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A Stochastic Model for Studying the Laminar
Structure of Cortex From MRI

Patrick Barta*, Michael 1. Miller, Senior Member, IEEE, and Angi Qiu

Abstract—The human cerebral cortex is a laminar structure
about 3 mm thick, and is easily visualized with current magnetic
resonance (MR) technology. The thickness of the cortex varies
locally by region, and is likely to be influenced by such factors as
development, disease and aging. Thus, accurate measurements
of local cortical thickness are likely to be of interest to other
researchers. We develop a parametric stochastic model relating
the laminar structure of local regions of the cerebral cortex to
MR image data. Parameters of the model include local thickness,
and statistics describing white, gray and cerebrospinal fluid (CSF)
image intensity values as a function of the normal distance from
the center of a voxel to a local coordinate system anchored at the
gray/white matter interface. Our fundamental data object, the
intensity-distance histogram (IDH), is a two-dimensional (2-D)
generalization of the conventional 1-D image intensity histogram,
which indexes voxels not only by their intensity value, but also
by their normal distance to the gray/white interface. We model
the IDH empirically as a marked Poisson process with marking
process a Gaussian random field model of image intensity indexed
against normal distance. In this paper, we relate the parame-
ters of the IDH model to the local geometry of the cortex. A
maximum-likelihood framework estimates the parameters of the
model from the data. Here, we show estimates of these parameters
for 10 volumes in the posterior cingulate, and 6 volumes in the
anterior and posterior banks of the central sulcus. The accuracy
of the estimates is quantified via Cramer-Rao bounds. We believe
that this relatively crude model can be extended in a straightfor-
ward fashion to other biologically and theoretically interesting
problems such as segmentation, surface area estimation, and
estimating the thickness distribution in a variety of biologically
relevant contexts.

Index Terms—Cortical thickness, intensity-distance histogram
(IDH), normal distance, partial volume effect.

1. INTRODUCTION

IGH-RESOLUTION magnetic resonance (MR) imaging
affords an opportunity to acquire detailed information
about human neuroanatomy in living subjects. One major chal-
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lenge in using MR data in brain studies relates to the problem
of extracting biologically relevant features from the MR im-
ages. Among the most informative of these features are the
boundaries of anatomical regions of interest. Some regions of
the brain, such as the deep nuclei, thalamus, hippocampus, and
ventricles, are easily conceptualized as three-dimensional (3-D)
submanifolds (subvolumes) because of their clear-cut tissue
boundaries. A natural coordinate system for those parts of the
brain that can be most easily understood as 3-D submanifolds
is the 3-D lattice coordinate system based on voxel locations.

By contrast, the cerebral cortex is a thin laminar structure
about 3 mm in thickness with a large surface area on the order
of 1.3 x 10°> mm? [1] for both hemispheres. Although the cortex
can be conceptualized as a 3-D submanifold too, it is meaningful
to think of it as a 2-D submanifold, a part of the brain more like
a surface than a volume. Conventional boundaries of cortical
regions are typically based on sulcal-gyral patterns, geometric
features defined intrinsically with respect to the surface coordi-
nates associated with the convolutions of the cortex, rather than
extrinsically via the interface between the different kinds of tis-
sues. The boundaries of the occipital lobe, for example, is de-
fined by sulci, not by a boundary between gray and white matter.
For these reasons, Van Essen and others have argued for the in-
troduction of a second, local, 2-D coordinate system which is
intrinsic to the cortical surface in the region of some particular
gyrus [2]-[4].

Researchers have developed many methods for generating
these 2-D local coordinate systems on the cortical surface.
Most of these methods are based on statistical decision theory
[3]-[22]. Many proposed 2-D surface coordinate systems
on the cortex describe its convoluted geometry via bijective
diffeomorphisms on local 2-D Euclidean charts [8], [23]-[31].

Studies of the cortical mantle as a laminar structure have
shown specific morphometric changes in several neuropsy-
chiatric disorders, including schizophrenia, Alzheimer’s,
Huntington’s diseases [2], [32]-[38]. Changes in the struc-
ture of the cerebral cortex have been associated with both
Alzheimer’s disease (AD) and healthy aging [2], [39], [40].

This paper examines the properties of a new statistical model
relating the laminar structure of the neocortical mantle to the
measured magnetic resonance imaging (MRI) data as a function
of the set distance of a voxel’s center to the local coordinates of
the 2-D submanifold at the gray/white matter interface. The con-
struction of the local normal coordinate system is based on the
constructed orthogonal frame consisting of the two axes span-
ning the tangent plane to the gray/white matter interface, and the
associated third normal axis measuring the relative normal dis-
tance from the this interface to the center of individual voxels.

0278-0062/$20.00 © 2005 IEEE
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Fig. 1.
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Laminar approximation. The left panel shows the laminar approximation where S denotes the cortical surface and T the cortical thickness. The right

panel shows a sulcus with two banks A, B with thickness T4, T's, respectively; the summed thickness is denoted T* = (T4 + TB) /2. Points “a” and “b” are

9

located in bank A and bank B, respectively. Point “c”, anatomically associated with bank B, is assigned by the set distance calculation to bank A.

The intrinsic columnar structure of the cortex lies roughly per-
pendicular to the gray/white surface. The cortical thickness has
been measured by the following algorithms: distance of cor-
responding point on inner and outer gray matter surfaces fol-
lowing the surface expansion [13], distance along the surface
normal [13], an iteratively computed surface normal, shortest
distance between inner and outer surfaces [41]. In this paper,
we define the cortical thickness as normal distance relative to
the gray/white matter interface.

