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This paper describes the application of large deformation diffeomorphic
metric mapping to cortical surfaces based on the shape and geometric
properties of subregions of the superior temporal gyrus in the human
brain. The anatomical surfaces of the cortex are represented as
triangulated meshes. The diffeomorphic matching algorithm is im-
plemented by defining a norm between the triangulated meshes, based
on the algorithms of Vaillant and Glaunés. The diffeomorphic
correspondence is defined as a flow of the extrinsic three dimensional
coordinates containing the cortical surface that registers the initial and
target geometry by minimizing the norm. The methods are demon-
strated in 40 high-resolution MRI cortical surfaces of planum temporale
(PT) constructed from subsets of the superior temporal gyrus (STG).
The effectiveness of the algorithm is demonstrated via the Euclidean
positional distance, distance of normal vectors, and curvature before
and after the surface matching as well as the comparison with a
landmark matching algorithm. The results demonstrate that both the
positional and shape variability of the anatomical configurations are
being represented by the diffeomorphic maps.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Diffeomorphics; Large deformation; Surface matching; Normal
vector

Introduction

Diffeomorphic mapping is now being used by various investi-
gators in the field of Computational Anatomy to study the geometric
variation of human anatomy (Grenander and Miller, 1998; Gee and
Bajcsy, 1999; Miller et.al, 2002; Twining et al., 2002; Beg et al.,
2005; Joshi et al., 2004; Avants and Gee, 2004). Over the past
several years we have been using large deformation diffeomorphic
metric mapping (LDDMM) (Joshi and Miller, 2000b; Camion and
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Younes, 2001; Beg et al., 2005) for studying the mapping of 3D
volume coordinates in the brain as well as in the heart (Helm et al.,
2006). This method not only provides a diffeomorphic correspon-
dence between anatomical configurations, but as well defines a
metric distance. In all of these cases, LDDMM constructs a flow of
diffeomorphictransformations on the extrinsic 3D coordinates of the
entire volume, based on a correspondence cost between measure-
ments made in anatomical configurations. Thus far, most of our
work has been either based on anatomical landmarks or the MRI
image intensities for defining the correspondence function. More
recently, this has been extended to include multi-valued vector
matching and tensor matching arising from DTI studies (Cao et al.,
2005a,b). In this paper, we examine the extension of these ideas to
the understanding of anatomical configurations which are cortical
surfaces arising in the parcellation of the human cortex. For this, it is
our goal to define registration or correspondences based on the shape
of the cortical surface itself, so that the matching is performed not
just on the Euclidean positions of the measured surfaces in the
extrinsic volume coordinates, but as well based on normal vectors of
surfaces. The basic paradigm is to represent surfaces as mathema-
tical objects that encode normal vectors of surfaces (the first-order
differential geometric structure), which are elements of a vector
space equipped with a computable normed distance (Vaillant and
Glaunes, 2005). “Closeness” between two surfaces is then given by
the norm-square distance between their associated representations.
The diffeomorphic transformation is generated on the coordinate
system minimizing the norm-squared distance between the mapped
surface and the template. The theoretical development of the
approach can be found in Vaillant and Glaunés (2005). We
demonstrate the application of this method in the human cortex on
the superior temporal gyrus. We term this method as LDDMM-
surface. This method provides powerful information into the
matching procedure for correspondence that should be defined by
the normal vectors of the cortical surfaces themselves.

Compared to the spherical brain mapping approaches (Fischl et
al., 1999; Van Essen and Drury, 1997; Van Essen et al., 2001; Van
Essen, 2004, 2005; Tosun et al., 2004a,b; Thompson et al., 2004),
our approach does not require an intermediate spherical representa-
tion of the brain. This intermediate step would introduce large
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distortion of the brain structure, which does not appear consistently
across subjects. As a consequence, matchings would begin with such
a distortion error. However, our approach directly works on cortical
surfaces and does not require surfaces with correct topology.
Furthermore, our matching approach can map two open surfaces
from one to the other and the boundaries of two surfaces need not
match if the geometries near the boundary are quite different from
one another. This is particularly attractive because it allows us to
study more local variation of anatomies due to effects of diseases in
cortical substructures.

