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Human primary visual cortex is organized retinotopically, with

adjacent locations in cortex representing adjacent locations on the

retina. The spatial sampling in cortex is highly nonuniform: the

amount of cortex devoted to a unit area of retina decreases with

increasing retinal eccentricity. This sampling property can be quanti-

fied by the linear cortical magnification factor, which is expressed in

terms of millimeters of cortex per degree of visual angle. In this paper,

we present a new method using dynamic programming and fMRI

retinotopic eccentricity mapping to estimate the linear cortical

magnification factor in human primary visual cortex (V1). We localized

cortical activity while subjects viewed each of seven stationary

contrast- reversing radial checkerboard rings of equal thickness that

tiled the visual field from 1.62 to 12.96 degrees of eccentricity. Imaging

data from all epochs of each ring were contrasted with data from

fixation epochs on a subject-by-subject basis. The resulting t statistic

maps were then superimposed on a local coordinate system constructed

from the gray/white matter boundary surface of each individual

subject’s occipital lobe, separately for each ring. Smoothed maps of

functional activity on the cortical surface were constructed using

orthonormal bases of the Laplace–Beltrami operator that incorporate

the geometry of the cortical surface. This allowed us to stably track the

ridge of maximum activation due to each ring via dynamic program-

ming optimization over all possible paths on the cortical surface. We

estimated the linear cortical magnification factor by calculating

geodesic distances between activation ridges on the cortical surface in

a population of five normal subjects. The reliability of these estimates
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was assessed by comparing results based on data from one quadrant to

those based on data from the full hemifield along with a split-half

reliability analysis.
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Introduction

Studies of visual field loss following cortical lesions have

shown that human primary visual cortex is retinotopically

organized: adjacent neurons in the visual cortex correspond to

adjacent locations in the visual field (Inouye, 1909; Holmes, 1918;

Horton and Hoyt, 1991). The center of the visual field occupies the

occipital pole, while the periphery is mapped to more anterior parts

of the occipital cortex, forming a retinotopic eccentricity map.

Within primary visual cortex (area V1), as one moves from the V1/

V2d (dorsal V2) border through the calcarine sulcus to the V1/V2v

(ventral V2) border, the representation of the visual field sweeps

from the lower vertical meridian through the horizontal meridian to

the upper vertical meridian, forming a retinotopic polar angle map.

Such mapping of retinal space to cortical space is referred to as

retinotopy. The spatial sampling of the visual cortex is highly

nonuniform: the cortical representation of the fovea is much larger

than that of the periphery. Daniel and Whitteridge (1961) first used

the term linear cortical magnification factor to refer to the

quantitative relationship between visual cortex and visual field in

terms of the number of millimeters of visual cortex representing

one degree of visual field at any given eccentricity.

Anatomical magnetic resonance imaging and functional mag-

netic resonance imaging (MRI, fMRI) have made it possible to

precisely delineate the retinotopic organization of human visual
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cortex and quantitatively investigate the linear cortical magnifica-

tion factor, especially in area V1 (Schneider et al., 1993; Engel et

al., 1994; Sereno et al., 1995; Engel et al., 1997; Tootell et al.,

1997; DeYoe et al., 1996; Duncan and Boynton, 2003). These

techniques open clinical possibilities to study visual pathology and

develop new strategies for rehabilitation (Baseler et al., 1999;

Morland et al., 2001; Sunness et al., 2004; Baker et al., 2005). The

following broad steps are involved in fMRI retinotopic mapping

using phase-encoding stimuli (expanding ring and rotating wedge,

or stationary rings and wedges) (Schneider et al., 1993; Engel et

al., 1994; Shipp et al., 1995; Tootell et al., 1995; Sereno et al.,

1995): the reconstruction of the highly convoluted cortical surface,

including classification of tissues (Dale and Sereno, 1993; Well et

al., 1996; Kapur et al., 1996; Thompson et al., 1996; Teo et al.,

1997; Dale et al., 1999; Miller et al., 2000; Joshi et al., 1999;

Ratnanather et al., 2001; Xu et al., 1999; Harris et al., 1999;

MacDonald et al., 2000; Fischl et al., 2001; Zhang et al., 2000,

2001a,b; Fischl et al., 2002; Shattuck and Leahy, 2001),

topological correction of the surface mesh (Shattuck et al., 2001;

Han et al., 2001, 2002), and unfolding the cortical surface into a

2D plane (Thompson et al., 1996; Van Essen et al., 1998; Toga,

1999; Angenent et al., 1999; Fischl et al., 1999a,b; Hurdal et al.,

1999; Lewis and Van Essen, 2000; Collins and Stephenson,

2003b); analysis of the fMRI response (Engel et al., 1997; Andrade

et al., 2001; Warnking et al., 2002); smoothing of functional data

over the cortical surface (Andrade et al., 2001; Warnking et al.,

2002); localization of functional response to phase-encoded

stimuli; and, finally, measurement of the linear cortical magnifi-

cation factor (Sereno et al., 1995; Engel et al., 1997; Duncan and

Boynton, 2003).

Although many fMRI retinotopic mapping studies in human

primary visual cortex have been carried out in the last decade, there

is no generally-accepted consensus about how to smooth functional

data over the cortical surface while taking the cortical geometry

into account. Furthermore, no methods for automatically delimiting

the boundaries of V1 using fMRI have been generally accepted by

the scientific community.

In this paper, we present all steps necessary for fMRI

retinotopic mapping analysis and linear cortical magnification

factor estimation in human primary visual cortex, from fMRI

experimental design and anatomical MRI analysis to quantitative

measurement of the linear cortical magnification. We use methods

proposed by our own group and others for stimulus design,

functional volume-based analysis, anatomical MRI segmentation,

and unfolding the cortical surface. We present new methods for

associating functional volume data with the cortical surface,

smoothing functional data on the cortical surface using the

geometric characteristics of the cortical surface expressed via

orthonormal bases of the Laplace–Beltrami operator, automatically

defining the V1 boundaries and tracking ridges of maximum

activation evoked by stationary contrast-reversing rings via

dynamic programming optimization, and measuring the linear

cortical magnification factor in human primary visual cortex. We

report results of the linear cortical magnification factor estimation

in the left and right primary visual cortices in a population of five

normal subjects. Finally, we test the multirun reliability of the

estimates by comparing them based on the set of all odd- or even-

numbered fMRI runs with estimates based on all fMRI runs and the

spatial reliability of the estimates by comparing estimates based on

data limited to the upper or lower quadrant in each visual hemifield

with estimates based on the entire hemifield.
Methods

Functional MRI analysis

Acquisition

Functional MRI was performed using a Philips Intera 3.0 T

scanner located at the F. M. Kirby Research Center for Functional

Brain Imaging at the Kennedy Krieger Institute, Baltimore, MD.