We augment the standard MRI image indexed over the regular
lattice of voxels I(xr), k = 1,2,... with the secondary local
normal distance coordinates labeling each voxel zj, with its dis-
tance D in normal coordinates to the gray/white matter inter-
face as basic data structure—image-distance histogram (IDH),
a direct generalization of the conventional histogram. We model
the voxel intensity values in the MRI image as a conditionally
Gaussian random field with mean and covariance parameterized
by the set distance from the voxel’s center to the manifold. Such
a statistical model then relates the gross parameters of the cor-
tical mantle (e.g., thickness and surface area) to the measured
image data as well as to the mean and variance of the intensity
for each tissue compartment. This allows for the direct estima-
tion via maximum-likelihood of these gross parameters from
data obtained from MR images. Our basic insight recognizes
that tissue properties change as a function of the normal distance
from the local coordinates. By generating a probability law in-
dexed by this normal distance, the laminar structure parameters
can be estimated. Such an approach provides an opportunity to
greatly increase the power of the estimation of the geometric
parameters for local cortical regions. Furthermore, the calcula-
tions we propose entirely avoid the problem of trying to identify
the border between gray matter and cerebrospinal fluid (CSF),
a problem which we argue is poorly posed because of intrinsic
cortical geometry.

II. THE LAMINAR CORTEX MODEL

We begin with the laminar approximation depicted in the left
panel of Fig. 1. The laminar approximation is the observation
that the volume of a thin laminar structure is approximately its
surface area times its length. The right panel of Fig. 1 shows

a small cross section through a cortical sulcus. Cortical thick-
nesses on opposite banks of the sulcus need not be identical,
and we label these thicknesses as T4 and T'z. In the region of
the central sulcus, for example, von Economo [42] states that
the cortical thickness of the sensory cortex is less than 2 mm,
while the thickness of the motor cortex, which is on the other
side of the sulcus, is 3.2-3.5 mm. In the following, we use T4
and T’ to distinguish between the cortex on opposite sides of a
sulcus, and 7" when we are not concerned with this distinction.

The right panel of Fig. 1 shows how two anatomically mean-
ingful 2-D manifolds appear, one at the boundary of gray and
white matter, the other at the boundary of gray matter and CSF.
Some of the exterior surface of gray matter is contiguous with
CSF, some is contiguous with the gray matter on the other side
of the sulcus. In general, the gray/white matter boundary man-
ifold is geometrically better behaved than the gray-matter/CSF
manifold because it does not appear to intersect itself as it some-
times does in MRI images We call regions of the cortex where
the exterior boundaries of two different gyri touch “hidden,”
and places where they do not touch “exposed”. We note that
our term “hidden” is not equivalent to another common term,
“buried”—meaning within the depth of a sulcus—because there
may be CSF within a buried sulcus, and the exterior boundaries
of two different gyri within a sulcus are not hidden when there
is a gray-matter/CSF boundary. We use the subscripts  and h in
calculations relating to the exposed and hidden cortex, respec-
tively.

The right panel of Fig. 1 shows how tissue properties vary
as a function of distance to the local coordinates. Image voxels
I(x},) with negative normal distance D should be white matter,
positive distance 0 < D < T gray matter, and D > T cere-
brospinal fluid. Moreover, examining Fig. 1 carefully illustrates
another essential characteristic of hidden cortex. For sulcal
banks which are hidden, there is essentially no identifiable CSF,
and the gray/CSF boundary is absent.

Of course, because of the convoluted nature of the cortex, this
understanding of how tissue properties vary as a function of dis-
tance to the local coordinates is oversimplified. For example,
inside the Sylvian fissure, we could conceivably traverse from
the temporal gyrus through the CSF of the Sylvian fissure, and
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into a gyrus in the frontal or parietal lobe. For the purposes of
analysis here, we minimize such problems by limiting our anal-
ysis to voxels whose distance from the gray/white manifold lies
within 2-3 mm of a rough estimate of the thickness. (This rough
estimate can be easily obtained by inspecting the MRI data and
the number of voxels that span the cortex.)

A. Normal Coordinates

The location of voxels in the cortex can be described both
with respect to the usual coordinate system with coordinate
values 7, € X C R3, k = 1,2,... representing a regular
cubic lattice of voxel locations or with respect to a second local
coordinate system relative to the gray/white boundary. This
second local coordinate system is associated with a tangent
space T'(s), s € S(A) to the submanifold defined by the
gray/white boundary. If we model the gray/white surface in the
continuum as a 2-D differentiable submanifold S C R? with
tangent space at each of its points T, s € S, we can assume
that this interface is a smooth 2-D surface with the property
that for each point s € S there exists a patch containing s with
smooth correspondence to the plane (1-1, onto, differentiable).
The particular local coordinate systems which we use to un-
derstand patches of the cortical surface are defined in terms
of the orthogonal frame positioned at the tangent plane of the
manifold. Define the partial derivative notation of a function of
two variables f(u,v) as f, = 0f/du, f, = 0f /Ov. Define the
orthonormal tangent vectors spanning the tangent plane T at s
as Fys, Ess; complete the orthogonal frame via Es,. Then the
surface is defined locally around s by

z(u,v) = s+ uFrs + vEy + Essf(u,v), u,v€ D C R2.