In this paper, we use the planum temporale (PT) to validate our
LDDMM-surface matching approach in a population of twenty
healthy subjects. Located on the superior temporal plane posterior
to the Heschl's gyrus (HG) and extending to the posterior ramus,
PT is believed to be responsible for speech and language
processing (Harasty et al., 2003; Seldon, 2005; Beasley et al.,
2005). As an example, shown in Fig. 1 is the definition of the PT in
the superior temporal gyrus. Building deformation maps on the
cortical surface that extrinsically associate corresponding cortical
regions across subjects becomes a crucial step in study and
comparison on the laminar structure and function of PT across
clinical populations to understand the characteristics and symptoms
of neurodegenerative diseases and neuropsychiatric disorders, e.g.
schizophrenia, bipolar, central auditory processing deficits (Hir-
ayasu et al., 2000; Kasai et al., 2003; Chance et al., 2004; Beasley
et al., 2005).

LDDMM-surface
LDDMM

Exact matching formulation

The basic diffeomorphic metric mapping approach taken for
understanding the structure of anatomical shapes is to place the set of
anatomical shapes into a metric space. This is.modeled by assuming
that the shapes can be generated one from the other via a flow of
diffeomorphisms, solutions of ordinary differential equations ¢, =
vi(,), te[0, 1] with ¢o=id the identity map, and associated vector
fields v,, te[0, 1]. We compute pairsS; 7, such that there exists a

Fig. 1. The left superior temporal gyrus (STG). The planum temporale (PT)
structure is defined by three boundaries — STG (blue line), Heschl’s sulcus
(red line, HS), and posterior boundary (green line) on the top of STG.

diffeomorphism ¢ transforming one to the other ¢ - S=T7. The metric
distance between shapes is the length of the geodesic curves ¢,- S, te
[0, 1] through the shape space generated from S connecting to 7 in
the sense that ¢, S=T. These curves ¢,-S, t€[0, 1] are general-
izations of simple finite dimensional curves. The metric between two
shape S, T takes the form

1

p(S, T = inf / ||v,||%,dt such that ¢, S=T7, (1)
v: =ui(,).do=id JO

where v,€ ¥, a smooth Hilbert space with norm |l - Il ;. To ensure that

the solutions to this equation are diffeomorphisms, /' must be a space
of smooth vector fields (see Trouve, 1995 and Dupuis et al., 1998 for
specific requirements).

Inexact matching formulation

In practice, the metric p and the diffeomorphic correspondence
¢=¢, between the pair (S, 7) is calculated via a variational
formulation of the “inexact matching problem”. Associate for each
pair (S, 7), a norm-squared cost D(S, 7); then the variational
problem requires minimization of the functional

1
J@) =  inf / o\ 7de + D(; -S\= T). 2)
v =0i(,),po=id J 0 A

General results in Trouvé (1995), Dupuis et al. (1998), and
Glaunés (2005) guarantee existence and uniqueness of the solution
to this minimization problem. Joshi and Miller (2000a) and
Glaunes et al. (2004) have defined such a variational problem for
matching isolated landmark points, Beg et al. (2005) for dense
scalar imagery. More recently Cao et al., 2005(a, b) have defined
such a solution for diffusion tensor images.

Triangulate surface mesh norm

Assume that the anatomical configurations are subcortical
surfaces in the brain, represented via triangulated meshes. Then,
for any pair S, 7, what is required is the definition of the norm-
squared registration distance D between surfaces. We represent these
surfaces explicitly as triangular meshes in R3. Given a face fof S, let
7, 2 f denote its vertices, e' =f>—1>, &=1>—f1, =117 its
oriented edges, c(f)=(1/3) (f' +/>+°) its center, and N (f)=(1/2)
(¢® x %) which is its normal vector with length equal to its area (see
Fig. 2).

Now let £, g represent the faces of S and ¢, r represent the faces
of 7. We impose an inner product structure on these representations
which induces a norm-square which we write D(S, 7). The
matching criterion given by the norm-square becomes

D(S,T)* =3 N(f)'kw(c(g). ()N (g)
T=8
=2)  N(f)'kw(c(q).c())N(q) 3)
7=
+ D N(g)'kw (c(g),c(r)N (),
#zFA

where ’ is transpose. ky is a radial, positive definite 3 x 3 diagonal
matrix kernel function such as

kW(x,y) = kW(yﬂx)t

- diag(eA“x*yllz/(2ai>7 Qe IP/Ca) it /20y,
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fZ

N(f)

fl

Fig. 2. Example face representation from a triangular mesh.