All images were acquired using a SENSE parallel imaging head

coil.

We used single-shot echo-planar imaging (EPI) of 23 ascending

2 mm (no gap) axial-oblique slices with a field of view of 128 mm2

and a 64 � 64 matrix allowing partial-brain coverage at high

resolution (2 mm3). Slices were positioned so as to maximally

cover the occipital lobe on a subject-by-subject basis. Volumes

were acquired every 2000 ms with a TE of 30 ms and a flip angle

of 70-.

Visual stimuli and paradigm

Subjects were scanned while they viewed retinotopic map-

ping stimuli (stationary contrast-reversing rings and wedges).

Each subject observed four runs (298 s per run) of a V1

localizer and 9–10 runs (272 s per run) of an eccentricity

mapping paradigm during a singles scanning session. Visual

stimulation was accomplished using in-house software written in

C++ and projected on a screen at the head of the scanner bore

using an Epson PowerLite 7600p projector fit with a custom

lens (Buhl Optical, Pittsburgh, PA). Subjects viewed the screen

via a first-surface mirror mounted on the head coil and were

instructed to fixate the central fixation disk during all runs. Head

stability was maintained with a bite bar custom-fitted for each

subject.

Fig. 1a illustrates the V1 localizer paradigm. The V1 localizer

consisted of two wedges, each subtending 60- of polar angle and

composed of a radial black and white checkerboard reversing

contrast at 8 Hz on a gray background. The wedges alternated

between horizontal and vertical orientations every 18 s. A white

fixation disk was displayed in the center of the screen where the

wedges met. At the end of each run, subjects observed 10 s of the

fixation disk without the wedges.

Fig. 1b demonstrates the eccentricity mapping stimuli. The

eccentricity mapping paradigm consisted of seven equal-width

annular rings that completely tiled visual space from 1.62 to 12.96

degrees of eccentricity. Each ring was 1.62- of visual angle in

width; the mean of the inner and outer radii of the seven rings were

as follows: 2.43, 4.05, 5.67, 7.29, 8.91, 10.53, and 12.15 degrees of

eccentricity. The size of each check sequentially increased from the

innermost ring to the outmost ring to improve the strength of the

periphery activation and ensure that each ring had identical width.

The rings were composed of an 8 Hz contrast-reversing black and

white radial checkerboard. Rings were displayed for 16 s at a time,

twice each per run, counter-balanced such that no ring was

displayed twice before all had been displayed once and no ring was

immediately followed by a spatially adjacent ring. A 0.27- radius
disk divided into four quadrants (two black, two white; reversing

contrast at 4 Hz) was randomly alternated with a white disk at

fixation in order to provide a task to control subjects’ attentional

state; subjects held down a button in each hand during periods in

which the fixation disk contained the contrast reversing stimulus.

All rings were displayed on a gray background. Each run began

and ended with 16 s periods of fixation without a ring stimulus, and



Fig. 1. Experimental design. Panel a illustrates the V1-localizer experiment. The horizontal and vertical meridia alternate every 18 s. At the end of each run, the

subject observes 10 s of fixation-only. Panel b demonstrates the eccentricity experiment. Seven equal-width annular rings that tile space from 1.62 to 12.96- are
displayed for 16 s at a time. Each ring is displayed twice per run. At the beginning, middle, and end of every run, the subject observes fixation-only for 16 s.
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contained a third fixation period between the first and second

repetitions of the set of seven rings.

Preprocessing and volume-based functional data analysis

Functional data were preprocessed using Brainvoyager (Brain

Innovation B.V., Maastricht, the Netherlands). Preprocessing steps

included: slice acquisition time correction, within-run motion

correction, temporal high-pass filtering (1st–3rd order compo-

nents), and temporal low-pass filtering (removing frequencies

above approximately 2 cycles per stimulus block, using the

shortest block in the run when a run contained blocks of multiple

durations). One functional volume for each subject was manually

aligned to the structural image; this transformation was then

applied to all volumes in all runs.

All analysis was performed separately for each subject. For

each subject, all runs of each type were normalized using a z-

transform and then concatenated. Stimulation and fixation blocks

were modeled by boxcar functions convolved with a canonical

hemodynamic response function (Friston et al., 1994). For each run

type, contrasts between relevant stimulus types (V1 localizer:

horizontal meridian vs. vertical meridian; eccentricity stimulus:

each ring individually vs. fixation) were used to generate

unthresholded t statistic maps.

Anatomical MRI analysis

Acquisition

Whole-brain high resolution 3D structural MRI images were

acquired using a T1 weighted MPRAGE sequence with a TR of 8.1

ms, TE of 3.8 ms, flip angle of 8-, coronal slice acquisition, time

between inversions of 3 s, inversion time of 850 ms, and an

isotropic resolution of 1 mm. A SENSE head coil was used during

the acquisition.

Segmentation, surface generation, and conformal map

A 3D region of interest (ROI) subvolume encompassing the

occipital lobe was defined manually for each of the two hemi-

spheres in each subject (e.g., Fig. 2a). The ROI was delimited in
the sagittal view in Robb et al. (1989) and is shown by white lines

in Fig. 2a. A Bayesian segmentation using the expectation-

maximization algorithm to fit the compartmental statistics was

used to label voxels in the subvolume as gray matter (GM), white

matter (WM), or cerebrospinal fluid (CSF) (Joshi et al., 1999;

Miller et al., 2000). The segmentation accuracy of this method has

been validated in various subregions of the brain in past studies

(Ratnanather et al., 2001, 2004). Surfaces were generated at the

GM/WM interface (the blue contour in Fig. 2a) using a topology-

correction method and a connectivity-consistent isosurface algo-

rithm (Han et al., 2001, 2002). The topology-correction method

was applied to a binarized subvolume according to the gray and

white intensity threshold to remove all handles of the WM object

(Han et al., 2002). The connectivity-consistent isosurface algorithm

is used to extract the isosurface of the edited image to guarantee

that the extracted isosurface has the same topology as the object

surface in the binarized image (Han et al., 2001). Finally, the

portion of the surface to be unfolded was defined by one manual

cut approximately parallel to the parieto-occipital sulcus (Fig. 2b)

on the cortical surface.

