraints C(u) = 0, the augmented
Lagrangian method consists in considering the functional

Fλ,µ(u) = F (u)− (λ |C(u)) +
µ

2
|C(u)|2,

in which λ lives in the dual space of the space of constraints Y , and µ is a positive real number. Each iteration of
the algorithm consists in minimizing Fλ,µ with fixed λ and µ (our implementation uses nonlinear conjugate gradient)
until the gradient norm passes below some upper bound, and then in updating λ according to the rule

λ← λ− µC(u),

before running a new minimization of Fλ,µ, with updated values of µ and λ. The constant µ is increased only if
needed, i.e., if the norm of the constraint did not decrease enough during the minimization. More details can be found
in [51].

The study of this constrained optimal control problem, and in particular, the derivation of its first-order optimality
conditions (of the type of the Pontryagin maximum principle), is challenging in this infinite-dimensional setting.
In [2], it is proved that, under some differentiability conditions, and under the important assumption that C(q) is
surjective for every q ∈M, optimal solutions must be such that there exist p = (p(1), . . . , p(n)) ∈ H1([0, 1],Q∗) and
λ ∈ L2([0, 1],Y∗) that satisfy

(11)



∂tq
(k) = vk(q(k)),

∂tp
(k) = −∂q(k)

(
p(k) | vk(q(k))

)
− ∂q(k)(λ |C(q)v),

〈vk, ṽ〉Vk = −
(
p(k) | ṽ ◦ q(k)

)
− (λ |Ck(q)ṽ), ṽ ∈ Vk,

n∑
k=1

Ck(q)vk = 0,

where Ck(q)vk = C(q)(0, . . . , 0, vk, 0, . . . , 0).
Unfortunately, the constraints C(q) that correspond to our identity or contact constraints are, in general, not surjec-

tive. Indeed, that would imply that the mapping v 7→ v ◦ q from V to Cp(M,Rd) is surjective, which would make the
Banach norm on Cp(M,Rd) equivalent to a Hilbert norm. Hence, the optimality condition of [2] cannot be applied in
a fully general infinite-dimensional context. However, surjectivity becomes almost straightforward when these con-
straints are discretized to a finite number. They are true as soon as the points involved in the constraints are all distinct,
which is a mild assumption. We now proceed to the description of a discrete version of this approach.

4. DISCRETE APPROXIMATIONS

4.1. The Discrete Framework. As an example, and to simplify the presentation, we detail our implementation for
multi-shape problems in which shapes interact (through constraints) with a background, but not directly with each
other, just like in Figure 1. Direct interactions between shapes can be handled in a similar way.

We first apply this to identity constraints, which only require the shapes to be discretized into a sets of points.
We will then discuss sliding constraints, which will require more structure in order to define normal frames to the
boundary.

We consider n − 1 objects, discretized into point sets, so that Mk is a finite set of lk indices for each k, and
q(k) : Mk → (Rd)lk . Let x(k)j = q(k)(j) and x(k) = (x

(k)
1 , . . . , x

(k)
lk

), for k = 1, . . . , n − 1. In the case of a
triangulated surface, x(k) is simply the collection of corresponding vertices. We add as n-th object the boundary of
the background (i.e., the union of all the other objects), defined by Mn = ({1} ×M1) ∪ · · · ∪ ({n − 1} ×Mn−1),
and q(n) : Mn → (Rd)l1+···+ln−1 . We let z(k)j = q(n)(k, j), z(k) = (z

(k)
1 , . . . , z

(k)
lk

) and z = (z(1), . . . , z(n−1)) (a
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collection of ln = l1 + . . .+ ln−1 points). For triangulated surfaces, each z(k) represents the collection of vertices of
the k-th objects, seen from “outside”, from the background. In this configuration, we should have x(k) = z(k).

Let V1, . . . , Vn be Hilbert spaces of vector fields of class Cp, p ≥ 1, with respective reproducing kernelKV1
, . . . ,KVn .

Assume that end-point cost functions U1(x(1)), . . . , Un−1(x(n−1)) are defined, typically measuring the discrepancy
between each collection of points and an associated target. We assume similar functions Ũ1(z(1)), . . . , Ũn−1(z(n−1))

for the background, typically using Uj = Ũj . Then, a control consists in v = (v1, . . . , vn) ∈ L2(0, 1;V1 × · · · × Vn),
and we want to minimize the cost functional

1

2

n∑
k=1

∫ 1

0

‖vk(t)‖2Vk dt+

n−1∑
k=1

Uk(x(k)(1)) +

n−1∑
k=1

Ũk(z(k)(1)),

with the deformation of each object given by{
∂tx

(k)
j = vk(x

(k)
j ) j = 1, . . . ,mk, k = 1, . . . , n− 1,

∂tz
(k)
j = vn(z

(k)
j ), j = 1, . . . ,mk, k = 1, . . . , n− 1,

almost everywhere on [0, 1].

Reduction to a finite dimensional control space. For y and y′ ordered families of points in Rd, let K(k)(y, y′) be the
matrix formed with all d× d blocks KVk(yi, y

′
j), and let K(k)(y) = K(k)(y, y), for k = 1, . . . , n. Since the problems

only depend on the values taken by v1, . . . , vn on their corresponding point-set trajectories x(1), . . . , x(n−1), z, the
optimal vector fields take the form

vk(·) = K(k)(·, x(k))α(k), k = 1, . . . , n− 1,

vn(·) = K(n)(·, z)β,

for some families of d-dimensional vectors α(1), . . . , α(n−1), β. The problem can therefore be reduced to the finite-
dimensional optimal control problem consisting in minimizing the cost functional

E(α, β, x, z) =
1

2

n−1∑
k=1

∫ 1

0

α(k) · (K(k)(x(k))α(k)) dt+
1

2

∫ 1

0

β · (K(n)(z)β) dt

+

n−1∑
k=1

Uk(x(k)(1)) +

n−1∑
k=1

Ũk(z(k)(1))

subject to (almost everywhere along [0, 1]) {
∂tx

(k) = K(k)(x(k))α(k),

∂tz = K(n)(z)β,

in addition to identity or sliding constraints described below.

4.2. Identity Constraints. For identity constraints, the associated constrained optimal control problem consists in
minimizing the cost functional E(α, β, x, z) above, subject to the identity constraints

z(k) = x(k), k = 1, . . . , n− 1,

everywhere along [0, 1], which ensures that the objects and the background move concurrently.
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Extending E with the augmented Lagrangian method, we introduce coefficients λ(k), k = 1, . . . , n−1 (where λ(k)

has the same dimension as x(k)) and µ > 0, defining

Eλ,µ(α, β, x, z) =
1

2

n−1∑
k=1

∫ 1

0

α(k) · (K(k)(x(k))α(k)) dt+
1

2

∫ 1

0

β · (K(n)(z)β) dt+

n−1∑
k=1

Uk(x(k)(1))

+

n−1∑
k=1

Ũk(z(k)(1))−
n−1∑
k=1

∫ 1

0

λ(k) · (x(k) − z(k)) dt+
µ

2

n−1∑
k=1

∫ 1

0

|x(k) − z(k)|2 dt,

which will be minimized subject almost everywhere along [0, 1], with{
∂tx

(k) = K(k)(x(k))α(k),

∂tz = K(n)(z)β.

From the constraints, Lλ,µ can be considered as a function of α and β only. The computation of the gradient of L
follows the general scheme described in Section 2.2 for the basic LDDMM algorithm. See Appendix C for detailed
formulas and computations.