160 The terms in Eq. (3) integrate measures of local geometry for
161 each face via inner products of its normal with normals of
162 neighboring faces. The choice of kernel function, ky; together with
163 its parameters controls the local neighborhoods used in the
164 calculations. The first and last terms measure the local geometry
165 within S and 7, and the middle term measures the mismatch in local
166 geometry between S and T. The detailed theoretical derivation of
167 above approach for the continuum surface is in Glaunes (2005) and

168 Vaillant and Glauneés (2005).

169 The algorithm

170 We write x,..., xy for the vertices of the mesh S and define the
171 trajectories x[f):=¢, (x;) for i=1,...,N. Note that ¢y (S5) is
172 approximated by applying ¢; to the vertices of S. Thatis, ¢; (S) is
173 simply the mesh defined by the vertices x(1) for all i=1,...,N, and
174 faces f(1) of S. Since the matching term of Eq. (2) depends only on
175 the vertices of the mesh through Eq. (3), a general result for
176 diffeomorphic matching problems (Joshi and Miller, 2000b;
177 Camion and Younes, 2001) shows that the solution must be of

178 the form

Vi) =D ey (e (1), X)ae(1),

k=1

180 where o is named as momentum vector because of its analogy with

181 fluid mechanics (Arnold, 1978).

182 Defining f*(f)=¢" (f*) for i= 1, 2,3 the cost function in Eq. (2)

183 becomes

J:/o Z Z () Koo (), x; (1)) st
+ > N () kirte(g (1), e (D)N (g(1)

188 The Frechet derivative of J in the space Vis given for variations
187 v, +teh,. We find VJ, for t=[0, 1] satisfying (6/0€)J(v,+€h,)|c—o=

188 (VJ,, h))y The gradient (Vaillant and Glaungs, 2005) becomes

N
Vi) =2 k(). x) (eu(r) + B, (1) /7).
i=1

together with the identities v, given by Eq. (4) and

B()= > > alh)

ks fF=x; hed, (S)UT

2 d t , (
y (3(9(:(;’(1))]\[%’((1)) kw(C(h),C(f(l)))N(h)>
+ (1) X ky (c(h, c(f(1))N (k)

5)

B0 = (o) B, 1), (©

where x denotes the cross product, and a(#)=1 if & is a face of ¢,
(S) and a(h)=—1if h is a face of 7. We can then use this gradient in
a descent algorithm to find a minimum solution to Eq. (2). The
algorithm we have implemented is a simple adaptive step size
steepest descent algorithm as outlined below:

Algorithm

1. Discretize time dnto 7 time steps ¢=0,...,7—1 and initialize
x{(t)=x; and o/#)=0 for #=0,...,7—1.
2. Iterate until convergence:
(a) Compute f3; () solving the differential of Egs. (5) and (6) by
numerical integration.
(b) Set & (Hrew=yo; (f)—2xe(a,(t)+p; (1)/6?), where € is the
descent step size.
(c) Compute the new trajectories, X;(¢)new by integrating

G Onen = D 15 05 ey (D) )

(d) Compute J (x,ew) and while J (Xpew) <J (Xo14) decrease the
step size € and return to 2b.
(e) Set o (f)=0pew (f) and x(#)=x(f)pew, and increase step size €.

The stopping criterion for convergence is given by a tolerance
on the cost difference between successive iterations.

