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Smooth Functional and Structural Maps on
the Neocortex Via Orthonormal Bases of

the Laplace–Beltrami Operator
Anqi Qiu*, Dmitri Bitouk, and Michael I. Miller, Senior Member, IEEE

Abstract—Functional and structural maps, such as a curvature,
cortical thickness, and functional magnetic resonance imaging
(MRI) maps, indexed over the local coordinates of the cortical
manifold play an important role in neuropsychiatric studies. Due
to the highly convoluted nature of the cerebral cortex and image
quality, these functions are generally uninterpretable without
proper methods of association and smoothness onto the local coor-
dinate system. In this paper, we generalized the spline smoothing
problem (Wahba, 1990) from a sphere to any arbitrary two-dimen-
sional (2-D) manifold with boundaries. We first seek a numerical
solution to orthonormal basis functions of the Laplace–Beltrami
(LB) operator with Neumann boundary conditions for a 2-D
manifold then solve the spline smoothing problem in a repro-
ducing kernel Hilbert space (r.k.h.s.) of real-valued functions on
manifold with kernel constructed from the basis functions.
The explicit discrete LB representation is derived using the finite
element method calculated directly on the manifold coordinates so
that finding discrete LB orthonormal basis functions is equivalent
to solving an algebraic eigenvalue problem. And then smoothed
functions in r.k.h.s can be represented as a linear combination
of the basis functions. We demonstrate numerical solutions of
spherical harmonics on a unit sphere and brain orthonormal basis
functions on a planum temporale manifold. Then synthetic data
is used to quantify the goodness of the smoothness compared with
the ground truth and discuss how many basis functions should
be incorporated in the smoothing. We present applications of our
approach to smoothing sulcal mean curvature, cortical thickness,
and functional statistical maps on submanifolds of the neocortex.

Index Terms—Cortical thickness, curvature, Laplace–Beltrami
(LB) operator, Neumann boundary conditions, reproducing kernel
Hilbert space, spline smoothing.

I. INTRODUCTION

THE human cerebral cortex can be modeled as a highly con-
voluted sheet. Its shape and local structure are studied and

play an important role in understanding neurodegenerative and
psychiatric disorders. Therefore, quantitative functions, such as
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cortical thickness, curvature, and functional statistical maps in-
dexed over the brain manifold, provide tools for understanding
anatomical structures and functions of normal brain as well as
brain affected by neurodegenerative diseases (e.g., [1] and [2]).
Due to the low resolution of magnetic resonance (MR) images
and errors in extraction of brain manifolds, smoothing functions
on the brain manifold is needed to increase signal-to-noise ratio
[3] as well as the power of statistical analysis on these cortical
functions (e.g., [4] and [5]).

A well-known approach to smooth data is the diffusion
smoothing approach based on the Laplace operator that has
been widely used in removing noise on regular grid images
(e.g., [6]). However, the Laplace operator has been applied to
smoothing functions on brain manifolds in a small number of
groups [4], [5], [7]–[14]. Another way to smooth functions on
manifolds is the spline interpolation using manifold’s basis
functions, which received great attention for a sphere case [15].
This idea of smoothing or regularizing data on an arbitrary
two-dimensional (2-D) manifold has not been investigated pos-
sibly due to the fact that there are no closed form expressions
of orthonormal basis functions available for the manifold.

This paper generalizes the spline interpolation approach from
a sphere to a 2-D manifold by seeking numerical solutions to
orthonormal basis functions for the 2-D manifold. The intuition
behind is that a complete set of real-valued orthonormal basis
functions on a Riemannian manifold will be serve as the substi-
tution to Fourier basis functions on the regular grid image. From
the stochastic signal processing point of view, the procedure of
filtering functions on the manifold is simply equivalent to esti-
mating coefficients associated with orthonormal basis functions
selected by the filter. We consider the data model

where are independent and identically distributed (i.i.d.)
Gaussian distributed with mean zero and standard deviation .
The following spline smoothing problem:

can be solved for a 2-D Riemannian manifold . The solu-
tion is found in a reproducing kernel Hilbert space (r.k.h.s.) of
real-valued functions in constructed by orthonormal
basis functions. Such basis functions can be found using the
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Laplace–Beltrami (LB) operator that is a generalization of the
Euclidean representation of the Laplace operator to an arbitrary
Riemannian manifold. Due to the LB self-adjoint property, its
eigenfuctions form a complete set of real-valued orthonormal
basis functions [16]. In general, there are no closed form ex-
pressions for the LB basis functions on a curved manifold. We
explicitly generate the orthonormal basis functions for each cor-
tical manifold with boundaries using the finite element method
(FEM) [17], [18] and show seeking the basis functions is equiv-
alent to solving an algebraic eigenvalue problem.

The remainder of this paper is organized as follows. Section II
reviews the spline smoothing problem and its solution repre-
sented by analytic spherical harmonics on a unit sphere, which
will be generalized to an arbitrary 2-D manifold in Section IV.
We start with a variational problem for finding the complete
set of LB orthonormal basis functions in Section III-B. Then
we present numerical implementation for computing LB or-
thonormal basis functions by FEM in Section III-C and illustrate
numerical solutions to the orthonormal basis functions on a unit
sphere and a brain manifold in Section III-D. The smoothing
problem is considered in Section IV. In Section V, we quan-
tify mean square error (MSE) of smoothed functions compared
to ground truth using synthetic data and present applications of
our approach to smoothing mean curvature, cortical thickness,
and functional statistical maps on the brain submanifolds: cin-
gulate, planum temporale, and occipital lobe.

II. PREVIOUS WORK—SPLINE SMOOTHING ON A UNIT SPHERE

Assume is a unit sphere defined on the polar coordinates
and is a point on . The LB orthonormal basis func-

tions on the sphere are referred as spherical harmonics ,
, , where

(1)

where

are the Legendre functions and are the Legendre polyno-
mials. The eigenvalues are associated with .

Assume . Given noisy data
from the model

(2)

the smooth representation of can be obtained by minimizing

(3)

This expression includes the residual sum of squares and
“smoothness” of the solution, as represented by the square

integral of the first derivative. penalizes the smoothness
and fidelity to the data. Since the LB eigenfunctions form a
complete set of orthonormal basis functions, the solution to the
above problem in (3) can be written over the basis with
coefficient as

(4)

As a consequence, solving the smoothing problem in (3) is
equivalent to estimating as

(5)

Arranging the index set in a convenient order, and letting
and be vectors of and and be the matrix with , th

entry , we have that (5) in matrix form is

(6)

where is the diagonal matrix with , th entry .
When , the corresponding entry of is zero. denotes
transpose. The minimizing vector is

(7)

Although splines on the unit sphere have received great atten-
tion [15], the idea of data smoothing or regularization as shown
above has not been investigated for any arbitrary 2-D mani-
fold, partly due to the fact that there are no analytic solutions to
basis functions for it. In the following, we generalize the above
smoothing procedure to arbitrary manifolds by first computing
numerical solutions to LB orthonormal basis functions and then
solving the spline smoothing problem in (3).

III. SPECTRAL ANALYSIS OF THE LB OPERATOR

A. Preliminaries

We briefly review some fundamental concepts from differen-
tial geometry that are necessary to develop the framework for
data smoothing and interpolation on 2-D manifolds. Consider a
smooth orientable manifold embedded into . We choose
to describe by means of a parametrization

(8)

where . The parameters and play the
role of local coordinates on the manifold. It should be noted that
there are many ways to construct manifold parametrization and
select local coordinates. However, our results in the subsequent
sections will be independent of any manifold parametrization.
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In this paper, we assume that the map is
twice continuously differentiable. At any point on
the manifold, the vectors and span the tangent
space . The metric properties of the manifold can
be easily deduced by considering two infinitely close points on
the manifold with coordinates and . Then, the distance

between them is determined by

(9)

where and the bilinear form in
(9) is called the first fundamental form of . The squared root
of the determinant of is equal to the area of the parallelogram
formed by the vectors and

(10)

Introducing the area element , one may
write down the area as [19]

(11)