4.3. Sliding Interface. Assume that the parameter sets Mk are vertices of pure oriented, simplicial complexes Tk of
dimension rk < d (we will however only provide implementation details for codimension d − rk = 1). We let Fk
denote the set of facets of the k-th complex. We also assume that T1, . . . , Tn−1 are disjoint and that Tn is their union,
Tn =

⋃n−1
k=1 Tk. We also let Fn =

⋃n−1
k=1 Fk (disjoint union).

The associated shape space is formed by functions qk : Mk → Rd such that qk(f) is not degenerate (i.e., has
maximal dimension) for all f ∈ Fk. Each object is allowed to slide against the background. We will write x(k) =
q(k)(Mk), k = 1, . . . , n− 1, and z(k) = q(n)(Mk), z = (z(1), . . . , z(n−1)), in accordance with our previous notation.
If f ∈ Fk is a facet in Tk ⊂ Tn, we discretize (7) into

(12) N (n)(f) ·

∑
j∈f

(vk(z
(k)
j )− vn(z

(k)
j ))

 = 0,

where N (n)(f) is a d × (d − rk) matrix spanning the normal space to q(n)(f), assumed to be defined as a smooth
function of q(n). If rk = d − 1, this is always possible, since N (n) is a vector that can be taken as the cross product
of zf,2 − zf,1, . . . , zf,d − zf,1 where zf,1, . . . , zf,d is any labeling of the vertices of q(n)(f) ordered consistently with
the orientation.

We now restrict to this case, with d = 3, so that shapes are triangulated surfaces in R3, as discussed in Section 2.2.
For f ∈ Fk and j ∈ f , we denote by ej,f the edge (z

(k)
j′′ − z

(k)
j′ ) where j′ and j′′ are the other two vertices of f such

that (j, j′, j′′) is positively oriented. Similarly, let e′j,f = (z
(k)
j′ − z

(k)
j ) and e′′j,f = (z

(k)
j′′ − z

(k)
j ) be the two edges

stemming from z
(k)
j so that

e′j,f × e′′j,f = 2 area(q(n)(f))Ñ (n)(f) =: 2N (n)(f)

is the twice the area-weighted positively oriented normal N (n)(f) to f in q(n)(Mk). Note that ej,f = e′′j,f − e′j,f .
With this notation, we can rewrite the constraint in the form∑

j∈f

det(e′j,f , e
′′
j,f , vk(z

(k)
j )− vn(z

(k)
j )) = 0.

holding for all f ∈ Fk and k = 1, . . . , n− 1.
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Introducing a Lagrange multiplier λf for each of these constraints, after reduction of the vector fields, which
proceeds similarly to the identity constraints case, the augmented Lagrangian takes the form

(13) E′λ,µ(α, β, x, z) =
1

2

n−1∑
k=1

∫ 1

0

α(k) · (K(k)(x(k))α(k)) dt+
1

2

∫ 1

0

β · (K(n)(z)β) dt+

n−1∑
k=1

Uk(x(k)(1))

+

n−1∑
k=1

Ũk(z(k)(1))−
n−1∑
k=1

∑
f∈Fk

∫ 1

0

(λfΓ
(k)
f (x(k), z)− µ

2
Γ
(k)
f (x(k), z)2) dt,

with
Γ
(k)
f (x(k), z) :=

∑
j∈f

det
(
e′j,f , e

′′
j,f ,K

(k)(z
(k)
j , x(k))α(k) −K(n)(z

(k)
j , z)β

)
.

Note that we reduced vk to
∑
iK

(k)(x(k))α(k) for k = 1, . . . , n− 1 and vn to
∑
iK

(n)(z)β The computation of the
gradient of L is then straightforward, see the appendix for detailed formulas.

5. EXISTENCE AND CONVERGENCE RESULTS

A question naturally arising is whether our discrete approximation using triangulations converges to the continuous
case as triangles get smaller and smaller. More precisely, assume that some n − 1 smooth initial surfaces Skinit =

q
(k)
init(Mk) are triangulated, with increasingly fine triangulations q(k,`)init : Mk,` → R3, ` = 1, 2, . . ., where Mk,` labels

the vertices of a simplicial complex Tk,` whose set of faces are Fk,`. The corresponding vertices x(k,`)j,init , background

vertexes z(k,`)j,init , the area-weighted normals N (n,`)(f) and the background faces Fn,` are defined for each ` as in
Section 4.3.

For each step `, we consider data attachment terms Uk,` and Ũk,` for the corresponding triangulations, and we
also let Uk and Ũk be data attachment terms for the continuous problem. We denote by E` and E the corresponding
cost functions. In this section, we discuss whether a weak limit point (vk, k = 1, . . . , n) of minimizers (vk,`, k =
1, . . . , n) of the discrete problems is a minimizer of the limit problem as the triangulations become increasingly fine,
and if such a limit point exists.

To ensure the existence and minimality of (vk, k = 1, . . . , n), we will need the following hypotheses on the
triangulations:

(i) Vertices of the triangulations of each Skinit belong to Skinit : q
(k,`)(j) ∈ Skinit for j = 1, . . . , lk and k =

1, . . . , n− 1.
(ii) The triangulations are nested: for any k = 1, . . . , n− 1 and integer `,

{x(k,`)j,init , j ∈Mk,`} ⊂ {x(k,`+1)
j,init , j ∈Mk,`+1}.

(iii) The maximum edge length in each sequence of triangulations goes to 0.
(iv) If η(k, `, f) is the length of the largest edge of a face f , and a(k, `, f) its area, the ratio

a(k, `, f)

η(k, `, f)2
,

f ∈ Fn,` is bounded away from 0 (uniformly in `).
These assumptions ensure the following property.

(v) For each k = 1, . . . , n− 1,

max
f∈Fk,`,x∈τkf

∣∣∣∣ N (n,`)(f)

|N (n,`)(f)|
−Nk(x)

∣∣∣∣→ 0

when ` goes to infinity, where τkf is the geodesic triangle on Skinit corresponding to f .
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In other words, the discrete normals converge to the normal vector field on each surface.
We say that a sequence of triangulations that satisfies hypotheses (i)-(iv) converges nicely to the surfaces Skinit , k =

1, . . . , n. Note that if a sequence of triangulations (q(`)) converges nicely to a surface S, then for any diffeomorphism
ϕ, (ϕ ◦ q(`)) converges nicely to ϕ(S). For the rest of this section, we will assume that we are working with one
such sequence. In this case, we easily get that, if the data attachment terms are the current norms described Appendix
A, then Ũk,`(x

(k,`)
init ) goes to Uk(qkinit) (see Appendix A.3 for a proof). In particular, the sequence of minimizers

(vk,`, k = 1, . . . , n)`∈N is bounded in L2(0, 1;V1 × · · · × Vn) by

max
`∈N

{
n−1∑
k=1

Uk,`(x
(k,`)
init ) +

n−1∑
k=1

Ũk,`(z
(k,`)
init )

}
<∞.

Consequently, this sequence does admit a weak limit point (vk, , k = 1, . . . , n).

5.1. Identity Constraints. The case of identity constraints is easy, and comes from [2, Proposition 5]. More precisely,
assume that

(1) each Vk has continuous inclusion into C10(R3,R3)
(2) the sequences of triangulations converge nicely to the surfaces,
(3) the data attachment terms Uk,` and Uk come from a current norm (see Appendix A.1) that only depends on

k, with targets either fixed surfaces Sktarget or sequences q(k,`)target of triangulations that converge nicely to the
target surfaces Sktarget.