Results
Subjects, MRI acquisition, and data processing

Twenty healthy subjects, aged from 20 to 54 (mean: 36.5;
standard deviation: 11.2), were selected from schizophrenia and
bipolar disorder studies of Dr. Patrick Barta in the Division of
Psychiatric Neuroimaging at the Johns Hopkins University School
of Medicine. There were 10 males and 10 females among these
healthy subjects. All subjects gave informed consent for their
participation after the risks and benefits of participation were
explained to them prior to MRI scanning. The population was
examined with high-resolution magnetic resonance (MR) scans
acquired using 1.5 T scanner and MPRAGE sequence (repetition
time=13.40 ms, echo time=4.6 ms, flip angle=20°, number of
acquisition=1, matrix 256 x256) with 1 mm? isotropic resolution
across the entire cranium. Using ANALYZE (Robb et al., 1989),
raw MR data were reformatted from signed 16-bit to unsigned 8-
bit. A 3D region of interest (ROI) subvolume encompassing the
superior temporal gyrus (STG) was masked for each of the two
hemispheres in each subject (Ratnanather et al., 2003). Bayesian
segmentation was performed labeling voxels in the subvolume as
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gray matter (GM), white matter (WM) or cerebrospinal fluid (CSF)
(Joshi et al., 1999; Ratnanather et al., 2001, 2004). Surfaces were
generated at the GM/WM interface using a topology-correction
method and a connectivity-consistent isosurface algorithm applied
to a binarized subvolume of white matter to remove all cavities in
the WM object (Han et al., 2002). The connectivity-consistent
isosurface algorithm is used to extract the isosurface of the edited
image to guarantee that the extracted isosurface has the same
topology as the object surface in the binarized image (Han et al.,
2001). As demonstrated in Fig. 1, the boundary of the planum
temporale (PT) was delineated by tracking principal curves from
the retro-insular end of the Heschl's sulcus (HS) to STG, along the
posterior STG up to the start of the ramus and back to the retro-
insular end of the HS via dynamic programming (Ratnanather et
al., 2003). Three landmarks on each surface (intersections between
STG and HS, between STG and ramus, between ramus and HS)
were manually defined in this procedure and formed the
triangulated shape of PT. Each PT surface was represented by a
triangulated mesh with approximately 1000 vertices.

The left and right PT surfaces of one subject were selected as
left and right templates in such a way that their surface areas are
close to average left and right PT surface areas among the
population and the surfaces have a typical triangular PT shape.
Affine transformation was estimated by the previously described
three landmarks to bring PT surfaces to the same orientation as the
template. Then, the surface matching algorithm was used to
register all PTs onto the template. In our matching algorithm, we
assumed kernels &, and kj are Gaussian with variance ‘o2
and J%V,(GZV determines the smoothness of vector fields v, and
o3 controls how close the target surface is to the template. Small o),
causes unsmooth deformation field and large o leads that the
deformed surface is far from the template. We experimentally
determined 6%=36 and o%=4 in this study.

Examples
Figs. 3 and 4 show results for left and right PTs from the
surface matching algorithm, respectively. Panels (a)—(e) of each

figure give five examples of original (top row) and deformed PTs
(bottom row). Left and right templates are respectively shown in
panels (f) of Figs. 3 and 4. The top row in each panel shows an
original surface color encoded by the mean curvature information
for the purpose of visualization. < Bright color denotes gyral
regions while dark color denotes sulcal regions. The bottom row
in each panel shows the deformed surface that is colored by the
deformation measurement in-the direction of the tangent plane at
each location of the surface. This deformation information is
quantified by ratio of the area on the deformed surface to the
area on the original surface at local coordinate of the cortical
surface. Red color denotes stretched regions, while blue color
denotes shrunken regions in terms of surface area. In these two
figures, all surfaces are in the same orientation as the template
surfaces.

The comparison of original surfaces in Figs. 3 and 4 indicates
that all left or right PT surfaces are in close agreement with the
global triangulated shape and three boundary curves. However,
these surfaces are variant in details across subjects. For instance,
Fig. 3(d) shows the original surface with a gyral structure in the
interior region. Both Figs. 4(c) and (e) show the original surfaces
with wavy interior. Moreover, the anterior regions of the surfaces
in Figs. 4(d) and (e) have a gyral structure, which is different from

that of the other surfaces shown in the top row of Fig. 4. These two
surfaces are on the STG with double-Heschl's gyrus and the
anterior boundary is defined in the first Heschl's sulcus based on
cytoarchitectonic structure of the auditory cortex. All others are on
the STG with single-Heschl's gyrus and the anterior boundary is
defined in the Heschl's sulcus.

The deformed surfaces that are shown in the bottom row of
each panel in Figs. 3 and 4 suggest that the shape of the
deformed surfaces is close to the shape of the template. The
color on the surface tells how the original surface moves to the
deformed surface. Since the template is relatively flat in the
interior, for the case in Fig. 3(d), a large portion of the gyral
region in the interior becomes similar to the shape of the
template after matching. However; we  still observe a small
bump. For the cases of Figs. 4(¢c) and (e), the wavy interior
becomes flat after the deformation. For the cases of double-
Heschl's gyrus, the algorithm cannot remove this variation since
the correspondence. between the template and the surfaces
(shown in Figs. 4(d) and (e)) in the Heschl's gyral region is
not well defined in terms of the vertex location and the normal
vector that are carried by the algorithm.