)
This coordinate system is rooted at (0, 0) = s. It is local in the
sense that (D) C S will not in general be the entire surface.
Take, for example, two gyri which curve back on each other. It
is necessary to choose several patches which intersect and for
which projecting onto the plane of the tangent provides a local
bijective correspondence. The orthogonal frame over the entire

local patch of coordinates have tangent vectors

oz (u,v
Tlm(u,q;) = % = Els + E35.fu(”7 /U) (2)
oz (u,v
T2m(u,v) = % = Eys + E3Sf1f(u: U) (3)
with surface normal given by the cross-product
- uE s 'UE s E S
N’IJ(’U,U) = f L f 2+ P (4)

Vit i+ f2

The normal axis N_,(W,), is normal to every point in the smooth
local coordinate representation z(u,v) € x(D) C S(A). We
measure distance D by the coordinate along this normal axis.
We begin by fitting an initial surface manifold of the
gray/white boundary with reference the local statistics of the
MRI intensity values using the expectation-maximization algo-
rithm [7], [10] and generating an isosurface [3], [4], [43] over a
manifold whose extent is greater than the anatomical structure
of interest so that the entire structure of interest in contained
within this larger manifold. From any point on the surface
s € S(A) there are a continuum of points in the volume which
are at minimum distance d measured along the axis Ng. Along
these normal axes are points which minimize the set distance
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function D : zy, € X +— D(z)) € [min, max] from the point
zp € X to the closest point in S(A)

D(zy) = Soin |k — . ©)
Positive distance values D > 0 are taken as relative to the
outward-pointing normal of the cortex (toward the skull),
while negative values correspond to displacements toward
the deep brain nuclei. We manually identify a submanifold
corresponding to the anatomical structure of interest within the
initial manifold. We then analyze only those voxels who are
thus associated with this anatomic submanifold to avoid errors
where voxels near the boundaries of the submanifold would
have been improperly assigned to the submanifold rather than
to the manifold corresponding to the difference between the
initial coarse manifold and the manifold associated with the
structure of interest.

This ancillary local coordinate system of the gray/white
boundary manifold associates with the MRI volume voxel
values real numbers representing the shortest distance from the
voxel’s center (in the regular 3-D lattice) to the triangulated
graph of the manifold derived from the gray/white boundary.
For all applications the closest points lying along the normal
are found using the distance calculation algorithm described in
(31, [4], [44].

We cannot readily distinguish between 714 and T in the
hidden cortex because of the lack of CSF. As shown in the right
panel of Fig. 1, point “c,” which is anatomically related to bank
B, is associated with bank A by the set distance calculation. In
the following, we define T* = (T4 + Tg)/2, the average of
T4 and T'g, because it is easier to understand the association
of voxel’s set distance with regard to this value. Obviously, T"*
determines which gyrus a voxel in the hidden cortex will be as-
sociated with.

Fig. 2 illustrates our method for generating the distance maps
for regions of interest. The region of interest (ROI) volume is
shown in Fig. 2(a). Using isocontouring, [10], [21], the trian-
gulated mesh S is generated as in Fig. 2(b). By dynamic pro-
gramming generation of boundaries of local submanifolds [44],
the region of interest on the 2-D manifold Sgoy is shown as a
red line in the section plane shown in Fig. 2(b), where Sror is
extracted from as shown in Fig. 2(c). The distance map is cal-
culated computing the set distance between every voxel in the
volume and the manifold. Fig. 2(d) shows the set distance map
for the same slice as in Fig. 2(a); green and blue denote posi-
tive (gray matter) and negative (white matter) distances, respec-
tively.

III. A MARKED POISSON PROCESS MODEL OF THE
INTENSITY-DISTANCE HISTOGRAM

A. The MR Image as Marked Poisson Process

We augment the MR image intensities I(xx), k = 1,2,...
by the normal distance calculated at each voxel, (I, D)(zg),
k=1,2,...,where (I,D) : X — R x R consists of the image
value and the distance to the cortical manifold. We call this joint
data structure as the MRI-distance map or MRID map.

Our stochastic model for the MRID map is that of a marked-
filtered Poisson process [45]. For any given normal distance D,
we assume that the intensity of occurrence of voxels (gray, white



BARTA et al.: THE LAMINAR STRUCTURE OF CORTEX FROM MRI

(a) MRI volume

Fig. 2.
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(b) Surface for ROI

(d) Distance map

(c) Small Surface

Identification of region of interest and distance map calculation. (a) MRI volume; the volume in the red frame is defined as region of interest. (b)

Isocontoured surface. The region marked by red line depicts the two banks of the central sulcus on the surface which were extracted from. (c) Small surface
associated with the central sulcus. (d) Distance map containing the voxels in the ROI that are the closest to the surface shown in (c). Green and blue regions

correspond to positive and negative distances, respectively.

or CSF) is a marked-Poisson arrival process with rate A\(D).
Brain tissue is marked with the image intensity values, and we
assume that the gray, white, and CSF voxel intensities follow a
family of probability law with densities f(-; D) indexed by the
normal distance from the manifold. The IDH process is thus just
a marked Poisson arrival process with intensity

AL, D) = f(I; D)X(D). ©)

‘We chose this arrival process primarily because it fits our data
fairly well, and the theory of such processes is simple and well
understood.

B. Gaussian Random Field for Voxel Measurements

We further assume throughout the image intensity field is an
uncorrelated Gaussian random field (diagonal covariance) with
mean and variance p(D), o(D), D € [min, max], values deter-
mined by the tissue type and distance from the cortical surface.
The marking process of the IDH thus has density

1 _ (I—p(D))?
— 202(D) | (7)
2r0%(D)

Just as in our choice of arrival process, we chose this form for
the marking process primarily because of its simplicity.