For visualization purposes, the cortical surface was bijectively

mapped into the 2D plane via a conformal mapping algorithm

(Hurdal et al., 1999; Collins and Stephenson, 2003a). Such maps

can be displayed in geometries of constant curvature: the Euclidean

and hyperbolic planes, and the sphere. In this paper, maps on the

hyperbolic plane were used to visualize functional activation due to

the fact that the visual cortical surface on the hyperbolic plane can

be represented by the unit disc. The unit disc is a natural

representation for the visual cortex since the visual field is usually

represented by a disc as well (Fig. 2d).

Fig. 2 illustrates these anatomical MRI analysis steps

sequentially from panel (a) to panel (d) and shows anatomical

landmarks on the visual cortical surface and its planar map.

Critically, all measurements reported in this paper were carried out

in the intrinsic coordinate system of the cortical surface and the

results are shown on the planar map for ease of visualization only.

The bijection to the planar map does not preserve the geodesic

distance.



Fig. 2. Anatomical MRI analysis. (a) Sagittal slice in the MRI volume. The white lines delineate the region of interest, and the blue contour indicates the

location of the GM/WM interface. (b) Right occipital lobe. The cut is delimited by the white line parallel to the parieto-occipital sulcus. (c–d) Right occipital

surface and its planar map. Bright color denotes gyrus regions with positive curvature, while dark color indicates sulcus regions with negative curvature.

Calcarine sulcus, cuneus, and lingual gyri (red lines) are defined by principal curve tracking (Ratnanather et al., 2003).
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Surface-based representation of functional response

Obtaining a surface-based representation of functional response

requires a reduction of dimensionality, the assignment of the

functional data in the 3D volume to locations on the cortical

surface. We consider two steps that contribute to the mapping of a

voxel in the functional statistical volume to a vertex on the cortical

surface without considering potential misregistration of anatomical

and functional volumes. The first step is to find the proper

association between gray matter voxels and the cortical surface.

Inappropriate association could, for instance, result in the

assignment of the functional response of a voxel to the wrong

bank of the calcarine sulcus. Several steps are necessary to find the

proper association. We first label each voxel as GM, WM, or CSF

and compute the shortest distance from each voxel to the surface.

GM and CSF have positive outward distance, and WM has

negative distance. A gray matter mask is created by taking into

account all GM voxels less than 3 mm from the surface. This mask

region is denoted as a set of voxels P = {i |di � 3}, where i is an

index of the ith voxel and di is the shortest distance from this voxel

to the surface. Assume a set Vj is the collection of all voxels in P

closest to vertex vj on the surface. The sets Vj, j = 1, 2, . . . , Nv,

where Nv is the number of vertices on the surface, represent the

mapping of gray matter voxels to each vertex on the cortical

surface. In the second step, we consider the contribution of

distance di. Weighting data as a function of distance from the

surface can reduce the impact of those voxels in the pial region
(where there are large draining veins) that are far from the surface

and perhaps misclassified as gray matter (Warnking et al., 2002).

In summary, functional statistic rj for vertex j on the surface is

defined as

r̄ j ¼

P
ia Vj

e
�

d 2
i

2r2 ri

P
ia Vj

e
�

d 2
i

2r2

; ð1Þ

where ri denotes the functional t statistic at voxel i and r is the

standard deviation of the weight function.

Smooth functional maps on the cortical surface

Surface-based representations of functional responses as a series

of t statistic maps residing on the cortical surface are quite noisy due

to the noise inherent in fMRI and the highly convoluted nature of

the cortical sheet. To increase the signal to noise ratio of functional

maps, spatially smoothing functional activation on the cortical

surface is needed and superior to smoothing in the fMRI volume

because two adjacent voxels in the volume may not belong to the

same anatomical structure (e.g., gyrus or sulcus). The intuition of

our approach comes directly from the Fourier basis representation

for smoothing functions on a regular grid. As demonstrated in Fig.

3a, a one-dimensional signal f can be represented as a linear

combination of orthonormal basis functions (e.g., cosine functions,



Fig. 3. (a) A signal in one dimension can be represented by a linear combination of orthonormal bases (e.g., cosine functions, /1, /2, /3, /4, . . .). Panels b–e

illustrate the first four orthonormal bases of the Laplace–Beltrami operator associated with the right visual cortical surface in Fig. 2c. Panel f gives an example

of the function constructed from a linear combination of orthonormal basis functions shown on panels b–e.
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Fourier bases). Therefore, the smoothed function f can be obtained

by variety of stochastic signal processing methods using these

orthonormal basis functions (e.g., f = c1/1 + c2/2 + . . . on Fig. 3a).
Finding orthonormal basis functions on the cortical surface,

which incorporate the geometry of the highly curved cortex, is the

key to allow classical stochastic signal processing on a regular grid

to be performed on the cortical surface. The Laplace–Beltrami

operator, the extension of the Euclidean Laplacian to an arbitrary

Riemannian surface, has a positive definite property and allows us

to compute a complete set of orthonormal bases. The Laplacian

incorporates the intrinsic properties of the geometry of a curved

surface in the sense that it takes the interior angles and areas of

triangles into account, which are related to the curvature

information on the discrete triangulated surface (Meyer et al.,

2002). In Appendix A, we show the formulation of bases of the

Laplace–Beltrami operator on the cortical surface and spline

smoothing of functional maps via these bases, a generalization of

the spline smoothing problem in a reproducing kernel Hilbert space

from unit sphere to an arbitrary surface (Wahba, 1990).
Estimating the ridge of maximal activation via dynamic

programming

We localize the functional response to each annular ring

stimulus on the smoothed functional map and build the

correspondence between annular rings in the visual field and

their functional responses in the visual cortex via dynamic

programming (DP). Because the blood oxygenation level depen-

dent (BOLD) fMRI response is an indirect and blurry measure-

ment of the neural response, it is difficult to localize and separate

the functional responses to each individual ring. Additionally, the

location of a ring’s response cannot be characterized by the

estimated midpoint of the activation boundaries because these

boundaries are threshold dependent and may be asymmetrically

distant from the true ridge of maximum activation due to cortical

magnification. Here, we track the ridge of maximal activation

directly because it is independent of threshold and thus more

reliable. Such a ridge is defined as the path that has the minimal

cost among candidate curves a(s, t) on the surface, where s and t
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are the starting and ending points, respectively. The cost function

has the form:Z
a s;tð Þ

r xð Þ � Rð Þ2da; ð2Þ

where r(x) is the functional statistic at the location x on the surface.