Euclidean position validation

We calculate the cumulative distribution of distances between
the deformed targets and the template to quantify their closeness.
We call this as surface distance graph from T to S, defined as the
percentage of vertices on a template surface 7 having the distance
to a surface S less than d mm. Let v, and v, respectively be
vertices on surfaces S and 7. The distance of v, to S is defined

by:
d, :rvfgslllv;\—vnll, ™)
where Il - | is the Euclidean distance in R>. The surface distance

graph is the cumulative distribution of d;. The visualization of d,
on surface T is named as distance error map.

Comparison with and without LDDMM surface

Panel (a) of Fig. 5 shows the surface distance graphs of the
original left PTs after the affine registration. The red curve is the
average graph among the left PTs. The average median of distances
is 1.92 mm in the population. Blue, green, cyan, magenta and
yellow curves denote the graphs in the order given as one of
surfaces shown in Figs. 3(a)—(e). The intuitive illustration of where
left PT surfaces are far apart from the left template is demonstrated
by a distance error map on the left template surface colored by
average distance of PT surfaces to each vertex of the template in
panel (c). Obviously, the three corners are closer to the template
than other places due to affine transformation constrained to these
corners. Similarly, the surface distance graphs of the deformed left
PTs are shown in panel (b) and the distance error map is
demonstrated in panel (d). Clearly, after the matching, the average
median of distances is reduced to 0.55 mm within the voxel
resolution 1 mm and the variation among the graphs is significantly
decreased. The worst matched surface among the population in
terms of this distance validation is shown in Fig. 3(d) and the
distance graphs before and after matching are illustrated by
magenta curves in panels (a) and (b) of Fig. 5, respectively.
However, even for this case, 82.4% of vertices on the template
have the distance within the voxel resolution 1 mm.
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LEFT PLANUM TEMPORALE

a. subject 4
Yrariginal

I

deformed

d. subject 6
original

deformed

b. subject 19

ﬁoriginal

deformed

c. subject 10

Y

f. template

Fig. 3. The top and bottom rows in panels (a)—(e) illustrate left original and deformed PTs. The template surface is shown in panel (f). The original surface is
colored by curvature information for the purpose of visualization. The deformed surface is colored by the area deformation. Red and blue respectively denote the

stretched and shrunken regions after matching.

In parallel, the results of the surface distance graphs and distance
error maps for the right PTs are illustrated in Fig. 6. The average
medians of distances are 2.40 mm and 0.65 mm for the original and
deformed right PTs, respectively. The worst matched surface among
the population in terms of this distance validation is shown in panel
(b) of Fig. 4. However, even for this case, after matching about 80%
of vertices on the template are close to the deformed surface within
the MRI resolution 1 mm. Notice that the variation in right PTs is
larger than that in left PTs for both original and deformed cases. This
may be due to the fact that right PT structure is more complicated
than the left PT shape as reported in literature (Barta et al., 1995). For
example, the double-Heschl's cases, our matching algorithm cannot
remove this structure to match the template.

But the remaining structure of the PT surface can be matched
into the proper position of the template based on the similarity of
their normal vectors.

Comparison of LDDMM-surface and landmark matchings

The purpose of this section is to compare the LDDMM-surface
matching algorithm with a widely used landmark matching
algorithm using surface distance graph. The landmark matching
algorithm we used in this paper is also uades the LDDMM
framework and is described in Joshi and Miller (2000b).

As we describe in Subjects, MRI acquisition, and data
processing section, three corner points and three boundary curves
of the PT are defined as point and curve landmarks across the
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RIGHT PLANUM TEMPORALE

a. subject 3
original

]

deformed

d. subject 6

deformed

b. subject 9

e. subject 18
% ~original

c. subject 10

deformed

-

|

f. template
Posterior

Fig. 4. The top and bottom rows in panels (a)—(e) illustrate right original and deformed PTs. The template surface is shown in panel (f). The original surface is
colored by curvature information for the purpose of visualization. The deformed surface is colored by the area deformation. Red and blue respectively denote the

stretched and shrunken regions after matching.