We now consider the two distinct geometric circumstances
determining means and variances which occur in modeling the
laminar structure of the human brain, associated with the ex-
posed and hidden cortex.

Exposed Cortex: For exposed cortex we assume that the ar-
rival process rate for voxels, regardless of value, is a constant,
with mean and variance profiles for the marking process

12(D) = - U(=D) + 1y - [U(D) = U(D = T)]

fI;D) =

o2(D) =05, -U(=D)+o0, - [UD)—U(D - 1T)]
+02-UD-T) €))

where fi,, ftg, [tc, the means for white, gray and CSF, and sim-
ilarly for the standard deviations o, o, o, and U(z) = 1 if
x > 0, 0 otherwise.

Fig. 3 illustrates the geometry of the section of exposed
cortex; (a) shows the results of a simulation with typical values
for dependent parameters p,, = 120, p, = 90, p. = 30,
ow =20,04 =15,0, = 10,and T" = 3 mm.

Because cortex is not much thicker than the size of the voxels
in an MR image, there is considerable blurring of the edges of
the cortex, and we must take this “partial volume” artifact into
account. In MRI the voxel resolution is determined by the dis-
tribution of phases across a voxel; the resulting voxel intensity
resolution corresponds to twice the full-width at half-maximum
of the sinc function [46], [47] if we assume that the voxel size
corresponds to sampling at the Nyquist rate. We model this par-
tial volume effect senc function of MRI data by the convolu-
tion of the ideal intensity profile with a Gaussian density func-
tion having zero mean and constant standard deviation o,,. For
any particular value for distance D = d, the density f(-;d) is
thus a linear combination of Gaussian random variables (and,
hence, Gaussian) with mean given by the convolution of this
Gaussian point spread function with the mean. Defining the

: 2 D —z% /202 :
function P(D;02) = [~ (e~® /%7 /\/2m0,)dx gives the ob-
served mean and variance of image intensity values corrected
for partial volume effect as a function of D, which are

/J/x(D) = amc(D),U’c + azg(D),U'g + azw(D)/J/w (10)
02(D) =al. (D)ol + aF (D)og + aF (D)ol (11)

with the weights
(D) =P (D —T;0?)

a,qe(D) =P (D; 012)) - P (D -T; 03)
azw(D)=1- P (D;o2).
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(a) No partial volume effect and no surface uncertainty effect

Exposed Cortex 2 2, 150
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3 1 1
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(b) Partial volume effect but no surface uncertainty effect
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(c) Both partial volume effect and surface uncertainty effect
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(f) Both partial volume effect and surface uncertainty effect
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distance (mm)

Fig. 3.

Intensity distance (mm) distance (mm)

IDH simulation. Column 1 illustrates geometric structures for exposed (top), hidden (bottom). Columns 2-5 show the intensity-distance histogram,
intensity histogram, distance histogram and mean curve respectively. Rows (a,

d) represent simulations without any effects, rows (b, e) with the effect of partial

volume, rows (c, f) with effects of partial volume and surface uncertainty. Parameters are 7' = 3 mm, intensity parameters y¢. = 30, t; = 90, pt,, = 120, and
variances o2 = 100, JZ = 225, 02 = 400, voxel point-spread kernel o, = 0.5 mm, and surface uncertainty kernel o, = 0.5 mm.

Fig. 3(a), (b) shows the model means without and with
this partial volume effect, respectively. Notice that as the
result of the partial volume effect the mean values at a
particular true distance for the cortex are no longer step
functions. Fig. 3(b) depicts how the mean intensity now
changes smoothly from white to gray and from gray to
CSF as a function of distance. In the exposed cortex, mean
intensity value at D = 0 mm is approximately equal to

1/2(pow + pg), dependent on value of o, whereas at D =T
mean intensity is around 1/2(ug + fic).

We find that the profile of arrival rate for the CSF density is
not uniform in density, and rather is monotonically decreasing
as a linear or quadratic function. We attribute this to the nonuni-
form nature of the thickness of CSF as well as the nonuniform
definition of the cortical subvolumes of the brain. Our first order
models the arrival rate A(D) as a linear decreasing function with
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Probability
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Fig. 4. Conditional probability. Conditional probability of occurrence of white (dashed line), and gray (solid line) compartments as a function of millimeter
distance from the gray/white matter boundary. (a) Gray matter is assigned to the negative side of the origin (Brain: c¢s2). (b) White matter is assigned to the positive

of the origin (Brain: csl).

slope s; the parameter s is estimated for each subvolume for the
exposed cortex.

Hidden Cortex: For the case of hidden cortex, there is no
CSF between the hidden cortex and the arrival rate is O for
normal distances greater than 7. We have

12)

(D) = puU(=D) + 1y [U(D) = U(D = 1%)]
D-T*)]. (13)

0;,(D) =03, U(=D) + o7 [U(D) = U( )

By taking the partial volume effect, the means and variances are
as follows:

/’L}L(D> = ahg(D)ng + ahw<D)Nw (14)
on(D) = ajp (D)ol + aj,, (D)o, (15)

with weights determined by the thickness 1™

ang(D) =P (D;02) — P (D —2T*;02)
apw(D)=1-P (D;aﬁ) + P (D — 2T*;g§)

and ap. = 0 because of no CSF. Fig. 3(d),(e) compares the
model without and with partial volume effect.