Furthermore, we will use the following shorthand notation for
the manifold integrals:

(12)

Given a smoothly differentiable function , the
intrinsic gradient of with respect to the parametrization
is defined as [20]

(13)

where . The LB operator is a generalization

of the Euclidean Laplacian to arbitrary differentiable manifolds
and is defined as the divergence of the gradient

. For any twice differentiable function , the LB
operator can be expressed in the following form:

(14)

B. Orthonormal Basis of the LB Operator With Neumann
Boundary Conditions

The LB operator is self-adjoint with respect to the norm
defined on the space of continuous piecewise linear functions
[21]. We seek eigenvalues and orthonormal basis functions
of the LB operator with Neumann boundary conditions on a

Riemannian manifold embedded into . The Neumann
boundary conditions are required to satisfy the condition that
any function defined on is continuous across the boundary
of , . The LB eigenvalue problem is posed as

(15)

(16)

(17)

where is the LB operator; is the normal vector on . LB
eigen-elements are denoted as . Equations (15)–(17)
are, respectively, partial differential equation of the LB eigen-
value problem, normalization equation to guarantee that the
norm of an eigenfunction with respect to manifold is one,
and equation for Neumann boundary conditions.

The weak form of the LB eigenvalue problem [22] is written
as follows. The variational principle for takes the form

(18)

where

(19)

are critical points of in when
and are subject to the boundary conditions in (17). The

sign [ ] takes account of the approximate nature of when
is not the exact function, and the symbol means “the sta-
tionary value of” (see proof in the Appendix).

Analytic solutions to the LB orthonormal basis functions and
eigenvalues cannot always be found for an arbitrary manifold.
We will seek the numerical solution to orthonormal basis func-
tions by finding the critical points of using FEM in the sub-
sequent section.

C. Solving the Eigenvalue Problem via FEM

Now we describe the implementation of the FEM for finding
the LB orthonormal basis step by step. Before generating the
complete orthonormal basis (CON) functions on the cortex, we
have to construct the triangulated mesh for each volume. This
consists of three steps: 1) segmentation of the MR tissue as
white matter, gray matter, and cerebrospinal fluid (CSF) voxels
using Bayesian segmentation [23], [24]; 2) three-dimensional
(3-D) isocontouring [24]; based on the intensity value at which
there is equal probability of the gray and white matter via
matching tetrahedral algorithm; 3) dynamic programming
delineation of the boundary of the associated gyral and sulcal
submanifolds, from which the submanifold of interest is auto-
matically extracted from the manifold masked by subvolume
region-of-interest (ROI) [25], [26].

1) FEM for Generation of the CON:
Construct Triangulated Mesh of Vertices: Define a triangle

with area , with vertex locations , , and . Let
be the number of triangles on the triangulated mesh, and be
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Fig. 1. (a) Illustrates one single triangle T with edge jj and its opposite angle
� . p is a point inside the triangle. (b) Shows one ring centered at vertex j .
Triangle T has three vertices: j; j ; and j . � and � are angles opposite
to edges jj and jj , respectively.

the number of vertices. Define as the set of triangles con-
taining vertex , and as the set of triangles containing
edge . denotes the angle opposite to the edge in
triangle [shown Fig. 1(a)]. Let the indices of the three ver-
tices in the triangle be , , and , respectively.

Construct Discrete Version of : Let be a linear
approximation of within in the barycentric coordi-
nate representation [17], [18],

,
, where are so called shape functions deter-

mined by the ratio of areas [17], [18]. For example, is equal
to the ratio of the area of triangle to that of the total area

, shown in Fig. 1(a).
Within triangle , the discrete energy becomes

Assume and to be 3 3 matrices. The th
entry of is , and the th entry of is

[17], [18]. Therefore, the energy within
triangle takes the matrix form

as shown in the equation at the bottom of the page. The total
energy is then obtained by assembling all triangle elements

(20)

Reorganize by Vertex Contribution and Rewrite as Matrix
Form: Define sparse matrices and . As depicted in
Fig. 1(b), the row of matrix corresponding to vertex has
diagonal entry
and off-diagonal entries ;

is a semi-positive definite matrix (see Appendix).
Similarly, the row of matrix has diagonal ele-
ment and off-diagonal entries

; is a positive definite matrix
since it is strictly diagonally dominant and diagonal entries are
positive. The total energy has the matrix form

(21)

Seek CON Basis of Eigen-Elements: The orthonormal
basis functions subject to normalization and boundary con-
ditions are critical points of the weak form of the LB eigenvalue
problem in (21) so that they satisfy the equation

(22)

which is a generalized algebraic eigenvalue problem. Note, the
trivial orthonormal basis function with zero eigenvalue is con-
vened to be indexed by , and .