We use the t statistic to characterize the functional response. R is

assigned as the largest value of the t statistic on the surface.

DP is adapted to the above optimization problem on the

triangulated surface (Khaneja et al., 1998). Define Nv and NT as

the number of vertices and triangles on the surfaceM, respectively.

Denote the index of each vertex on the surface as i, i = 1, 2, . . . , Nv,

and its coordinates inR3 as xi, and a triangle on the surface as Tj, j =

1, 2, . . . ,NT. If the vertex i is one of three vertices within triangle Tj,

then we say i Z Tj. Define the platelet N i as the set of vertices for

which there is an edge eij connecting it with vertex i, written as

N i ¼ j jeij a M; j ¼ 1; 2; . . . ; Nv; j m i
� �

:

Define a path on the surface routed and terminated respectively

in vertices s and t on the surface as

s ¼ j1; j2ð Þ; . . . ; jk � 1; jkð Þ; . . . ;ð jN � 1; t ¼ jN Þ;

such that jkaN jk � 1
for Ok. Define the set of paths with connecting

vertices s and t on the surface M as P(s, t), and (s, t) as a path that

belongs to P(s, t). Then the ridge of maximal activation is defined

as the cost-minimizing path given by

âa s; tð Þ ¼ argmina s; tð ÞaP s; tð ÞCa s; tð Þ; ð3Þ

where

Ca s; tð Þ ¼
XN
k ¼ 1

R� rjk þ rjk þ 1

2

�� 2

jjxjk � xjkþ1 jj: ð4Þ

Notice, when r is constant, a is the path between vertices s and f

with the shortest geodesic length on the surface. In addition, if the t

value is used, the ridge of minimal activation is defined in the same

way by replacing R with the smallest t value.

Estimating linear cortical magnification

The linear cortical magnification factor quantifies the spatial

sampling in area V1, which is expressed in terms of millimeters

of cortex per degree of visual angle. As described in Section

Estimating the ridge of maximal activation via dynamic

programming, we associate a ridge of maximum activation with

the center of each stimulus ring. We then choose one ridge as a

reference and compute the geodesic distances (i.e., distance along

the folded cortical surface) between the reference ridge and each

of the other ridges. The geodesic distance is determined as

follows. Define the reference ridge as : 0, and a point on : 0 as

pi, i = 1, 2, . . . , N0. Similarly, define the other ridge as : 1, and

a point on : 1 as qj, j = 1, 2, . . . , N1. If d0i and d1j are the

shortest distances of a point pi on : 0 to : 1 and a point qj on : 1

to : 0, respectively, then the geodesic distance d between : 0 and

: 1is defined as

d ¼ d¯0 þ d¯1
2

; ð5Þ

where

d¯0 ¼
1

N0

XN0

i ¼ 1

d0i and d¯¼ 1

N1

XN1

j ¼ 1

d1j: ð6Þ
d0i and d1j are computed using the Dijkstra algorithm (Dijkstra,

1959), which finds the shortest path between points on the

cortical surface.

We plot the eccentricity h corresponding to the peak of each ridge

as a function of cortical distance d and fit the curve as the

exponential function h = ec(d + d0) (Engel et al., 1997). d0 denotes the

translation distance, which depends on which ridge is chosen as the

reference line.We are only interested in parameter c since it is a scale

factor inversely proportional to the linear cortical magnification

factor, M(h) = (dd/dh) = (1/c)h�1 mm/degree, which expresses the

change in the cortical distance produced by a unit degree of the

visual field at any given eccentricity. This is derived as follows:

d ¼ 1

c
ln hð Þ � d0;

dd

dh
¼ 1

c
h�1:

The parameters are estimated using the least square method.
Results

We studied the retinotopic map in a population of five young

adults (four males and one female) with normal vision and no

known neurological impairments.

Smoothed functional maps

There are no closed mathematical expressions for generating a

complete orthonormal basis for an arbitrary surface. Fig. 3

illustrates the numerical solutions to basis functions on the visual

cortical surface. Panels b–e demonstrate the first four basis

functions (/1, /2, /3, /4), which are functionally equivalent to

the ones (/1, /2, /3, /4) shown on panel a except the ones on

panel (a) are for the one-dimensional case. Red denotes positive

value regions, and blue denotes negative value regions. As one

goes to higher orders of the basis functions, the alternating red/blue

pattern varies rapidly, implying the inclusion of high frequency

components; this is similar to what we demonstrated in the one-

dimensional case on panel a. Panel f gives an example of the

function constructed from a linear combination of orthonormal

basis functions (/1, /2, /3, /4) shown on panels b–e on the visual

cortical surface.

Fig. 4 compares unsmoothed and smoothed functional maps.

The first row shows functional maps of the horizontal meridian on

the right visual cortical surface (see its 3D surface in Fig. 2c). Panel

a illustrates the unsmoothed functional map on the surface. For

purposes of visualization, panels b and c show the unsmoothed and

smoothed functional maps, respectively, on the plane. The second

row shows the functional map of one ring. As in the top row,

panels d–f show the unsmoothed map on the surface and on the

plane and the smoothed map on the plane.

Ridge tracking

In this section, we present the results of ridge tracking, quantify

the potential effects of starting and ending point selection, and

illustrate how the ridge passes through the activated region. The

ridge tracking results are visualized on the 2D plane, but all

calculations are performed on the folded cortical surface.