C. Errors in Distance Labeling: Effect of Gray/White Manifold
Location Uncertainty

The normal distance calculation is subject to error. Our ap-
proach to handling this problem is analogous to the additive
error models in tomography [48]. Fig. 4 gives two examples
showing how some gray matter is falsely assigned to Bank A
in (a) for Brain cs2 (and, hence, interior to gray/white mani-
fold), while some white matter falsely appears to be the right of
the origin for Brain cs1 (and, hence, exterior to the gray/white
manifold. See more examples in [3, Fig. 10]).

To model this error in distance labeling, we model the re-
sulting intensity of the marked Poisson counting process as a
combination of intensities from all of the underlying unobserv-
able true distances, which contribute to the measurement loca-
tion D. We define the true distance labeling process of voxel
x as Z(zy), and model the measurements D : (z;) — R as
Gaussian random variables with mean true distance Z(xy) with
additive independent errors, so that the distance of each voxel

where E(z), k = 1,2,. .. are independent from point to point
with density p(F), and Z = z the true normal distance to the
surface coordinates. The resulting arrival intensity of the marked
IDH process becomes

\I,D) = / f(I;D—E)-AD-E) -p(E)dE.  (17)

Surface uncertainty and partial volume effects are illustrated
by Fig. 3(c),(e) for exposed and hidden cortex, respectively. For
the exposed cortex, the arrival rate at each measured distance is
not changed by surface uncertainty effect. However, the arrival
rate in the hidden cortex continuously decreases to zero after
T™. In addition, this surface uncertainty also affect mean inten-
sity values at measured distance D, the result of convolving the
error function with intensity functions expected from the partial
volume effect.

D. The Likelihood Function

The IDH is generated by counting the number of voxels of
some image intensity at a particular set distance

Nij= Y la.s, (I(zx), D(x)) (18)
.”13]\.64\'
where 1 is an indicator function, 7 = 0,1, ..., Vmaz. Umaz 1S

the maximum voxel value and 6; = (j — (6/2),j + (6/2))
marking the normal distance over some interval within the range
[min, maz] relative to the surface coordinates. The marginal
sums of the IDH along each dimension are easy to interpret.

The sum over ¢
Ny =Y Ny

is just the number of voxels observed at a given distance from
the gray/white boundary, while

Ni=) Ny
J

reduces to the conventional intensity histogram.
The arrival rate of the finitely binned IDH A;; corresponds to
the number of voxel in each bin for I € A;, D € 6, as

A = //)\(I,D)dldD.
Ai (.s]‘

(19)

(20)

1)
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From our probability model and the observed data, we can
compute the log likelihood ¢ for any particular observed his-
togram, IV;; as

= Z Z —Ai; + NijIn(Ag;)
g

plus a constant term independent of the parameters. We assume
that the cortical thickness parameters 14 and T’p differ from
Bank A to Bank B. We encode this information by adding to the
likelihood function the prior density which couples the param-
eters. Assume that T’z is Gaussian with mean 7’4 and standard
deviation on the order of 1 mm. Then the resulting posterior dis-
tribution takes the form £(A) + (1/20%)(Tg — Tx)?.

(22)

E. Optimization: Maximizing Likelihood Function

We estimate all parameters in the model by maximizing
the log-likelihood Function of (22). The likelihood function is
shown in the previous section.

Single-Thickness Model: First, we consider Ty =15 =T.
The Poisson processes for the exposed cortex and the hidden
cortex are independent at each bin, then the arrival rate (A;;)
is a mixture of the exposed and hidden cortex arrival rates, is
Poisson distributed with the parameter equal to the sum of ar-
rival rates at the same bin A;; = A7, + AZ Define h as the
fraction of the hidden cortex h = N" /N, then the parameters
involved in the log-likelihood function are h, jic, fig, fty and
Oc, 04, 0y (means and standard deviations for tissues, which
are useful for segmentation), 7" (the thickness of both bank A
and bank B), o, and o, (effects of partial volume and surface
uncertainty), as well as the slope s modeling the nonuniformity
of the CSF sheet.

This model is simpler than the more general double-thickness
model discussed next, but has the advantage of having fewer
parameters to estimate. In general, we believe this model has
limited applicability, other than in some locations, where, for
biological reasons, we might expect the cortex to have the same
thickness on both sides of a region of CSF. One circumstance
where this might take place is when there are paired structures
such as those on either side of the central sulcus and we are not
interested in (typically small) laterality differences.

Double-Thickness Model: Assume two banks A and B with
different thicknesses 1’4 and 1'g. The arrival rate A;; of the IDH
is the sum of arrival rates. In addition to 7’4 and T, three more
parameters are taken into account, the fraction p of the total
number of IDH voxels coming from bank A, and the fractions
h 4, hp of hidden cortex in bank A and bank B, respectively.

For computational conditioning of the initial estimates, the
log-likelihood maximization procedure is evaluated in two
steps. First, we use a least square approach to estimate u(D),
the mixed mean intensity value at distance D, by finding the
best fit of the mean parameters ., (4, {1, (see the Appendix).
Second, the least square estimator values for p., fig, i,y are
used as initial condition for finding the local maxima of (22)
by the Nelder-Mead simplex method [49] to estimate all the
other parameters for the model. In the single-thickness model,
the parameter set 6 is

9 = {T/ h?ﬂC?/”!J?lI/’uﬁ UC? Ug70w70v70'u7 S}'
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Similarly, the parameter set for the double-thickness model is as
follows:

0= {TAvTva'/ h’AvthucvljfgvuwvUC‘/U!]?O—UMO—U?O—UNS}'

We maximize ¢ in (22) over § by the simplex method [49].