2) Implementation: Implementation steps involved in com-
puting LB orthonormal basis functions on the cortical manifold
are summarized as follows:

• define region of interest in magnetic resonance imaging
(MRI) volume;

• segment region of interest into white matter, gray matter,
and CSF using Bayesian segmentation method;

• generate a triangulated mesh by matching tetrahedra;
• refine triangulation of the mesh using optimization proce-

dure;
• extract subsurface delineated by dynamic programming on

the cortical manifold;
• construct matrices and for the submanifold;
• solve eigenfunctions and eigenvalues of problem (22)

using generalized symmetric eigenvalue problem solver,
named “sygvxeig,” in LAPACK library [27].
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Fig. 2. Spherical harmonics. (a)–(e) show numerical solutions to the 2nd, 6th,
12th, 17th, and 28th harmonics on the unit sphere. A linear combination of these
five harmonics constructs a function, f = 0:2� +0:4� +0:2� +0:2� +

0:2� , shown in (f). (g) Part of the triangulation of this sphere is shown.

The convergence of the numerical solution for the eigenvalue
problem (22) is dependent on the quality of the triangulated
mesh but not on its topology. The ratio of the biggest triangle
area to the smallest triangle area on the triangulated mesh and in-
terior angles of each triangle determine the conditional number
of matrices and . Therefore, we refine the triangulated mesh
to a more uniform graph by locally moving vertices to minimize
energy based on the distance between vertices in Step 4 (see de-
tails of refining the triangulated surface in [28]). The purpose
of this step is to guarantee to find numerical solutions of basis
functions. The accuracy of the numerical solutions to the eigen-
value problem is determined by the refinement and quality of
the triangulated surface.

D. Examples

We illustrate numerical solutions to LB orthonormal basis
functions on a unit sphere and brain manifold.

The closed form of continuous spherical harmonics has
been given in (1). Here, we illustrate their numerical solutions
obtained using the algorithm in Section III-C. Empirically,
a unit sphere is discretized into 20480 triangles with 10242
vertices [see Fig. 2(g)]. Fig. 2(a)–(e) shows the five harmonics:

. The region with positive values is colored
by red, while the one with negative values is denoted by blue.
As one goes to higher order of the spherical harmonics, the
alternating red/blue pattern varies rapidly, implying the inclu-
sion of high frequency components; this is similar to Fourier
basis functions in one-dimensional case. Instead of estimating

in an inverse problem (4), we constructed a function ,
, shown in

Fig. 2(f). Such a function is a continuous and differentiable
function on the sphere.

For a brain manifold, there are no closed-form expressions
of the LB orthonormal basis functions. We give an example
of numerical solutions to orthonormal basis functions on the
planum temporale in Fig. 3. The planum temporale manifold is
discretized into 2558 triangles with 1346 vertices [see Fig. 3(h)].
Fig. 3(a)–(f) shows basis functions , . A smooth
function constructed by the average of these basis functions is
given in Fig. 3(g).