Fig. 4. Functional statistical maps on the right visual surface (see Fig. 2c for the 3D surface and Fig. 2d for the planar map). Bright color represents the high t

value region, while dark color denotes the low t value region. The functional responses to the horizontal and vertical meridia are shown on the first row, and the

functional response to one ring is shown on the second row. Panels a and d show unsmoothed functional responses on the cortical surface. Panels b and e

illustrate the unsmoothed functional responses on the planar map. Panels c and f show smoothed functional maps.
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We first delimit the V1 boundary by defining the ventral and

dorsal vertical meridian ridges (evoked by stimulating the upper

and lower visual field meridia, respectively) and marking the

center of V1 using the horizontal meridian response on the

surface. Figs. 5a–c show the functional maps for each of these

meridian wedges. Negative t values denote the vertical meridian

wedges (dark color) and positive t values are associated with the

horizontal meridian wedge in the contralateral visual hemifield

(bright color). For the ridges corresponding to the vertical

meridian wedges, we manually initialize the starting and ending

points, after which the path is automatically tracked via dynamic

programming as defined in Eq. (4) where R is the minimum value

on the surface. The ridge for the horizontal meridian wedge is

found in a similar way, except R is the maximum value on the

surface in Eq. (4) and the starting and ending points are chosen

halfway between the two vertical meridian ridges. The ventral and

dorsal vertical meridian ridges on the surface define the borders

between area V1 and areas V2v and V2d, respectively. The

horizontal meridian ridge separates the V1 regions associated with

the upper and lower quadrants within the visual hemifield

represented in each hemisphere of the brain.

To track the ridge of maximum activation evoked by each

ring, a starting point and ending point are selected that fall on the

ventral and dorsal boundaries of V1, respectively. Panel d shows

the center of each ring in the visual field using different colors;

these eccentricities are marked above each panel from e–k. For

instance, the inner and outer boundaries of the first ring are 1.62-
and 3.24- of visual angle, respectively, so the center of this ring

has an eccentricity of 2.43-. Panels e–k illustrate the ridge of

maximum activation for each ring on the surface using the same

color scheme as in panel d. As visual field eccentricity increases

across stimulus rings, the corresponding ridges move from

posterior to anterior visual cortex, as shown on panel (l). The

background in panel (m) gives the anatomical structure of this

surface: bright color denotes gyrus (positive curvature) regions
while dark color represents sulcus (negative curvature) regions;

red lines are defined as the principal curves of the cuneus gyrus,

calcarine sulcus, and lingual gyrus (Ratnanather et al., 2003) from

top to bottom.

Convergence

The above dynamic programming tracking procedure involves

the manual selection of the starting and ending points for each ring.

Fig. 6 illustrates how the solution is affected by the selected initial

points. Panels a–b show the functional map (also shown in Fig. 5e)

on the surface and plane, respectively. Red, blue, and green paths are

tracks found using different initial points separated by approximate-

ly 2 mm on the cortical surface. These three paths converge after just

two or three tracking nodes, suggesting high stability of the

algorithm.

Definiteness

Fig. 7 illustrates the distribution of functional t statistics on 10

curves (colored blue in panel a) perpendicular to the ridge

representing the innermost ring and shows the location of the

tracking ridge on the activation region. These curves are indexed as

1, 2, . . . , 10 from the top to the bottom. Every point on each of the

curves is also indexed as 1, 2, . . . M. The functional t statistic as a

function of these indices is illustrated on panel b, where x, y, and z

axes are indices of curves, points on the curves, and functional t

statistic, respectively. Red *s denote the locations where the ridge

passes through each curve. The ridge crosses each curve

approximately at the point where the maximum functional t

statistic occurs.

Linear cortical magnification

Fig. 8 shows retinotopic eccentricity maps of the primary

visual cortex for the left and right hemispheres in all five

subjects. The ridges of maximum activation for each ring on



Fig. 5. Ridge tracking on the left occipital cortex. Panels a–c show vertical and horizontal meridia on the functional map. Ridges of maximum activation are

tracked by dynamic programming and are denoted by red lines. Panel d illustrates the left visual field with seven equal-width rings. Each semicircle

represents the center of the ring indicated by different colors to be associated with each ridge tracked on a functional map shown on panels e–k. The

functional response to each individual ring (ring centers from 2.43- to 12.15-) is shown on panels e–k, respectively. The lines on these panels indicate the

locations of the ridges of maximum activation associated with the centers of the ring stimuli. The tops of panels give the eccentricities of the centers of the

ring stimuli in the visual field. Brightness indicates the t value. Panel l gives the overall view of seven ridges on the 2D plane and panel m illustrates the

anatomical structure with the curvature information as the background. The anatomical landmarks of the visual cortex are defined by the principal curve

tracking algorithm (Ratnanather et al., 2003) and are shown by the red lines on panel m.

Fig. 6. Convergence analysis of the sensitivity of ridge tracking to variation

of starting and ending points. Panels a–b show the functional map on the

surface and plane, respectively. Three paths in red, blue, and green are

tracked by giving different starting and ending points to find the ridge of

maximal activation. The ridges tracked between each set of starting and

ending points converge within 2–3 tracking nodes.

Fig. 7. Definiteness of ridge tracking. Panel a gives the functional map to

the first ring, which is also shown in Fig. 6b. The 10 blue curves are

approximately equally spaced and perpendicular to the ridge of maximal

activation from the first ring. They are indexed as 1, 2, . . . , 10 from the top

to the bottom. Panel b demonstrates the functional statistic of the ridge

through the activation region. The x-axis indexes the blue curves; the y-axis

indexes the points on each blue curve; the z-axis shows the functional

statistic for each point of the curve. Red *s represent the point where the

ridge passes through each of the blue curves.
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Fig. 8. Retinotopic eccentricity maps. Panel a gives the schematic denoting the center of the seven rings, each colored differently in the visual space. The

remaining panels illustrate the ridges of responses on the left and right visual cortical surfaces for each subject.

Fig. 9. Eccentricity as a function of the geodesic distance from reference

(2.43-) ridge in V1 for the full visual hemifield in five normal subjects.