IV. RESULTS

To illustrate the use of our models, we computed IDHs for
the left and right posterior cingulate of 10 young healthy adults
(see details in [2], resolution: 0.5 mm X 0.5 mm x 0.5 mm)
using the single-thickness model, which runs approximately 30
minutes for each dataset with average 80 000 voxels. We follow
the reference [2] to define the boundary of posterior cingulate.
Also, we studied the anterior and posterior banks of the left and
right central sulcus in six subjects (healthy adults, resolution:
1 mm X 1 mm X 1 mm) under the double-thickness model,
which takes approximately 10 min for each dataset with av-
erage 15000 voxels. Delineation of the central sulcus is made
on the gray/white surface. The precentral and postcentral gyri
are tracked by dynamic programming [44] then the submani-
fold within this close path is extracted from the initial manifold,
which depicted in Fig. 2.

A. Necessity of Each Component in Double-Thickness Model

The utility of any model depends on its ability to account for
observed data and its ability to make predictions. As a begin-
ning, we start with one example of the left central sulcus from
csl (see Fig. 7) and examine the importance of each component
in the model and how each component affects the model fit.

Fig. 5(a) gives representative fits of our model to the IDH
for the central sulcus data in four different ways, examining the
IDH (column 1), the fitted IDH (column 2), conventional inten-
sity histogram (column 3), the distance histogram (column 4),
and the mean intensity curve (column 5). The top row (a) shows
the fits from the full model. Panel 2 shows the closest model fit
A;; to the measured IDH (panel 1). Column 3 shows the con-
ventional histogram of counts versus intensity, the measured in-
tensity histogram (black line) and the fitted intensity histogram
(red line). Column 4 shows the voxel arrival rate versus set dis-
tance. Column 5 shows the mean value of the histogram versus
distance. Superimposed are the model predictions showing the
fits for each of these observations (red).

Each of the successive rows in Fig. 5 depicts the effects of
each part in the model. Row (b) shows the results of removing
partial volume effect by reducing o, = 0.39 mm to o, =
0.01 mm, which causes A;; in Fig. 5(b) to show three more dis-
tinct clusters representing each distinct tissue type white matter,
gray matter, and CSF. The observed image intensity histogram
shows the biggest deviation from the predicted one at the re-
gion expected: there are more voxels with values intermediate
between gray and white than expected.

Row (c) in Fig. 5 shows the results of removing the surface
uncertainty effect by reducing o,, from 0.41to 0.01 mm. Here,
the gray matter abruptly ends at D = T* = 2.30 mm in
the distance histogram for the hidden cortex; as well the pre-
dicted arrival rate histogram deviates from the measured one at
D = T* = 2.30 mm. The discontinuities in the predicted IDH
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Fig. 5.

Model fit for central sulcus. Row 1 shows the optimal fits for the left central sulcus of cs1 as shown in Fig. 7. Row 2 shows the voxel point-spread kernel

o, = 0.01. Row 3 shows the surface uncertainty effect 0, = 0.01. Row 4 shows the mean value of gray matter i, changed from 76.8 to 90. Row 5 shows
T4 = T for a single model of the exposed and hidden cortex mixture. Columns 1-5 show the measured IDH, fitted IDH A;;, intensity histogram, distance
histogram, and mean curve, respectively. The measured and fitted IDHs are plotted using identical color scale.

result from assuming that the banks of the two gyri have dif-
ferent thickness.

Row (d) in Fig. 5 illustrates how the intensity histogram and
mean curve change when the mean value of gray matter shifts
from p; = 76.8 to g = 90. The intensity histogram and the
mean curve change significantly.

Row (e) in Fig. 5 shows the dependence on a single-thick-
ness model rather than a double-thickness model, accomplished
by forcing T4 = T = 1.59 mm. The IDH no longer reflects
the different thickness of the two banks of the sulcus. This re-
duction results in more drastic deviations between observed and
expected values. Several segments of the arrival rate and image
intensity histograms do not fit, and the mean intensity value as
a function of distance is also poorly fitted.

B. Goodness of Fits

Fig. 6 gives representative fits for the posterior cingulate
using the single-thickness model depicted by five different
measures of comparison, including the IDH (columns 1,2),
conventional image intensity histogram (column 3), count-rate
versus distance histogram (column 4), mean image intensity
versus distance (column 5), and fractional tissue contribution
as a function of distance (column 6). Columns 1 and 2 com-
pare the measured IDH and the predicted IDH of A;; given
by optimal fitting. For each subvolume the parameters of the
model were found using the maximization procedure described
in the Methods section. Each row corresponds to a different
cortical subvolume taken from data analyzed in the laboratory
of Dr. John Csernansky. Column 3 shows the conventional
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Fig. 6. Optimal fits of single-thickness model to posterior cingulates. Columns 1-5 show measured IDH, fitted IDH, intensity histogram, distance histogram, and
mean curve from left to right respectively. Black lines depict the measured data; red lines depict the fitted curves of the model. Column 6 dashed, solid and dotted
lines represent the fractions of white, gray, and CSF at each particular distance, respectively. Measured and fitted IDH are plotted using identical color scale.

histogram of count rates versus intensity value. Superimposed
over the data are the good fit of the model. Column 4 shows
the count rate versus distance with the dashed line given by the
model. Column 5 shows the mean image value intensity versus
distance. Column 6 shows the probability of each of the three
tissue compartments as a function of distance D from the local
coordinate system. At distance zero (the location of gray/white

isosurface) the dashed and solid lines representing white and
gray matter, intersect approximately at the probability 0.5,
indicating the partial volume effect of a half white matter and
half gray matter.