IV. SPLINE SMOOTHING PROBLEM

For the completeness, we recall the smoothing problem in
(3) defined on the unit sphere in Section II and generalize it to
an arbitrary 2-D manifold . The data model on the manifold
associated with the smoothing problem is the same as (2) and
rewritten as

where is a function defined on . is independent
and identically Gaussian distributed noise with zero mean and
variance . A smooth representation of is obtained by min-
imizing

(23)

for some . This expression represents a tradeoff between
fidelity to the data, as represented by the residual sum of squares,
and smoothness of the solution, as represented by the square
integral of the first derivative. Instead of using the expansion
of over basis , , we give an
equivalent form by following the Representer Theorem [29]. It
states that the minimizer of the variational problem (23)
lies in a finite dimensional subspace and admits a representation
in the form

(24)

where the LB kernel is a real-
valued function given by

(25)

and are orthonormal basis functions and eigenvalues of the
LB operator. Since the LB is a self-adjoint operator, the infinite
series on the right-hand converges for any and and kernel

is positive definite. Therefore, defines
r.k.h.s [15] with the reproducing property of : for any
function which satisfies Neumann boundary con-
ditions in (17), we have

(26)
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Fig. 3. (a)–(f) Six orthonormal basis functions, � , i = 2; . . . ; 7, of the LB operator associated with the manifold of planum temporale are shown. (g) Gives a
function (f) constructed by a linear combination of these six basis functions f = (1=6) � . (h) Illustrates the triangluated mesh of this manifold.

It can be proven that both expressions of the expansion of over
basis and (24) are the representations of the minimizer of the
variational problem in (23). The relationship between and
are

To find the solution to the smoothing problem, (24) shows that
the minimizer of (23) is completely determined by the scalar

and -dimensional vector . Conse-
quently, the variational functional on the right-hand side of (23)
can be treated as a function of and . By the reproducing
property of , the variational problem (23) is equiva-
lent to the following quadratic minimization problem:

(27)

where is a matrix with
as the th entry and is a

vector with one as entry. The solution of the minimization
problem (27) satisfies the following linear system:

(28)

(29)

V. RESULTS

In this section, a synthetic example is given to intuitively
illustrate the performance of the smoothing method and

Fig. 4. Synthetic data. (a) Illustrates the ground truth f on the manifold of the
planum temporale shown in Fig. 3. f is defined in such a way that the value of f
on the small region inside the manifold is 1.0, otherwise 0. (b) Shows the func-
tion contaminated by a Gaussian noise with zero mean and standard deviation
0.2. (c)–(k) Show its smoothed functions by 10%, 20%, � � �, 90% of orthonormal
basis functions out of 1346 basis functions. Red arrows point out where there
are slight differences.

how many basis functions should be incorporated into the
kernel (25). Then, we show three applications in MRI studies:
smoothing mean curvature, cortical thickness, and functional
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Fig. 5. (a) Illustrates a plot of MSE between the smoothed functions and the ground true versus the percentage of orthonormal basis functions used in the smoothing
for Fig. 4(c)–(k). (b) Shows multiplicative inverses of the first four hundred eigenvalues of the manifold in Fig. 4(a).

statistical maps on brain manifolds (cingulate, planum tempo-
rale, and occipital lobe).

A. Quantitative Evaluation

For the demonstration of the performance for the smoothing
method, we generated a function on the planum temporale
manifold in such a way that is equal to 1.0 in the piece of inte-
rior region [see Fig. 4(a)], otherwise 0. The Gaussian noise with
zero mean and standard deviation 0.2 was added into every-
where on the manifold shown in Fig. 4(b). The 10%, 20%, ,
90% of total number of basis functions were used to construct
the kernel in (25). The smoothed results are sequentially shown
in Fig. 4(c)–(k). There is no significant difference among these
results, except the boundary pointed out by red arrows becomes
sharper as more basis functions are incorporated. In Fig. 5(a),
the MSE between these results and the ground truth in Fig. 4(a)
is plotted as a function of percentage of basis functions having
been used. The small change in MSE also implies such subtle
difference among these smoothed results. The reason we see this
is due to the fact that reciprocals of the LB eigenvalues, ,
on planum temporale rapidly decreases so that high order basis
functions give a small amount of contribution in the kernel (25),
shown in Fig. 5(b), which implies that small number of the basis
functions are needed in the smoothing and can be determined by
the distribution of eigenvalues. As for this manifold, 256 out of
total 1346 orthonormal basis functions contribute 90% of total
energy, .