Then any weak limit point of the sequence of minimizers (vk,`, k = 1, . . . , n)`∈N is a minimizer for the continuous
problem with identity constraints.

5.2. Sliding Constraints. For sliding constraints, one cannot directly apply [2, Proposition 5], because the constraints
are not nested, even when the triangulations are. To obtain a consistent approximation, we need to relax the discrete
problems. More precisely, assume that

(1) each Vk has continuous inclusion into C20(R3,R3)
(2) the sequences of triangulations converge nicely to the surfaces,
(3) the data attachment terms Uk,` and Uk come from a current norm (see Appendix A.1) that only depends on

k, with targets either fixed surfaces Sktarget or sequences q(k,`)target of triangulations that converge nicely to the
target surfaces Sktarget.

Then, there exists a sequence of positive numbers ε`, ` ∈ N going to zero at infinity such that any weak limit point of
a sequence (vk,`, k = 1, . . . , n)`∈N of minimizers of the discrete problem at step ` under the relaxed constraints∣∣∣∣∣∣N (n,`)(f) ·

∑
j∈f

(vk,`(z
(k,`)
j )− vn,`(z(k,`)j )

∣∣∣∣∣∣ ≤ ε`|N (n,`)(f)|, f ∈ Fk,`

is a minimizer for the continuous problem with sliding constraints. This is proved in the appendix. It should be
noted that such sequences (vk,`)`∈N always exist. Indeed, by introducing controls α(k,`) and β(`) such that vk,` =

K(k,`)(·, x(k,`))α(k,`) for each k = 1, . . . , n−1, and vn,` = K(n,`)(·, z(`))β(`), we get an equivalent finite dimensional
optimal control problem with smooth inequality constraints. Such problems are known to admit minimizers (see, for
example, [60]).

The sliding problem with relaxed constraints can then be solved using an augmented Lagragian method.

6. EXPERIMENTAL RESULTS

6.1. Synthetic Example. The first example is described in Figure 2. In this synthetic example, the template has two
identical balls initially close to each other. In the target, the first ball (referred to as “Ball A”) gets bigger, and “impacts”
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the other one (referred to as “Ball B”), which assumes an oblong, non-convex shape (the target shapes slightly overlap,
so that an exact homeomorphic match cannot be achieved).

FIGURE 2. Template and target shapes for synthetic example

Our results, provided in Figures 3 to 6, illustrate our multishape deformation method, and use two complementary
deformation indexes:

(i) the tangent Jacobian, which is the Jacobian determinant of the surface-to-surface transformations, and which
measures the ratio between the areas of elementary surface patches at each point before and after deformation;

(ii) the normal Jacobian, which is the ratio of the Jacobian determinant (of the 3D diffeomorphism) to the tangent
Jacobian, and which measures the ratio between the length of an infinitesimal line element normal to the
surface after and before transformation.

These indexes are mapped on the deformed template image, which is close to the target.
Figure 3 compares the normal Jacobian of the shape and background deformations when using identity constraints.

While shape diffeomorphisms characterize each shape transformation (uniform variation for Ball A, expansion at the
top and compression otherwise for Ball B), the effect of compressing the space is clearly visible in the background
deformation, when the two shapes get close to each other.

Figure 4 provides the corresponding tangent Jacobian, which is identical for shape and background transformation
since we are using identity constraints.

Figures 5 and 6 compare the normal and tangent Jacobians for the synthetic experiment with sliding constraints.
Regarding the former, the most notable difference is with Ball B, which shows an expansion pattern at the tips in its
shape diffeomorphism which is inverse of the one observed with identity constraints. One plausible explanation is that
sliding constraints allow the two shapes to use translation-like motion to position themselves differently, without the
need for limiting the amount of shear in the background that would have resulted from identity constraints. The second
notable difference can be noted in the background diffeomorphism, in which compression is mostly observed with Ball
B. In contrast with the identity constraints, the tangent Jacobians are very different between shape and background
diffeomorphisms. Note that Figure 6 uses two different color scales for the left and right panels because of the strong
difference between the ranges of the Jacobians in each case. The background deformation, in particular, has a huge
tangent expansion around the impact location, which cannot be observed in the shape deformations. Note that both
patterns in the sliding case are very different from the one that was observed in the identity case.
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FIGURE 3. Three views of the normal Jacobian with identity constraints: shape diffeomorphisms
(left) and background diffeomorphism (right).
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FIGURE 4. Tangential Jacobian: shape and background diffeomorphisms (identity constraints).

For comparison purposes, Figure 7 provides the result of the LDDMM algorithm using a single diffeomorphism.
One observes a very strong compression effect for the normal jacobian resulting in an expansion observed on the
tangent jacobian on Ball B, that was not observed in any of the constrained examples. The nice uniform expansion in
Ball A that could be observed in the sliding constraint case is not observed either.

6.2. Subcortical Structures. We now describe an example mapping a group of three subcortical structures: hip-
pocampus, amygdala and entorhinal cortex (ERC). The template and target sets are represented in Figure 8. One can
observe shape changes in each structure, combined with a significant displacement of the ERC relative to the other two
structures when comparing template to target. Because the structures were segmented independently, there is some
overlap between the target hippocampus and amygdala.

Figures 9 and 10 provide the normal and tangent Jacobian obtained with identity constraints, while Figures 11
and 12 provide this information for sliding constraints. The two types of constraints provide similar deformation
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FIGURE 5. Three views of the normal Jacobian with sliding constraints: shape diffeomorphisms
(left) and background diffeomorphism (right).
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FIGURE 6. Three views of the tangent Jacobian with sliding constraints: shape diffeomorphisms
(left) and background diffeomorphism (right).
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FIGURE 7. Three views of the Normal (left) and tangential Jacobians (right) when using a single diffeomorphism.

indices, especially for the normal jacobians (Figures 9 and 11). Minor differences in the tangent jacobian can be
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FIGURE 8. Template (blue) and target (red) shapes for subcortical structures. The hippocampus is
the central shape, with the amygdala on its left and the ERC on its right.

observed (Figures 10 and 12). The deformation patterns associated to using a single diffeomorphism (Figure 13) are
significantly different, though, exhibiting very strong compression, for example, where shapes are close to each other.

7. DISCUSSION

The previous approach provides a solution, using constrained optimal control, of the important issue of dealing
with multiple objects with varying deformation properties for registration. We have focused on surface matching,
numerically dealing with constraints using an augmented Lagrangian method. Note that a similar approach was
introduced for plane curves in [2].

The formulation is quite general and can accommodate constraints in various forms, including the examples dis-
cussed in Section 3. The investigation of these additional applications will be the subject of future work. One of the
limitations of the present implementation is the slow convergence of the augmented Lagrangian procedure, for which
each minimization step is, in addition, high dimensional and computationally demanding. One possible alternative can
be based on solving the optimality conditions (11) (which hold in the discrete case) by means of a numerical shooting
method. This approach has, however, its own numerical challenges, because solving (11) requires the determination
of λ such that the last equation (constraint) is satisfied, and this leads to a possibly ill-posed problem for systems in
large dimension (see [2] for additional details).

We have illustrated our examples using deformation markers derived from the jacobian determinant. These markers
are routinely used in shape analysis studies and led to important conclusion in computational anatomy. When dealing
with multiple shapes, however, figures 7 and 13 show that, when using the classical LDDMM method with multiple
shapes, these markers becomes as much, if not more, influenced by interactions between the shapes as by the changes in
the shapes themselves. For this reason, multi-shape computational anatomy studies have applied registration methods
separately to each shape, without ensuring that the obtained diffeomorphisms are consistent with each other. This
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FIGURE 9. Three views of the normal Jacobian with identity constraints: First Row: Shape diffeo-
morphisms; Second Row: Background diffeomorphism.

limitation is addressed in the present paper, in which we exhibit deformation markers that are meaningful in describing
tangential and normal surface stretching, while being consistently associated to a global transformation of the space.