Fig. 7 depicts the central sulcus data using the double-thick-
ness model. Fitting the IDH for the central sulcus is more
complex because it clearly has two separate banks with clearly
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Fig. 7. Optimal fits of double-thickness model to the anterior and posterior banks of the central sulcus. Columns 1-5 show measured IDH, fitted IDH, intensity
histogram, distance histogram, and mean curve from left to right, respectively. Black lines depict the measured data; red lines depict the fitted curves of the model.
Column 6 dashed, solid and dotted lines represent the fractions of white, gray, and CSF at each particular distance, respectively. Measured and fitted IDH are
plotted using identical color scale.

different thickness values (von Economo [42]). However, the perhaps because there these data involve apposition of tissue
single thickness model appears reasonable for cingulate data, from the same Brodman’s area (albeit from opposite sides of
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the brain). Comparing the measured IDHs between the central
sulcus and posterior cingulate, the IDHs (compare column 1
of Fig. 7 to column 1 of Fig. 6) clearly show that the intensity
drops from the intensity of the gray matter to CSF at two
distinct distances (I'y =~ 1 mm, Tp =~ 2.5 mm) signaling the
cortical thicknesses for the anterior and posterior banks of the
central sulcus. The same characteristics were not demonstrated
in the posterior cingulate in the sense that Ty ~ T’p (see Fig. 6).

C. Cramer-Rao Bound on the Thickness Estimation Accuracy

Maximum likelihood estimates are unbiased and achieve the
Cramer-Rao bound, the lower bound of the variance of any unbi-
ased estimator. The Cramer-Rao bound quantitatively estimates
the accuracy of the cortical thickness estimation [50], [51]. For
Poisson processes, the covariance of the estimates ék and él is
given by the kl entry of the matrix I=1(), where I(f) is the
matrix with kI component

9% L O0A;; OAy;
_E _ ig YLy
{86;6861] ZZ]: Ai,j 90y, 06,

where £ is the likelihood function in (22) and A;; is the arrival
rate at each bin of the IDH.

Fig. 8 gives distributions of the cortical thicknesses for two
banks of the central sulcus (T4 and T5) and square root of their
Cramer-Rao bounds. T’y and T are asymptotically distributed
by Gaussian with means TA and TB, and the standard devia-
tion on the order of 0.01 mm. The sampling distribution of 1’4

and T'p are highly concentrated about the true cortical thickness
values.

The Cramer-Rao bound decreases with the number of sam-
ples. The original IDH has total number of voxels 13261 with
voxel size 1 mm X 1 mm X 1 mm. Considering the continuum
of the cortex, we randomly down sampled the measured IDH
by sampling rate 2, 4, 8 at each distance [see Fig. 9(a)], whereas
the fitted IDHs for downsampled IDH are shown in Fig. 9(b).
The total number of voxels in the IDHs are 13261, 6643, 3321,
and 1664 from the left to right in Fig. 9(a), respectively. As
shown in Fig. 9(c), the model cannot distinguish the two banks
of the central sulcus at an 8§ X downsampling rate, which there
are just 1664 voxels on the IDH. Moreover, the square roots
of Cramer-Rao bounds for 7'y and T's increase by the factor
of the downsampling rate. For example, the square root of
Cramer-Rao bound of 7’4 is 0.013 mm without downsampling,
whereas 0.018 mm (= V2 x 0.013) at a downsampling rate 2,
0.027 mm (~ /4 x 0.013) at a downsampling rate 4. When
the IDH loses the geometric structure of the central sulcus with
downsampling, the square roots of Cramer-Rao bounds of T4,
T’ become order of 1 mm implying that the estimators of 14,
T'p are no longer reliable [see Fig. 9(d)].

V. DISCUSSION

Recent anatomical MRI studies on the human brain have
been focused on the human cerebral cortex, which is a highly
folded sheet of gray matter. Cortical thickness varies between
1.3 and 4.5 mm in the various parts of the brain, with an
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overall average of about 2.5 mm [42], [52], [53]. Cortical
measurement has been of particular interest from the point
of view of normal anatomical development as well as a wide
variety of neurodegenerative and psychiatric disorders, such
as aging, Alzheimer’s disease and other dementias, Hunt-
ington’s disease, sclerosis, and schizophrenia [2], [32]-[38],
[54]. Manual methods for the cortical thickness measurement
from MRI images are labor intensive, which can take a trained
anatomist several days to complete. Moreover, these methods
are actually able to measure the cortical volume, not cortical
thickness, because the cortical thickness is a property that can
only be properly measured if the location and orientation of the
gray/white (interior) and gray-CSF (exterior) surfaces both are
known [55].

Automated methods for cortical thickness extraction have
appeared in many groups, including those of MacDonald and
Evans, Dale and Fischl, Prince, Thompson, and Duncan [9],

[11], [13], [54], [56], [57]. These approaches are based on the
explicit manipulation of the second manifold representing the
exterior surface at the gray matter transition. This presents a
significant challenge since the extraction of an accurate repre-
sentation of the exterior surface from MRI data is extremely
difficult. The close opposition of adjacent gyri coupled to the
partial volume effects of the finiteness of MRI resolution results
in significant loss of resolution in the hidden regions of cortex.
One of solutions to this challenge includes the approach of
Magnotta et al. [58] to erode of the gray matter in a consistent
fashion which opens up the sulci, and Jones [41] to find deep
sulci for estimating the location of the exterior surface. Accu-
rate extraction of the exterior surface in deep sulci still remains
a major difficulty.