Circles and diamonds denote each measurement on the left and right visual

cortex, respectively, and are colored to distinguish each subject. The mean

measurement curve among the five subjects is represented by black lines;

the red line is the fitted curve using the exponential function h = ec(d + d0).
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panels (b)–(f) are colored as in the visual field representation

on panel (a). Figs. 5m and 2d show anatomical structures of the

left and right visual cortices as references. The left visual cortex

is activated by stimuli in the right visual field, while the right

visual cortex is activated by stimuli in the left visual field. As

ring radii increase, the associated functional responses move

from posterior to anterior visual cortex. Some of the ridges

touch due to overlapping functional responses, but no ridges

cross. Notice that the ridges appear jagged on the flattened

representation of the cortical surface because the flattening

procedure used in this paper preserves angles, but not geodesic

distance. Therefore, the abutting ridges on the flattened map do

not indicate that the geodesic distance between them is small on

the 3D cortical surface.

Fig. 9 shows the visual field eccentricity as a function of the

geodesic distance from the reference ridge (center eccentricity,

2.43-) to each of the other six ridges corresponding to stimulus

rings with center eccentricities up to 12.15- in 1.62- increments.

The geodesic distances are measured from each ridge to the

reference ridge on the GM/WM 3D cortical surface using the

ridge over the full hemifield (ventral and dorsal V1). Each circle

or diamond in Fig. 9, colored differently to distinguish between

subjects, represents one distance measurement on the left or right

visual cortex for the full visual hemifield space. The mean across

subjects is shown by the black line. The red curve is the

exponential function h = e0.0742(d + 13.71), which best fits (least

square method) the data. The linear cortical magnification is then

simply described as M (h) = (1/0.0742)h�1 = 13.48h�1.The last

column of Table 2 lists the best fits for measurements from each

left and right full hemifields in all subjects. Fig. 9 and the last

column of Table 2 indicate that there are individual differences in

linear cortical magnification, and within-subject differences

between hemispheres.
Multirun reliability

To test the multirun reliability of the linear cortical magnifica-

tion estimates, we split the set of all ring runs into the odd- and

even-numbered runs. Then, we repeated all fMRI analysis and

ridge tracking analysis to estimate the linear cortical magnification

factor for these two groups separately. Table 1 lists all estimates for

the groups of odd and even runs as well as all runs. Fig. 10a shows

that the scale factor c from the groups of odd and even runs is

highly correlated with that in the group of all runs (correlation



Table 1

Multirun reliability in linear cortical magnification estimation

Odd runs Even runs All runs

c d0 M(h) c d0 M(h) c d0 M(h)

Subject 1

Left 0.083 12.03 12.05h�1 0.087 11.13 11.49h�1 0.080 13.18 12.50h�1

Right 0.075 10.73 13.33h�1 0.070 13.21 14.29h�1 0.078 9.31 12.82h�1

Subject 2

Left 0.112 9.01 8.93h�1 0.107 10.25 9.35h�1 0.089 8.24 11.24h�1

Right 0.073 13.70 14.08h�1 0.068 15.13 14.71h�1 0.068 16.34 14.71h�1

Subject 3

Left 0.073 15.07 13.70h�1 0.073 14.62 13.70h�1 0.067 15.90 14.93h�1

Right 0.073 10.99 13.70h�1 0.074 10.33 13.51h�1 0.078 11.04 12.82h�1

Subject 4

Left 0.077 15.70 12.99h�1 0.078 16.22 12.82h�1 0.085 13.93 11.76h�1

Right 0.076 15.90 13.16h�1 0.073 16.53 13.70h�1 0.072 16.36 13.89h�1

Subject 5

Left 0.064 18.30 15.63h�1 0.064 18.17 15.63h�1 0.065 18.08 15.38h�1

Right 0.067 16.07 14.93h�1 0.066 15.54 15.15h�1 0.065 16.00 15.38h�1

Note. The eccentricity is described as an exponential function of the geodesic distance, h = ec(d + d0), where c is the scale factor and d0 denotes the translation

distance relative to the reference ridge. The linear cortical magnification factor, M(h), is described as a function of eccentricity, M(h) = (1/c)h�1.
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coefficient: 0.7933; P < 0.001). Similarly, panel (c) illustrates that

the correlation coefficient of the scale factor c between odd and

even runs is high (correlation coefficient: 0.9725; P < 0.001). In

addition, correlation coefficients of the scale factor c in odd vs. all
Fig. 10. Reliability of the estimates of linear cortical magnification factor. (a) Corr

all runs. The correlation coefficient is 0.7933 and P < 0.001. (b) Correlation pl

hemifield. The correlation coefficient is 0.7429 and P < 0.001. (c) Correlation plot

coefficient is 0.9725 and P < 0.001. (d) Correlation plot of the scale factor c betwe

0.3351. However, if one outlier (in the rectangular frame) is removed, the correlatio

from left or right hemisphere of five subjects.
and even vs. all are 0.7788 (P = 0.008) and 0.8110 (P = 0.004),

respectively. Overall, these correlations show that the variability of

our linear cortical magnification estimates is not significantly large

across fMRI runs.
elation plot of the scale factor c between half of the runs (odd and even) and

ot of the scale factor c between quadrants (lower and upper) and the full

of the scale factor c between the odd and even sets of runs. The correlation

en lower and upper quadrants. The correlation coefficient is 0.3409 and P =

n becomes 0.6140 (P = 0.078). Each data point represents one measurement
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Spatial reliability

To test the stability of the linear cortical magnification

estimates, we divide each visual hemifield into two quadrants (left

upper and lower, right upper and lower; shown on Fig. 8b). For

each quadrant, ridges corresponding to each ring are tracked

between the horizontal meridian and either the dorsal or ventral V1

boundary (corresponding to the lower or upper vertical meridian,

respectively) and the linear cortical magnification factor is

measured. Table 2 lists all estimates for each quadrant and full

hemifield. Fig. 10b shows that the scale factor c from lower and

upper quadrants is highly correlated with that in the full hemifield

(correlation coefficient: 0.7429, P < 0.001). In addition, correlation

coefficients of the scale factor c in lower vs. full hemifield, upper

vs. full hemifield, and lower vs. upper quadrants are 0.8837 (P <

0.001), 0.6849 (P = 0.0289), and 0.3409 (P = 0.3351),

respectively. The low correlation between lower and upper

quadrants is due to one outlier (shown in the rectangular frame

on Fig. 10d), subject 2 left lower quadrant vs. left upper quadrant,

listed in Table 2. If the outlier is excluded from the correlation

calculation, the correlation coefficient between lower and upper

quadrants increases from 0.3409 to 0.6140 (P = 0.078). Each data

point in Fig. 8 represents one measurement from left or right

hemisphere of five subjects. Overall, these correlations show that

the linear cortical magnification estimate for one quadrant could be

used to predict the linear cortical magnification for the other

quadrant within the same hemifield.