The method presented in this paper does not directly address the important problem of contact between two objects,
where two independent shapes collide and slide along each other, possibly separating again afterwards. Rather, it
sidesteps it by enforcing a diffeomorphic transformation of the background during the deformation, still allowing it to
undergo larger deformations by choosing an appropriate kernel. Consequently, if the two objects start away from one
another, they interact very little, but, as they get closer and closer to one another they repel each other slightly so that
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FIGURE 10. Three views of the tangent Jacobian with identity constraints: Shape and background diffeomorphisms.

they never cross path. This lets us enjoy the positive aspects of the LDDMM methods, such as the regularity of the
transformations, so that fine enough triangulations do not degenerate along the deformation.

Now, in the continuous case, as the scale of the background kernel goes to zero, the optimal deformations likely
converge to the case where shapes can collide. However, in the case of a discrete triangulation, as the scale of the
background kernel gets much smaller than the length of the edges of the triangles, the different shapes will stop
interacting with one another, possibly passing through one another. Hence, to model collisions, an equilibrium must
be found between the refinement of the discretization and the scale of the background kernel.

Our point of view was mainly focused on equality constraints, but we briefly mentionned inequality constraints in
Section 5. While algorithms exist to numerically solve such problems, they present many difficulties from a mathe-
matical viewpoint in the continuous (infinite dimensional) case. However, the ability to tackle such constraints would
be of great interest, as they could possibly be used, for example, to actually solve the contact problem.

APPENDIX A. EXAMPLES OF DATA ATTACHMENT: CURRENT NORMS AND THEIR DERIVATIVES

Let us briefly describe the current norms and compute their derivative.

A.1. Current Norms for Submanifolds.

Closed Surfaces. If µ is a scalar measure on Rd and z a µ-integrable Rd-valued function defined on support(µ), we
will denote by zµ the vector measure such that

(zµ |w) =

∫
support(µ)

z · w dµ,

where z · w denotes the standard euclidean dot product.
Vector measures of the form zµ are continuous linear forms over any space that is continuously imbedded in

C0
0 (Rd,Rd), and in particular over any reproducing kernel Hilbert space W . For such a space, equipped with a

reproducing kernel χ, the operator norm of zµ is given by

‖zµ‖2χ =

∫∫
z(x) · (χ(x, y)z(y)) dµ(x) dµ(y),
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FIGURE 11. Three views of the normal Jacobian with sliding constraints: First Row: Shape dif-
feomorphisms; Second Row: Background diffeomorphism.

and more generally, the norm of the difference between two such measures is

‖zµ− z̃µ̃‖2χ =

∫∫
z(x) · (χ(x, y)z(y)) dµ(x) dµ(y)

− 2

∫∫
z(x) · (χ(x, y)z̃(y)) dµ(x) dµ̃(y) +

∫∫
z̃(x) · (χ(x, y)z̃(y)) dµ̃(x) dµ̃(y).

Note that W has no relationship with the reproducing kernel spaces used to induce deformations on the shapes we
study all throughout the paper, except that both have a continuous inclusion in C0

0 (Rd,Rd): χ is different from K,
KV1

, etc...
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FIGURE 12. Three views of the tangent Jacobian with sliding constraints: First Row: Shape
diffeomorphisms; Second Row: Background diffeomorphism.

One can deduce from this the surface-matching cost function introduced in [63], in which an oriented surface S is
represented as a geometric current and a dual-RKHS norm between currents is used. Identifying surface currents with
vector measures, this leads to the representation of S given by µS = NSσS , where NS is the unit normal to S and σS
its volume form. Assume that M (the parameter space) is an oriented 2D manifold so that S = q(M) is an embedding
of M through q, and let η = q∗AS be the positively oriented volume form on M obtained by pulling back the area
form AS of S by q. For m ∈ M let Nq(m) ∈ R3 denote the “area-weighted normal” to S = q(M) at q(m), defined
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FIGURE 13. Three views of the normal (up) and tangent Jacobians (down) when using a single diffeomorphism.

by Nq(m) = dqme1 × dqme2 where (e1, e2) is an arbitrary basis of TmM such that ηx(e1, e2) = 1. Then

(µS |w) =

∫
M

(w ◦ q ·Nq) dη,

for every w ∈ C00(R3,R3). Note that, for x = q(m) ∈ S, if we denote NS(x) =
Nq(m)
|Nq(m)| the unit normal to S at x, we

obtain

(µS |w) =

∫
S

(w ·NS) dAS .
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FIGURE 14. Midpoint of the optimal deformation with multishape identity constraints (left), mul-
tishape sliding constraints (center) and single diffeomorphism (right).

Now, given a reproducing kernel χ and a target surface S̃ = q̃(M), we define the surface-matching cost by

(14)

U(q) = ‖µq(M) − µq̃(M)‖2χ =

∫∫
S×S

NS(x) · (χ(x, y)NS(y))dAS(x)dAS(y)

− 2

∫∫
S×S̃

NS(x) · (χ(x, y)NS̃(y))dAS(x)dAS̃(y)

+

∫∫
S̃×S̃

NS̃(x) · (χ(x, y)NS̃(y))dAS̃(x)dAS̃(y)

General Submanifolds with Boundary. The previous cost function is actually a special case of the moregeneral frame-
work in which one compares compact k-dimensional oriented submanifolds of Rd, which we briefly discuss hereafter.
Given such a manifold, S, with a global parametrisation q : M → S, one can associate to any ω ∈ Cp0 (Rd, (ΛkRd)∗)
(the set of Cp differential k-forms on Rd that vanish at infinity), its integral

(CS |ω) =

∫
S

ω =

∫
M

q∗ω,

where q∗ω denotes the pull-back of ω on M . An RKHS, W̃ , of such forms, is a Hilbert space continuously embedded
in Cp0 (Rd, (ΛkRd)∗), with kernel χ̃(x, y) taking values in the space of bilinear functions on ΛkRd×ΛkRd. The linear
form CS then belongs in W̃ ∗, and is a special form of a geometric current, as defined in [20]. If S = q(M) and S̃ is a
target manifold, they can be compared using the operator norm

(15) U(q) = ‖Cq(M) − CS̃‖
2
W̃∗

.