The approach presented here is to construct a stochastic
model of the intensity distance histogram or IDH, relative to
the local coordinates of the gray/white manifold. Such a model
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allows for the direct quantification of the laminar cortex model
parameters including tissue compartment values and thickness
parameters of the cortical regions directly in terms of the mea-
sured IDH. In the central sulcus, our estimates for 14 and 1’
are in line with von Economo, as are our estimates for 7" in the
cingulate gyrus. The Cramer-Rao bounds on these estimates
are small compared with our estimates, at least within the range
of samples which have nearly 2000 voxels. The power of such
an explicit stochastic model in terms of geometric parameters
directly is that accurate estimation of the cortical thicknesses of
cortical banks can be obtained without any explicit geometric
representation of the transition region associated with the
change from gray matter to CSF in the laminar model. The
exterior manifold is never directly estimated. Since methods
dependent on the explicit acquisition of the exterior manifold
will result directly in extra variance in the estimation of the
cortical thickness, the proposed method which calculates the
laminar thickness via implicit manipulation of the structural
change from gray to CSF offers a significant opportunity for in-
creased power for the accurate estimation of laminar geometry.

We have not explicitly allowed for the influence of curvature
in this model, which intuitively affects the arrival rate at each
distance and implies that the arrival rate is not constant over the
surface. The arrival rate tends to increases on the location with
positive curvature, while the arrival rate decreases on those with
negative curvature. The uniform distribution assumption of the
arrival rate may cause overestimation of the cortical thickness
in the sulcus region and underestimation in the gyrus region.
We also acknowledge that although we model local portions of
cortex as a homogeneous sheet with a fixed thickness 7', in fact
T slowly varies over this region. Our current model give the
mean estimate of the cortical thickness. Of course, this fixed 1’
approximation is most likely to be appropriate over small cor-
tical regions rather than larger ones. However, estimates of such
parameters as the statistics of gray matter, white matter and CSF
image values are likely to be improved by incorporating more,
rather than less tissue, so the issue of the extent of the cortical
region in our model for which our estimate is optimal in some
sense remains an open question.

Other future efforts will focus on study of such variability.
Our definition of 7* may occasionally lead to errors in assigning
voxels to the correct bank when there is a thin strip of CSF sep-
arating two banks of cortex with large differences in thickness.
We believe that this effect is minimal for the anatomical struc-
tures studied here primarily because the regions tend to be near
regions of high positive curvature (gyral crowns) and believe
that the majority of voxels in exposed cortex are properly asso-
ciated, leading to only small errors given the size of the struc-
tures we discuss here. Of course, as one would analyze smaller
and smaller cortical regions, the effect of this error would grow
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larger, and we believe that our model must be extended in the
future to handle this problem, perhaps by using a more sophis-
ticated rule for assigning voxels to a sulcal bank.

We also plan future efforts relating to the validity and relia-
bility of our model. In general, we believe the results we report
here are reasonably close to those reported by others, especially
considering the number of computations and assumptions nec-
essary to both our model and those of others. Because of the
variability of the cortex and its convoluted shape, finding a gold
standard for validity is difficult. However, it would certainly be
possible to cross-validate our results against those reported by
others if the same data sets were analyzed, and we believe such
studies are likely to improve our understanding of exactly what
the key assumptions of our model are, and where they may break
down.

The presented model can be used for a variety of studies, es-
pecially in the pathological study. We are conducting studies in a
number of diseases, including Alzheimer’s and schizophrenia,
and look forward to reporting on pathological changes in cor-
tical thickness in the near future. In addition, we intend to im-
prove segmentation based on this model, which incorporates in-
tensity and distance properties of MRI voxels, instead of tradi-
tional segmentation approaches based on just intensity informa-
tion. The model can be trivially extended to estimating surface
area via the laminar approximation. In addition, an extension
of the model to handle curvature and variable cortical thickness
more accurately might also yield estimates of these parameters,
which might have biological significance.

APPENDIX
LEAST SQUARE ESTIMATION OF MEANS

Without the effect of surface uncertainty, a mixed mean at
a true distance p(Z) is a linear combination of mean values
pa(Z), pn(Z) of the exposed (10) and hidden cortex (14) as
the form

1(Z) = p1(Z) - wa(Z) + p2(Z) - 1n(Z) (23)
where pl(Z) = lng(Z) . hl + 1>T* (Z) and pQ(Z) =
l<7+(Z) - (1 — hq) are the fractions of exposed and hidden
cortex at each true distance Z. Assume U(Z) is the vector

(1)
1(Zn)
and A(Z) is the n X n matrix of the form shown in the equation at

the bottom of the page, where all s are given in Section III-B.
Equation (23) is written in the matrix form as

He
U(Z) = AZ)- | ng
L

P axc(Zl)

P1 - Qag(Z1) +p2 - ang(Z1)

D1 O (Z1) + p2 - anw(Z1)

A7) = D1 xe(Z2)  p1-ag(Za) +p2-ang(Z2)  p1- 0pw(Z2) + D2 - anw(Z2)

P11 aTr(Zn) p1- aTg(Zn) +p2 . OUig(Zn) P1- amw(Zn) +p2 . ah,w(Z'n,)
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With the surface uncertainty effect, the mixed mean at a mea-
sured distance D is the convolution result of ;(Z) with kernel

p(E), giving

v0) = ([ a0 -5)-peyir). e

fw

which are linear equations with respect to fi., ft4, and i, and
solved by the least-squares method.
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