Conclusion and discussion

This paper presents methods for retinotopic eccentricity

mapping and linear cortical magnification estimation in human

primary visual cortex using fMRI and dynamic programming

methods. We studied retinotopic eccentricity maps of left and right

visual cortices in five normal subjects. Primary visual cortex

boundaries are defined by the vertical meridia; the horizontal

meridian separates each visual hemifield into upper and lower

quadrants. The ridge of maximum activation evoked by each ring

was tracked via dynamic programming optimization over all

possible paths on the cortical surface. The sequentially additive

costs for the dynamic programming were constructed from the

maximal (or minimal) t statistic superimposed on the local
Table 2

Linear cortical magnification estimation in the lower quadrant, upper quadrant, a

Lower quadrant Upper quadrant

c d0 M(h) c

Subject 1

Left 0.081 12.08 12.35h�1 0.079

Right 0.081 8.14 12.35h�1 0.066

Subject 2

Left 0.100 8.17 10.00h�1 0.070

Right 0.071 15.10 14.08h�1 0.068

Subject 3

Left 0.066 18.55 15.15h�1 0.068

Right 0.075 9.39 13.33h�1 0.079

Subject 4

Left 0.082 14.59 12.20h�1 0.092

Right 0.081 11.33 12.35h�1 0.069

Subject 5

Left 0.070 16.63 14.29h�1 0.061

Right 0.068 14.56 14.71h�1 0.059
coordinate system of the cortical surface. The geodesic distances

between the ridges were calculated via the Dijkstra algorithm.

Finally, the visual field eccentricity was modeled as an exponential

function of geodesic distance on the cortical surface, h = ec(d + d0),

and then the linear cortical magnification factor, M(h), was simply

described as M(h) = (1/c)h�1.
In this paper, our efforts focused on assigning the functional

volume data to the cortical surface, smoothing the functional

statistical map directly on the cortical surface, and localizing

functional responses on the cortical surface via dynamic program-

ming. Our approach to assigning functional volume data to the

cortical surface considers how to correctly associate GM voxels

with cortical surface vertices to avoid assigning activations to an

incorrect anatomical location. We augmented the standard MRI

image indexed over the regular lattice of voxels I(xk), k = 1, 2, . . . ,
with the secondary local normal distance coordinates, labeling each

voxel xk with its distance d to the GM/WM surface as a basic data

structure (Barta et al., 2005). Such a data structure describes the

laminar structure of the cortex in the sense that tissue properties

change as a function of the normal distance from the local

coordinates of the cortical surface. WM has negative distance,

while GM and CSF have positive distance. CSF, however, has

greater distance than GM. Such intensity and distance information

gives a rough estimate of the local cortical thickness, which

determines the association of the functional activation in GM with

the cortical surface. Voxels in a deep sulcus, where there is no

evidence of CSF due to partial-volume effects and the resolution of

MRI, are equally assigned to the two banks of the sulcus. This

assignment assumes that the two banks of the sulcus are of equal

thickness. Even if this assumption is unwarranted, the distance

weighting expressed in Eq. (1) should reduce the effect of assigning

middle voxels (usually with great distance) to the wrong bank.

The orthonormal basis functions derived from the Laplace–

Beltrami operator for any arbitrary curved surface play the same

role as Fourier bases in smoothing data on a regular grid. The

smoothing procedure introduced here is an approach for solving

spline smoothing problems on the surface in a reproducing kernel

Hilbert space of real-valued functions that satisfy continuity and

the first-order differentiability. The Laplace–Beltrami operator is

expressed as a weighted averaging operator where the weights are

expressed in terms of the interior angles and areas of triangles, and
nd full hemifield

Full hemifield

d0 M(h) c d0 M(h)

14.30 12.66h�1 0.080 13.18 12.50h�

14.53 15.15h�1 0.078 9.31 12.82h�

13.65 14.29h�1 0.089 8.24 11.24h�

15.63 14.71h�1 0.068 16.34 14.71h�

13.11 14.71h�1 0.067 15.90 14.93h�

11.74 12.66h�1 0.078 11.04 12.82h�

12.30 10.87h�1 0.085 13.93 11.76h�

19.01 14.49h�1 0.072 16.36 13.89h�

19.80 16.39h�1 0.065 18.08 15.38h�

18.77 16.95h�1 0.065 16.00 15.38h�
1

1

1

1

1

1

1

1

1

1
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the connectivity of the mesh, which correspond to the intrinsic

geometry of the cortical surface. The first derivative of the

functional t statistic on the cortical surface controls the smoothness

of the functional map. The use of such a procedure reduces the

ridge tracking error and makes the ridge tracking more stable (see

Fig. 7b). This procedure helps to accurately identify the activated

region since an isolated activation will be suppressed by its

inactive neighboring regions.

Our procedure defines the ridge of maximum functional

activation automatically, except for the manual definition of initial

starting and ending points that are easily chosen on the functional

statistical maps without any experience and do not affect the

estimation result (see Fig. 6). Our method avoids the necessity of

manually drawing a reference line on the functional statistical

map (Engel et al., 1997), which could induce error in estimating

the linear cortical magnification. Moreover, template fitting

approaches (Duncan and Boynton, 2003; Dougherty et al.,

2003) are sensitive to the initial position of the template and

need to involve a human expert initializing the template position

and size in order to avoid yielding incorrect ‘‘local’’ solutions. In

addition to that, the assumption that the mapping from the visual

space to the two-dimensional flattened visual cortex is conformal

has been made in the template fitting procedure in Duncan and

Boynton (2003), which is strict and not necessarily true for each

individual. Moreover, the distortion in the cortical flattening

procedure is incorporated into the distance calculation, which

introduces errors in estimating the linear cortical magnification.