Now to apply our minimization algorithm, we need to be able to compute the derivative of such a function.
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Derivative of Current Norms. If we consider q̂ : M̂
.
= (−1, 1) ×M → Rd a smooth perturbation of q such that

qε = q + εδq + o(ε) where qε(x) = q̂(ε, x) for ε ∈ (−1, 1) and x ∈M , we have, for Mε
.
= {ε} ×M ,

(dUq | δq) =
d

dε

(∫
M

q∗εω

)
|ε=0

=
d

dε

(∫
Mε

q̂∗ω

)
|ε=0

=

∫
M0

L∂/∂ε(q̂∗ω),

where L∂/∂ε is the Lie derivative along the vector field ∂
∂ε on M̂ (which is equal to (1, 0) ∈ R×TmM at any location

(ε, x) ∈ M̂ ) and

(16) ω = 2KW̃ (Cq(M) − CS̃),

with KW̃ the isometry from W̃ ∗ to W̃ . We next show that

(dUq | δq) =

∫
M

αq · δq volM +

∫
∂M

βq · δq vol∂M,

where volM and vol∂M are the positive Riemannian volume forms on M and ∂M , and αq : M → Rd (resp. βq :
∂M → Rd) is such that αq(x) is normal to S = q(M) (resp. βq(x) is normal to ∂S = q(∂M)) at q(x). Using the
Cartan magic formula we get

L∂/∂ε(q∗ω) = i∂/∂εd(q∗ω) + d(i∂/∂ε(q
∗ω)) ,

so that, applying the Stokes theorem,

(dUq | δq) =

∫
M0

i∂/∂ε(q̂
∗dω) +

∫
∂M0

i∂/∂ε(q̂
∗ω),

where i∂/∂ε denotes the contraction operator. Note that, for ξ1, . . . , ξk ∈ TxM ,

i∂/∂ε(q̂
∗dω)(0,x)(ξ1, · · · , ξk) = dωq(x)(δq(x), dqxξ1, . . . , dqxξk)

= dωq(x)(δq
⊥(x), dqxξ1, . . . , dqxξk),

where δq⊥(x) denotes the projection of δq(x) on Tq(x)S⊥ (since the form vanishes if δq(x) ∈ Tq(x)S = Tq(x)q(M)).
Since the set of k-forms is a one-dimensional space on M , this means that we can write, for some function αq such
that αq(x) ∈ (Tq(x)S)⊥, with x ∈M ,

i∂/∂ε(q
∗dω)(0,x) = ((δq · αq) volM )x .

Similarly,

i∂/∂ε(q
∗ωq)(0,x) = ((δq · βq)vol∂M )x,

for βq(x) ∈ (Tq(x)∂S)⊥.
The data term defined in (15) is derived from this general construction, using the fact that two-forms in R3 (or

(d − 1)-forms in Rd) can be identified with vector fields via ωx(e1, e2) = w(x) · (e1 × e2). The current CS is then
identified with the vector measure µS . The form ω introduced in (16) becomes, introducing a global parametrizaion
q̃ : M → S̃ of the target S̃, the vector field

w(·) = 2

∫
Rd
χ(·, y) d(µq(M) − µq̃(M))(y).

With this identification, we have αq = div(w) ◦ q Nq where Nq is the oriented “area-weighted” normal to S at q(x)
defined previously, and βq = τq × w ◦ q, where τq is the oriented “length-weighted” tangent to q(∂M) given as
τq(x) = dqxe1, where e1 is the unit positively oriented tangent vector at x along ∂M .
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A.2. Current Norms for Triangulated Surfaces. Returning to surfaces, the discrete case, in which triangulated sur-
faces are compared, is, for practical purposes, even more important. We here also consider the case M = {1, . . . ,m},
with an additional family F of facets, which are ordered triples (i, j, k) with i, j, k ∈ M . (We assume that F is a
consistent with a manifold structure: The set Vi of indices that share a facet with i must form a chain and no pair of
indices can be included in more than two facets.)

Given a one-to-one mapping q : M → R3, define Sq as the collection of triangles Sq = {(q(i), q(j), q(k)), (i, j, k) ∈
F}. If f = (i, j, k), let q(f) = (q(i), q(j), q(k)), Nq(f) = 1

2 (q(j)−q(i))× (q(k)−q(i)) and cq(f) = (q(i)+q(j)+
q(k))/3 respectively denote the triangle, area-weighted normal and center associated to the facet f . Following [63],
we define the vector measure associated to q by

µq =
∑
f∈F

Nq(f)δcq(f).

Here, δx (with x ∈ R3) denotes the atomic measure of mass 1 with support {x}. The (discrete) surface matching cost
associated to a target q̃ with set of faces F̃ is then defined by

(17)

U(q) = ‖µq − µq̃‖2χ =
∑
f∈F

∑
f ′∈F

Nq(f) · (χ(cq(f), cq(f
′))Nq(f

′))

− 2
∑
f∈F

∑
f̃∈F̃

Nq(f) · (χ(cq(f), cq̃(f̃))Nq̃(f̃))

+
∑
f̃∈F̃

∑
f̃ ′∈F̃

Nq̃(f̃) · (χ(cq̃(f̃), cq̃(f̃
′))Nq̃(f̃

′)).

Note that q̃ does not need to be consistent with q, and can be defined on a different set of indices, M̃ = {1, . . . , m̃}
and triangle structure F̃ . One then has dUq = αqνM , where, as above, νM is the counting measure on M , and

αq(i) =
∑

f∈F,i∈f

(dZTcq(f)Nq(f)/3 + eq(f, i)× Z(cq(f))),

with eq(f, i) = q(k)− q(j) the oriented edge opposed to q(i) in q(f), and

Z(·) =
∑
f∈F

χ(·, cq(f))Nq(f)−
∑
f̃∈F̃

χ(·, cq̃(f̃)Nq̃(f̃).

A.3. Convergence of Discrete Currents Norms. Let S = q(M) and S̃1 = q̃(M) be two smooth embedded surfaces
in R3, with M a surface with volume form η. Let q(`) and q̃(`), ` = 0, 1, . . . , be sequences of triangulations of S and
S̃, with set of faces respectively denoted by F` and F̃`.

Also let W be a reproducing kernel Hilbert space of vector fields on R3 with kernel χ, and assume these sequences
of triangulations converge nicely to Sinit and Starget. We will prove that

‖µq(`) − µq̃(`)‖2W → ‖µS − µS̃‖
2
W

when ` goes to infinity.
Indeed, for each face f (resp. f̃ ) of each triangulation of S (resp. S̃), let τf be a geodesic triangle on S (resp. S̃)

with vertices q(`)j , j ∈ f (resp. q̃(`)j , j ∈ f̃ ). For small enough triangles (i.e., big enough `), the geodesic triangles
τf ⊂ S, f ∈ F`, form a partition of S, and the τf̃ , f̃ ∈ F̃`, a partition of S̃, up to a zero measure set. We can then
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write, for each ` big enough, the value of U(q)− U`(q(`)) as equal to∑
f∈F`

∑
f∈F`

∫∫
τf×τf′

(
NS(x) · (χ(x, y)NS(y))−

Nq(`)(f)

area(τf )
· (χ(cq(`)(f), cq(`)(f

′))
Nq(`)(f

′)

area(τ ′f )
)

)
dAS(x)dAS(y)

− 2
∑
f∈F`

∑
f̃∈F̃`

∫∫
τf×τf̃

(
NS(x) · (χ(x, y)NS̃(y))−

Nq(`)(f)

area(τf )
· (χ(cq(`)(f), cq̃(`)(f̃))

Nq̃(`)(f̃)

area(τf̃ )
)

)
dAS(x)dAS̃(y)

+
∑
f̃∈F̃`

∑
f̃ ′∈F̃ ′`

∫∫
τf̃×τf̃′

(
NS̃(x) · (χ(x, y)NS̃(y))−

Nq̃(`)(f̃)

area(τf̃ )
· (χ(cq̃(`)(f̃), cq̃(`)(f̃

′))
Nq̃(`)(f̃

′)

area(τf̃ ′)
)

)
dAS̃(x)dAS̃(y)

But the nice convergence of the triangulations imply

max
f∈F`

∣∣∣∣area(q(`)(f))

area(τf )
− 1

∣∣∣∣→ 0, max
f∈F`

max
x∈τf

∣∣∣∣NS(x)−
Nq(`)(f)

area(q(`)(f))

∣∣∣∣→ 0,

along with

max
f̃∈F̃`

∣∣∣∣∣area(q̃(`)(f̃))

area(τf̃ )
− 1

∣∣∣∣∣→ 0, max
f̃∈F̃`

max
x∈τf̃

∣∣∣∣∣NS̃(x)−
Nq̃(`)(f̃)

area(q̃(`)(f̃))

∣∣∣∣∣→ 0,

and
max

f∈F`,f̃∈F̃`
max

x∈τf ,y∈τf̃
|χ(x, y)− χ(cq(`)(f), cq̃(`)(f̃))| → 0

when `→∞. This implies that U(q)− U`(q(`)) does go to zero as ` goes to infinity.