population. Five points equally spaced on each boundary and the
three corner points were chosen as point landmarks on each PT
surface. Then, the landmark matching algorithm (Joshi and Miller,
2000b) is applied to PTs to obtain the deformation field that is used
to deform PT surfaces to the template. Distance surface graphs
between deformed and template surfaces were computed and are
shown in gray in Figs. 7(a) and (b). The average graphs over the
population are shown in green in each panel for left and right PTs,
respectively. For the comparison, we replot surface distance graphs
(shown in Figs. 5(b) and 6(b)) in each panel of Fig. 7 for the left
and right PTs, respectively. These two panels suggest that all

surface distance graphs from the surface matching algorithm are
above those from the landmark matching algorithm, which implies
that the surface matching algorithm introduced in this paper
significantly improves matching results from the landmark
matching in terms of surface distance measurement. Moreover,
compared to the landmark matching, the surface matching
algorithm gives the smaller variation of surface distance graphs,
which also indicates that the surface matching algorithm properly
carries anatomical variation cross the population so that it may
increase the power of statistical testing on shape, cortical thickness,
curvature, and functional responses in clinical studies.
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surface, respectively.

Geometric validation

To evaluate the geometric closeness between two surfaces, we
compute two quantities: distance of normal vectors (the first-order
differential geometric information) given in Eq. (3) and mean
curvature (the second-order differential geometric information).

Distance of normal vectors

The distance of normal vectors between two surfaces is given in
Eq. (3). It integrates the local first-order geometry for each face via
inner products of its normal with normals of neighboring faces.
The large value indicates that the two surfaces are not close in
terms of their normals, while the small value suggests that the
normals of the two surfaces are nearly in the same direction and
also have the similar length.

Fig. 8 shows the boxplots of this measure for left and right PTs.
In each panel, we show the distance of normal vectors of all other
19 PT surfaces relative to the template before matching, after the
landmark matching (Joshi and Miller, 2000b), and after the surface
matching. The labels on the x-axis respectively represent the results
corresponding to surfaces before matching, after the landmark
matching, and after the surface matching. Each asterisk represents
the measurement for one PT surface. The boxes have lines at the
lower quartile, median, and upper quartile values. The whiskers are
lines extending from each end of the boxes to show the extent of
the rest of the data. The results shown in the figure suggest that the
deformed surfaces from the surface matching are much closer to
the template, compared to the original surfaces and deformed
surfaces from the landmark matching. The standard deviation of
the distance indicates the variation of PT surfaces in terms of

normal vectors. For the left PTs, they are 33.88, 30.41, and 12.81
respectively for original surfaces, landmark deformed surfaces, and
deformed surfaces from the surface matching.

For the right PTs, they are 44.17, 17.96, and 17.10 respectively
for original surfaces, landmark deformed surfaces, and deformed
surfaces from the surface matching. These results suggest that the
variation of PT surfaces after the surface matching is less than that
of the originals or the landmark deformed surfaces. However, the
standard deviation of the distance for the right PTs from the surface
matching is close to the one from the landmark matching. This is
due to one measurement marked by red asterisk in Fig. 8(b), which
corresponds to the surface with double-Heschl's gyrus shown in
Fig. 4(e). Compared to that of the left PTs, the standard deviation
of the right PTs before and after the surface matching indicates
larger variation in the population, which agrees with the Euclidean
position validation shown in Figs. 5 and 6.

Mean curvature

To validate the shapes of the surfaces, we use the mean
curvature to quantify the second-order differential geometry of the
cortical surface. On a triangulated mesh, the local coordinate chart
of the cortical surface is fitted by the second order in the Taylor
series expansion. The coefficients of the second-order terms
construct the shape operator. Its trace of the shape operator at a
vertex veS determines twice of the mean curvature at v. The
estimate of the shape operator, the symmetric 2 X2 matrix, at each
veSis based on the neighborhood N, of the vertex v by minimizing
mean squared error (see details in Joshi et al., 1995 and Hamann,
1993). We use its cumulative distribution to represent the
percentage of vertices having mean curvature less than a certain
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number k, called curvature graph. The representation of mean
curvature on the surface is named as curvature map.

To validate how close the shape of deformed surfaces is to that of
the template, mean curvature was computed locally on each PT
surfaces (Joshi etal., 1995; Hamann, 1993). Panels (a)and (b) in Fig.
9 respectively show curvature graphs for original and deformed left
PT surfaces. The curvature graph and map of the left template are
given by the red curves in panels (a), (b), and (c). The average of
curvature maps among matched left PTs is shown in panel (d).