Our approach is model free and the peak of the activity is defined

in a completely data-driven fashion. The two-dimensional

flattened map is not needed to define the peak of the activity

and the geodesic distance is directly computed on the folded

cortical surface in our approach.

Fig. 11 shows estimates of the linear cortical magnification

factor, M(h), from the present and previous studies (Horton and

Hoyt, 1991; Sereno et al., 1995; Engel et al., 1997; Duncan and

Boynton, 2003). The black curve shows that the linear cortical

magnification factor is inversely proportional to the eccentricity

(M(h) = 13.48h�1) in this study. Green, blue, red, and cyan curves

give the linear magnification factor measurement as a function of

the eccentricity in the previous studies. Sereno et al. (1995) gave

M(h) = 20.05 (h + 0.08)�1.26; Engel et al. found h = e0.063(d + 36.54),

which implies M(h) = 15.87h�1; Duncan and Boynton (2003)
Fig. 11. Comparison of the linear cortical magnification estimates among

the present and previous studies.
showed M(h) = 9.81h0.83. Horton and Hoyt (1991) gave M(h) =
17.3(h + 0.75)�1, which is the result of the magnification for the

macaque striate cortex, M(h) = 12.0(h + 0.75)�1, adapted to the

dimensions of the human striate cortex by an area factor (square

root of the ratio of the human striate cortex average area 2500 mm2

to the macaque striate cortex mean area 1200 mm2). The curves

indicate that the various measurements of M(h) are in close

agreement. Our magnification estimate near the fovea (up to around

3 degrees) is coincident to that of Horton and Hoyt (1991).

However, according to Sereno et al. (1995) and Engel et al. (1997),

M(h) is somewhat larger near the fovea than estimated in the

present study and by Horton and Hoyt (1991). The estimates may

differ because of potential stimulus wrap-around with the expand-

ing-ring stimuli used by Sereno et al. (1995) and Engel et al.

(1997). Moreover, Sereno’s estimate of M(h) might be low in the

periphery for the same reason. Duncan and Boynton (2003)

measured the distance on a flattened map of the cortical surface,

which does not preserve geodesic distances and may result in

smaller estimate ofM(h) near the fovea than the other studies. Such
distance distortion is likely to have a smaller effect on M(h) in the

periphery than in the fovea because of the relatively small amount

of visual cortex representing the periphery.

We validated the multirun and spatial reliability of our linear

cortical magnification estimates by limiting the data to half runs

or to quadrants, performing the estimation on these limited data

sets, and then comparing these estimates to the estimates from

the full data set. The multirun reliability study shows that there is

no significant variability of the estimates across arbitrary chosen

sets of fMRI runs. In addition, the results of our spatial reliability

study show that cortical magnification is quite similar in the

dorsal and ventral compartments of V1 within each hemisphere.

The symmetry of cortical magnification across quadrants within a

hemifield, together with the stability of the linear cortical

magnification estimates, suggests that it may be possible to

predict the linear cortical magnification factor in regions of

cortex where retinotopic mapping is not possible due to loss of

afferent input (e.g., local retinal damage), which could in turn be

used to measure cortical plasticity following partial loss of visual

input.
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Appendix A. Bases of the Laplace–Beltrami operator and

spline interpolation

Consider a smooth orientable surfaceM embedded into R3. We

choose to describe M by means of a parameterization

x : D � R
2 [R

3 : x uð Þ ¼
x1 uð Þ
x2 uð Þ
x3 uð Þ

3
5

2
4 , where u = (u1, u2) Z D. The parameters u1

and u2 play the role of local coordinates on the surface. The problem
is to seek the complete orthonormal basis (/, k) of the Laplace–

http://www.math.utk.edu/kens
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Beltrami operator with Neumann boundary conditions on the

surface posed as:

D/ uð Þ þ k/ uð Þ ¼ 0 in M;

Z
M
j/ uð Þj 2dM ¼ 1;

<l/ uÞ; n > j@M ¼ 0;
�

ð7Þ

where D is the Laplace–Beltrami operator; @M denotes the

boundary of M; n is the normal vector on the boundary of M.

Eigen-elements of the Laplace–Beltrami operator are denoted as

(/(u), k).
Computing the basis is equivalent to solving the weak form of

the eigenvalue problem:

/ Ið Þ; kf g ¼ argmin
/ Ið Þ; k

E / Ið Þ; kð Þ; ð8Þ

where

E / Ið Þ; kð Þ ¼
Z
M
jjl/ uð Þjj2dM� k

Z
M
j/ uð Þj2dM: ð9Þ

Given the complete orthonormal basis, the smoothed functional

map r(u) can be obtained by spline smoothing in a reproducing

kernel Hilbert space of real-valued functions that satisfy the

continuity and first order differentiability conditions (Wahba,

1990) and minimize:

r̂r uð Þ ¼ argmin
r Ið Þ

Z
M
jjlr jj2dMþ c

XNv

j ¼ 1

r vj
� �
� r̄j

� 	2
; ð10Þ

r uð Þ ¼ b0 þ
XNv

k ¼ 1

bkG u;ukð Þ; ð11Þ

where the Green’s function

G u1;u2ð Þ ¼
XV
i ¼ 1

1

ki
/i u1ð Þ/i u2ð Þ: ð12Þ

r(vj) represents the estimated functional response at vertex vj, and

rj is the 3D data associated with the 2D surface given in Eq. (1).

The first term in Eq. (10) controls the smoothness via the Green’s

function and the second term gives the prior information of the

data. Here, we assume the noise is Gaussian distributed with

variance r2.

For implementation, we first seek the numerical solution to

(/, k) in Eq. (9) by the finite element method (Qiu et al., 2005),

denoted as (%, k), where is a % vector with basis value at each of

Nv vertices on the surface. The orthonormal basis % is

normalized with respect to triangle areas and interior angles

and connectivity of the surface mesh. The Green’s function in the

discrete version is defined as G ¼ ~Nv

1
1
k1

UiUt
i , a Nv � Nv

matrix, where t denotes matrix transpose. Assume that r̂ and r̄ are

vectors with Nv entries of smoothed and unsmoothed functional

response, respectively. All coefficients bk are estimated by the

least square method.
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