APPENDIX B. CONVERGENCE RESULTS FOR MINIMIZERS WITH SLIDING CONSTRAINTS

Here, we prove the weak convergence of solutions to the discrete sliding problem with relaxed constraints toward
minimizers of the continuous sliding problem with equality constraints. We use the notations of Section 5.2. We begin
by finding a candidate for the sequence of positive numbers (ε`)`∈N.

Step one: candidate for ε`. Let (v1, . . . , vn) ∈ L2(0, 1;V1 × Vn) be minimizers of the cost with continuous sliding
constraints, with flows (ϕ1, . . . , ϕn). In particular

E∗ =
1

2

n∑
k=1

∫ 1

0

‖vk(t)‖2Vkdt+

n−1∑
k=0

(
Uk(ϕk(1) ◦ q(k)init) + Ũk(ϕn(1) ◦ q(k)init)

)
is the minimum of the cost function with continuous sliding constraints.

Let x(k,`)j (t) = ϕk(t, x
(k,`)
j,init), k = 1, . . . , n − 1, j = 1, . . . , lk,` and t 7→ z(`)(t) be the deformations of the `-th

triangulation vertices induced by (v1, . . . , vn), and N (n,`)(t, f), f ∈ Fn,`, the corresponding area-weighted normals.
Thanks to condition (i) of nice convergence, each z(k,`)j (t) belongs to ϕn(t, Sk). Hence, we have that, for almost every
time t, and every k = 1, . . . , n− 1,

max
f∈Fk,`

∣∣∣∣∣∣ N
(n,`)(f)

|N (n,`)(f)|
·

∑
j∈f

(
vk(z

(k,`)
j )− vn(z

(k,`)
j )

)∣∣∣∣∣∣
is less than or equal to

(18)

max
f∈Fk,`

∑
j∈f

∣∣∣∣( N (n,`)(f)

|N (n,`)(f)|
−Nϕn(Skinit )(z

(k,`)
j )

)
· (vk(z

(k,`)
j )− vn(z

(k,`)
j ))

∣∣∣∣
+ max
f∈Fk,`

∑
j∈f

∣∣∣Nϕn(Skinit)(z(k,`)j ) ·
(
vk(z

(k,`)
j )− vn(z

(k,`)
j )

)∣∣∣ .
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The second term in (18) is equal to 0, as we recognize the formula for continuous sliding constraints, which
(vk, k = 1, . . . , n) satisfies by construction.

For the other terms, remark that
∑n
k=1 ‖vk‖2Vk is constant, since the constraints are invariant by reparametrization.

Since each Vk has continuous inclusion in C20(Rd,Rd), so there exists C > 0 such that, for almost every t, and every
y, y′ in Rd, we have

|vn(t, y)| ≤ C‖v‖V , |v(t, y)− v(t, y′)| ≤ C‖v‖V |y − y′|.
Then, Gronwall’s lemma ensures (increasing C if needed), that |ϕn(t, y) − ϕn(t, y′)| ≤ C|y − y′|, and the same is
true for dϕ(t).

This shows that the first term of (18) is less than or equal to

2C max
f∈Fk,`

∑
j∈f

∣∣∣∣Nϕn(Skinit )(z(k,`)j )− N (n,`)(f)

|N (n,`)(f)|

∣∣∣∣ ≤ 2C max
f∈Fk,`

∑
j∈f

∣∣∣∣∣Nϕn(Skinit )(z(k,`)j )−
dϕn(z

(k,`)
j,init)

−TN (n,`)(f)

|dϕn(z
(k,`)
init,j)

−TN (n,`)(f)|

∣∣∣∣∣
+ max
f∈Fk,`

∑
j∈f

∣∣∣∣∣ dϕn(z
(k,`)
init,j)

−TN (n,`)(f)

|dϕn(z
(k,`)
init,j)

−TN (n,`)(f)|
− N (n,`)(f)

|N (n,`)(f)|

∣∣∣∣∣
≤ 2C2 max

f∈Fk,`

∑
j∈f

∣∣∣∣∣NSkinit (z(k,`)init,j)−
N

(n,`)
init (f)

|N (n,`)
init (t, f)|

∣∣∣∣∣
+ max
f∈Fk,`

∑
j∈f

∣∣∣∣∣ dϕn(z
(k,`)
init,j)

−TN
(n,`)
init (f)

|dϕn(z
(k,`)
init,j)

−TN
(n,`)
init (f)|

− N (n,`)(f)

|N (n,`)(f)|

∣∣∣∣∣ .
The first term after this last inequality goes to 0 as ` goes to infinity thanks to the convergence of normals (Property
(v) of a nice convergence). A straightforward computation and, again, Gronwall’s lemma, shows that

max
f∈Fk,`

∣∣∣∣∣ dϕn(t, z
(k,`)
init,j)

−TN
(n,`)
init (f)

|dϕn(t, z
(k,`)
init,j)

−TN
(n,`)
init (f)|

− N (n,`)(t, f)

|N (n,`)(t, f)|

∣∣∣∣∣ ≤ C max
f∈Fk,`

η(k, `, f).

Consequently, there exists a sequence (ε`)`∈N, going to 0 at infinity, such that any minimizer of the continuous
sliding problem satisfies the relaxed constraints

max
f∈Fk,`

∣∣∣∣∣∣N (n,`)(f) ·

∑
j∈f

(
vk(z

(k,`)
j )− vn(z

(k,`)
j )

)∣∣∣∣∣∣ ≤ ε`|N (n,`)(f)|.

Step two: weak convergence. Now let (vk,`, k = 1, . . . , n)`∈N be a sequence of minimizers of the discretized sliding
problem with relaxed constraints

max
f∈Fk,`

∣∣∣∣∣∣N (n,`)(f) ·

∑
j∈f

(
vk,`(z

(k,`)
j )− vn,`(z(k,`)j )

)∣∣∣∣∣∣ ≤ ε`|N (n,`)(f)|.

Denote by ϕk,` their respective flows. Thanks to the convergence of current norms for nicely converging triangulations,
we see that each sequence (vk,`)`∈N is bounded in L2(0, 1;Vk). Hence, up to the extraction of a subsequence, we have,
for each k, that vk,` converges weakly toward some limit v∗k in L2(0, 1;VK) with flow ϕk,∗. This implies that ϕk,` and
dϕk,` converge strongly toward ϕk,∗ and dϕk,∗ in some compact subset K that includes ∪n−1k=1S

k
init .