Probability

Parallelly, panels (a) and (b) in Fig. 10 respectively show the
curvature graphs of original and deformed right PT surfaces. The
curvature graph and map of the right template are given by the red
curves in panels (a), (b), and (c). The average of curvature maps
among deformed right PTs is shown in panel (d). Blue, green, cyan,
magenta and yellow curves denote the distributions associated with
surfaces shown in panels (a—¢) of Fig. 4. In panel (b) of Figs. 9 and
10, the curvature graphs are pushed to get close to the red one after
matching. And the same phenomenon as we see in the previous
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Fig. 7. Panels (a) and (b) show surface distance graphs of left and right PTs, respectively. Surface distance graphs for the surface matching are in black and their
average graphs are marked as red in each panel. Similarly, for the landmark matching, distance graphs are in gray and average graphs are marked as green in each

panel.
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the surface matching is marked as red asterisk.

section is that the variation in the right PT is larger than the one in the
left PT for both original and deformed surfaces.

Discussion and conclusion

Our group has been developing large deformation diffeo-
morphic metric mapping (LDDMM) methods for studying the
mapping of coordinates in the brain. The previous work has
focused on mapping landmarks (Joshi and Miller, 2000b) or dense
images (Beg et al., 2005), and these mapping methods have been
used to study hippocampal shapes. However, this paper we present
is the first of its kind studying matching methods for mapping

cortical surfaces (the boundary between white matter and gray
matter). The cortical surface is a geometric object different from
landmarks or dense images. It is represented by both its coordinates
and normal vectors. The focus of the surface matching approach is
to introduce a matching functional that incorporates the geometric
information (normal vector) of the cortical surface. We present
validation results for the diffeomorphic surface matching approach
initially introduced (Vaillant and Glaunes, 2005). The results from
both Euclidean and geometric quantitative evaluations as well as
the comparison with the landmark matching show that the
LDDMM-surface matching algorithm gives good matching
fidelity. In the Euclidean positional validation, after the surface
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Fig. 9. Curvature validation on the left planum temporale. Panels (a) and (b) show curvature graphs for left original and deformed PTs. The curvature map for the
left template is marked as red in each panel. Blue, green, cyan, magenta, and yellow curves indicate the curvature graphs associated with surfaces shown in Figs.
3(a)—(e), respectively. The curvature map of the left template is shown in panel (c), while the average of curvature maps among deformed surfaces is in panel (d).
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matching, about 90% of vertices on the template have distances to
all other PTs less than the MRI resolution 1 mm in both left and
right sides. This is also illustrated on distance error maps on panel
(d) of Figs. 5 and 6. Moreover, the distance of normal vectors and
the mean curvature provides-the validation of local shape based on
the first- and second-order differential geometry of the cortical
surface. Furthermore, compared ~with the landmark matching
algorithm, the diffeomorphic maps from the LDDMM-surface
matching algorithm carry more of the variability of the anatomical
structures. As a limitation of all brain warping techniques, our
algorithm also faces the difficulty: the correspondence for many
anatomical structures is not well defined, as we described in the
Examples section. If such a case happens, our algorithm matches
the structure into the properplace of the template based on normal
vectors between the surface and template.

Our surface matching approach overcomes several issues
occurring in surface-based matching approaches based on land-
marks. A clear issue in using landmarks is that manually labeling
landmarks is labor-intensive. Moreover, due to discretization, one
point on one surface may not have a homologous point on the other
surface. Furthermore, the geometry information is discarded when
reducing surfaces, inherently 2D objects, to 0-dimensional point
sets. Of course, the tradeoff of our approach is the computational
time since the algorithm does not require predefined correspon-
dence and exhaustibly searches the best match. However, we have
optimized the code using tree structures so that the algorithm can
be applied to large surfaces as well.

The surface matching method along with its quantitative evaluation
on PT cortical surfaces indicates the ability to accurately match cortical

surfaces (substructure of the brain) so that it will be powerful to detect
any changes in anatomical and functional profiles, such as cortical
thickness maps, functional activation maps, and curvature maps, in
different populations. From the benefit of the accurate surface
matching, the inference of mismatching to statistical analysis will be
significantly reduced so that we will be able to clarify ambiguity of
regions identified as regions with significant structure or function
changes. Moreover, an immediate application of the diffeomorphic
matching of our surface matching approach is in statistical inference of
shape via the momentum representation of flow (Vaillant et al., 2004).
Miller et al. (2006) have shown that the image under the flow ¢’ is
completely determined by the momentum (cx) at time #=0. Therefore,
the momenta encode the non-linear transformation from one structure
onto another and are in a linear space which leads the shape analysis to
linear statistical analysis.
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