The triangulation is nested (Assumption (ii) of a nice convergence), so we can order the components of each z(k,`)

so that
z(k,`+1) = (z

(k,`)
1 , . . . , z

(k,`)
lk,`

, z
(k,`+1)
lk,`+1 , . . . , z

(k,`+1)
lk,`+1

)
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for every integer `. We start by proving that, for each i, we have

Nϕn(t,Skinit )(z
(k,∗)
i (t)) · vk,∗(t, z(k,∗)i (t)) = 0

for almost every t, where z(k,∗)i (t) = ϕn,∗(t, z
(k,∗)
init,i). Fix some integer i. Choose, for each ` in N, two integers j` and

j′` such that i, j`, and j′` belong to a face f` ∈ Fk,`. Consider the sequence in L2(0, 1;R) of functions

c` : t 7→ N (n,`)(t, f`)

|N (n,`)(t, f`)|
· (δvk,`(t, z(k,`)i (t)) + δvk,`(t, z

(k,`)
j`

(t)) + δvk,`(t, z
(k,`)
j′`

(t))),

where δvk,`(t, x) = vk,`(t, x)− vn,`(t, x). By construction, for any ε > 0, and for any ` big enough, −ε ≤ c`(t) ≤ ε
almost everywhere. Since L2(0, 1; [−ε, ε]) is weakly compact in L2(0, 1;R) and goes to {0} as ε goes to 0, we see
that c` goes weakly to 0 as ` goes to inifinity.

On the other hand, we can prove that c` converges weakly to t 7→ 3Nϕn(t,Skinit )(z
(k,∗)
i (t)) ·vk,∗(t, z(k,∗)i (t)). Indeed,

ommitting t for readability, we also have

c` =

(
N (n,`)(f`)

|N (n,`)(f`)|
−Nϕn,∗(Skinit )(z

(k,∗)
i ))

)
· (δvk,`(z(k,`)i ) + δvk,`(z

(k,`)
j`

) + δvk,`(z
(k,`)
j′`

))

+ Nϕn,∗(Skinit )(z
(k,∗)
i ) · (δvk,`(z(k,`)i ) + δvk,`(z

(k,`)
j`

) + δvk,`(z
(k,`)
j′`

)).

Let us now prove that δvk,`(z
(k,`)
i ), δvk,`(z

(k,`)
j`

), and δvk,`(z
(k,`)
j′`

) each converges weakly toward δvk,∗(z
(k,∗)
i ) =

vk,∗(z
(k,∗)
i ) − vn,∗(z

(k,∗)
i ) in L2(0, 1;R3). We only do it for j`, the case for the other two being either similar or

easier. We have
δvk,`(z

(k,`)
j′`

) = (δvk,`(z
(k,`)
j′`

)− δvk,`(z(k,∗)i )) + δvk,`(z
(k,∗)
i )

Now, for any ψ ∈ L2(0, 1;R3), we have∫
[0,1]

|δvk,`(z(k,`)j′`
)−δvk,`(z(k,∗)i ))|2 ≤ C max

t∈[0,1]
|z(k,`)j′`

(t)−z(k,∗)i (t)|2
∫
[0,1]

(‖vk,`‖2Vk+‖vn,`‖2Vn) ≤ C2η(k, `, f`)

∫
[0,1]

(‖vk,`‖2Vk+‖vn,`‖2Vn).

which clearly goes to 0 as ` goes to infinity. On the other hand, δvk,`(z
(k,∗)
i ) converges weakly to δvk,∗(z

(k,∗)
i ) as `

goes to infinity. Indeed, for any ψ ∈ L2(0, 1;R), the mapping

v ∈ L2(0, 1;Vk), v′ ∈ L2(0, 1;Vn) 7→
∫ 1

0

ψ(t) · (v(t, zk,∗i (t))− v′(t, zk,∗i (t)))dt

is a continuous linear form, and (vk,`, vn,`) converges weakly to (vk,∗, vn,∗). Hence, we get that δvk,`(z
(k,`)
j`

) con-

verges weakly to δvk,∗(z
(k,∗)
i ), and the same is true for δvk,`(z

(k,`)
j′`

) and δvk,`(z
(k,`)
i ).

Now the strong convergence of N(n,`)(f`)
|N(n,`)(f`)|

toward Nϕn,∗(Skinit )(z
k
i ) in L2(0, 1;R3) (and even in C0(0, 1;R)) is an

immediate consequence of the nice convergence of the triangulations and the strong convergence of the flows ϕk,`
toward ϕk,∗. Therefore, we get c` converges weakly in L2(0, 1;R) to

t 7→ 3Nϕn(t,Skinit )(z
(k,∗)
i (t)) · vk,∗(t, z(k,∗)i (t)).

By unicity of the weak limit value of a sequence, we get, for almost every t in [0, 1],

Nϕn(t,Skinit )(z
(k,∗)
i (t)) · vk,∗(t, z(k,∗)i (t)) = 0.

Hence, for any i ∈ N and almost every t in [0, 1], we have

Nϕn(t,Skinit )(z
(k,∗)
i (t)) · vk,∗(t, z(k,∗)i (t)) = 0.

But N is countable, so we can write, for almost every t in [0, 1],

∀i ∈ N, Nϕn(t,Skinit )(z
(k,∗)
i (t)) · vk,∗(t, z(k,∗)i (t)) = 0.
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But, by nice convergence, we know that for every t, {z(k,∗)i (t), i ∈ N} is dense in ϕn(t, Skinit). Moreover, vk∗(t) and
Nϕn(t,Skinit ) are continuous on ϕn(t, Skinit) for almost every t.

We get, for almost every t in [0, 1]

∀x ∈ ϕn(t, Skinit), Nϕn(t,Skinit )(x) · vk,∗(t, x) = 0.

Since this is true for each k = 1, . . . , n − 1, we see that (vk,∗, k = 1, . . . , n) does satisfy the sliding constraints for
the continuous problem.

Step 3: minimality. From the nice convergence of the triangulations involved, and the strong C1-convergence of the
flows, we easily deduce from Appendix A.3 that each Uk,`(ϕk,`◦q(k,`)) and Ũk,`(ϕn,`◦q(n,k,`)init ) converge respectively
to Uk(ϕk,∗ ◦ q(k)init) and Ũk(ϕn,∗ ◦ q(k)init). Therefore, because of the properties of the weak convergence, we have

E∗ ≤
n∑
k=1

∫ 1

0

‖vk,∗(t)‖2Vkdt+

n−1∑
k=1

(Uk(ϕk,∗ ◦ q(k)init) + Ũk(ϕn,∗ ◦ q(k)init))

≤ lim inf
`

n∑
k=1

∫ 1

0

‖vk,`(t)‖2Vkdt+

n−1∑
k=1

(Uk,`(ϕk,` ◦ q(k,`)init ) + Ũk,`(ϕn,` ◦ q(k,`)init )).

But because of Step 1 of this proof and the construction of each (vk,`, k = 1, . . . , n), we have, for every integer `,

E∗ ≥
n∑
k=1

∫ 1

0

‖vk,`(t)‖2Vkdt+

n−1∑
k=1

(Uk,`(ϕk,` ◦ q(k,`)init ) + Ũk,`(ϕn,` ◦ q(k,`)init )),

so

E∗ =

n∑
k=1

∫ 1

0

‖vk,∗(t)‖2Vkdt+

n−1∑
k=1

(Uk(ϕk,∗ ◦ q(k)init) + Ũk(ϕn,∗ ◦ q(k)init)),

which completes the proof.

APPENDIX C. DERIVATIVES OF THE AUGMENTED LAGRANGIAN

We give the formulas for the differentals required to implement the augmented Lagrangian method.

Identity Constraints. For identity constraints, we use the notations of Section 4.2. We then want to minimize

Eλ,µ(α, β, x, z) =

∫ 1

0

Lλ(t),µ(α(t)β(t), x(t), z(t))dt+

n−1∑
k=1

Uk(x(k)(1)) +

n−1∑
k=1

Ũk(z(k)(1)),

where

Lλ,µ =
1

2

n−1∑
k=1

α(k) · (K(k)(x(k))α(k)) +
1

2
β · (K(n)(z)β)−

n−1∑
k=1

λ(k) · (x(k) − z(k)) +
µ

2

n−1∑
k=1

|x(k) − z(k)|2,

over controls α and β subject almost everywhere along [0, 1] to{
∂tx

(k) = K(k)(x(k))α(k),

∂tz = K(n)(z)β.

For this, we use the Hamiltonian method described in Section 2.2. Denoting the co-states by px,k, k = 1, . . . , n − 1,
and pz , the associated Hamiltonian is

H(t, x, z, px, pz, α, β) =

n−1∑
k=1

px,k ·K(k)(x(k))(α(k)) + pz ·K(n)(z)β − Lλ(t),µ.
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Given α and β and the associated trajectories x and z, one has to solve the adjoint equations

∂tp
x,k = −∂x(k)H, px,k(1) = −∇Uk(x(k)(1)), k = 1, . . . , n− 1,

∂tp
z = −∂zH, pz,k(1) = −∇Ũk(z(k)(1)), k = 1, . . . , n− 1.

The computation of the differential system gives

∂tp
x,k
i = −

mk∑
j=1

∇1(px,ki ·K(k)(x
(k)
i , x

(k)
j )α

(k)
j )−

mk∑
j=1

∇1(α
(k)
i ·K

(k)(x
(k)
i , x

(k)
j )px,kj )

+ 2

mk∑
j=1

∇1(α
(k)
i ·K

(k)(x
(k)
i , x

(k)
j )α

(k)
j )− (λ(k) − µ(x(k) − z(k))),

and

∂tp
z,k
i = −

n−1∑
l=1

ml∑
j=1

∇1(pz,ki ·K
(n)(z

(k)
i , z

(l)
j )β

(l)
j )−

n−1∑
l=1

ml∑
j=1

∇1(β
(k)
i ·K(n)(z

(k)
i , z

(l)
j )pz,lj )

+ 2

n−1∑
l=1

ml∑
j=1

∇1(β
(k)
i ·K(n)(z

(k)
i , z

(l)
j )β

(l)
j ) +

n∑
l=1

(λ(l) − µ(x(l) − z(l)))

The gradient of Eλ,µ with respect to (α, β) is then deduced from the partial differentials of H with respect to these
variables, yielding

∇α(k)Eλ,µ = K(k)(x(k))(α(k) − px,k),

∇βEλ,µ = K(n)(z)(β − pz).
for the gradient with respect to the Hilbert product associated to the Euclidean metric. Another way is to compute the
gradient with respect to the Hilbert metric described at the end of Section 2.2, in which case we obtain

∇α(k)Eλ,µ = α(k) − px,k,
∇βEλ,µ = β − pz.

We found the latter method to converge more quickly in practical applications.

Sliding constraints. Here, we use the notations from Section 4.3. The functional we want to minimize is

(19) E′λ,µ(α, β, x, z) =

∫ 1

0

L′λ(t),µ(α(t), β(t), x(t), z(t))dt + +
n−1∑
k=1

Uk(x(k)(1)) +

n−1∑
k=1

Ũk(z(k)(1))

, with

Lλ,µ =
1

2

n−1∑
k=1

α(k) · (K(k)(x(k))α(k)) +
1

2
β · (K(n)(z)β)−

n−1∑
k=1

∑
f∈Fk

(λfΓ
(k)
f (x(k), z)− µ

2
Γ
(k)
f (x(k), z)2).

We now compute the evolution equations for the co-states, as done with identity constraints. For f ∈ Fk and i ∈Mk,
we have

(20) ∂
x
(k)
i

Γ
(k)
f =

∑
j∈f

∇1(α
(k)
i ·K

(k)(x
(k)
i , z

(k)
j )Ñ (n)(f)).

Denoting
δ(k)(f) :=

∑
j∈f

(uk(z
(k)
j )− un(z

(k)
j )),
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if i ∈ f ∈ Fk, then

(21) ∂
z
(k)
i

Γ
(k)
f = −ei,f × δ(k)(f)−

n−1∑
l=1

ml∑
j=1

∇1(Ñ (n)(f) ·K(n)(z
(k)
i , z

(l)
j )β

(l)
j )

+

mk∑
j=1

∇1(Ñ (n)(f) ·K(k)(z
(k)
i , x

(k)
j )α

(k)
j )−

n−1∑
l=1

ml∑
j=1

∇1(β
(k)
i ·K(n)(z

(k)
i , z

(l)
j )Ñ (n)(f)).

Let px,1, . . . , px,n−1 and pz = (pz,1, . . . , pz,n−1) be the co-states. Let γ(k)f = λf − µΓ
(k)
f . For i ∈ Mk, let

Fk(i) = {f ∈Mk : i ∈ f}. Then

∂tp
x,k
i = −

Nk∑
j=1

∇1(px,ki ·K(k)(x
(k)
i , x

(k)
j )α

(k)
j )−

Nk∑
j=1

∇1(α
(k)
i ·K

(k)(x
(k)
i , x

(k)
j )px,kj )

+ 2

Nk∑
j=1

∇1(α
(k)
i ·K

(k)(x
(k)
i , x

(k)
j )α

(k)
j )−

∑
f∈Fk

γ
(k)
f ∂

x
(k)
i

Γ
(k)
f ,

and

∂tp
z,k
i = −

N∑
j=1

∇1(pz,ii ·K
(n)(z

(k)
i , zj)βj)−

N∑
j=1

∇1(β
(k)
i ·K(n)(z

(k)
i , zj)p

z
j )

+ 2

N∑
j=1

∇1(β
(k)
i ·K(n)(z

(k)
i , zj)βj)−

∑
f∈Fk

γ
(k)
f ∂

z
(k)
i

Γ
(k)
f ,

where ∂
x
(k)
i

Γ
(k)
f and ∂

z
(k)
i

Γ
(k)
f are given by (20) and (21).

For f ∈ Fk (k = 1, . . . , n− 1), we have

∂α(k)Γ
(k)
f =

∑
j∈f

K(k)(x(k), z
(k)
j )Ñ

(n)
j (f),

∂βΓ
(k)
f = −

∑
j∈f

K(n)(z, z
(k)
j )Ñ

(n)
j (f),

Letting θ(k)j =
∑
f∈Fk:j∈f γ

(k)
f N

(n)
j (f), the gradient of Eλ,µ in α and in β with respect to the canonical L2 Hilbert

product is then given by

∇α(k)Eλ,µ = K(k)(x(k))(α(k) − px,k)−K(k)(x(k), z)θ,

∇βEλ,µ = K(n)(z)(β − pz) +K(n)(z, z)θ

Another method is to take the Hilbert gradient with respect to the product introduced at the end of Section 2.2, which
yields

∇α(k)Eλ,µ = α(k) − px,k −K(k)(x(k))−1K(k)(x(k), z)θ,

∇βEλ,µ = β − pz +K(n)(z, z)θ.

In spite of it requiring the inversion of a linear system in the first equation, we found the latter version preferable to
the L2 gradient in our experiments.
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A Remark: Kernel derivatives. Expressions similar to ∇1(n · K(x, y)α) appear at multiple times in the previous
computation (for some vectors n and α). For radial kernels (K(x, y) = G(|x− y|2)IdRd ), we have

∇1(n ·K(x, y)α) = 2G′(|x− y|2)(n · α)(x− y),

which (slightly) simplifies the expressions.
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