B. Mean Curvature Maps

The human brain is highly curved structure with gyri and
deep sulci, which can be identified by the curvature informa-
tion. However, the curvature information has high order differ-
ential nature, initial estimates from methods in [30] and [31]
are sensitive to noise. Therefore, smoothing curvature maps be-
comes a crucial step in many applications to guarantee finding
true solutions. For example, gyrus crown or sulcus valley can be
delineated via dynamic programming optimization using curva-
ture information [26]. Moreover, the folding pattern was studied
using the scale-space primal sketch of the cortex mean curvature
[3].

Fig. 6 shows mean curvature maps on cingulate manifolds
where have been reported to be the brain region relative to
neuropsychiatric diseases with emotional, motivation, attention
symptoms, such as Schizophrenia and Alzheimer’s disease
(e.g., [32]). Fig. 6(a) and (b) illustrate original mean curvature
maps on left and right cingulate manifolds discretized into
30583 and 30847 triangles with 15746 and 15861 vertices,
respectively. Dark color corresponds to the sulcus with negative
mean curvature, while the bright color denotes the gyrus with
positive mean curvature. The bottom row illustrates smoothed
versions of mean curvature maps.

C. Cortical Thickness Maps

The cortical thickness extracted directly from MRI is a very
important measurement in a wide variety of studies on neu-
rodegenerative and psychiatric disorders by many groups [5],
[32]–[42]. Noisy cortical thickness maps on the cortical man-
ifold may cause spurious results in a large population study.
Properly smoothing cortical thickness maps on the cortical man-
ifold not only increases signal to noise ratio but also makes the
thickness data suitable for parametric statistical models (e.g.,
[5]).

Fig. 7 shows cortical thickness maps on left and right planum
temporale (PT), the region implicated in a variety of neuropsy-
chiatric and neurodevelopmental disorders, (e.g., schizophrenia,
bipolar, auditory disorders [26], [43]–[45]). We delineate the
boundary of PT cortical manifolds by tracking principal curves
from the retro-insular end of the Heschl’s Gyrus (HG) to the
superior temporal gyrus (STG), along the posterior STG up to
the start of the ramus and back to the retro-insular end of the
HG via dynamic programming [26]. The thicker region is col-
ored brightly, while the dark color denotes the thinner region.
The top row shows left and right PT manifolds colored by the
cortical thickness information. The manifolds are represented
by 2891 and 2636 triangles with 1519 and 1408 vertices from
the left to the right column, respectively. The smoothed cortical
thickness maps are depicted in Fig. 7(c) and (d).

D. Functional Statistics Smoothing

Such an approach can be used for structural as well as func-
tional maps. Fig. 8(a) shows the functional activation of the
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Fig. 6. Mean curvature maps of cingulate manifolds. (a) and (b) Show original mean curvature maps on the left and right cingulate. (c) and (d) Give their smoothed
curvature maps. Each manifold is represented by 30583 and 30847 triangles with 15746 and 15861 vertices from the left to the right column.

Fig. 7. Cortical thickness maps visualized on the manifolds of planum temporale. (a) and (b) Show original cortical thickness maps on the left and right planum
temporale, which are discretized into 2891 and 2636 triangles with 1519 and 1408 vertices, respectively. (c) and (d) Illustrate their smoothed maps. “STG” denotes
the superior temporal gyrus. Anterior boundary is defined at the location of posterior Heschl’s sulcus and the posterior boundary is delineated by the curve started
from the ramus and back to the restro-insular end of the HG.

stationary ring stimuli on the right occipital lobe manifold to
study the retinotopic maps in the visual cortex [46]. Stimuli are

stationary rings defined as 1, 2, 3, 4, 5 from the smallest size
(inner radius: 1.5 ) to the largest size (outer radius: 12.8 ) and
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Fig. 8. Functional activation on the right occipital lobe manifold. (a) Shows
the stationary ring stimulus; a cross is placed at cortical locations responding
preferentially to near-fovea. (b) and (d) Show original and smoothed functional
response to stationary ring stimulus with inner radius as 3.5 and outer radius
as 5.4 on the right occipital manifold. Similarly, the right column [(c) and (e)]
show the original and smoothed response maps to the ring with inner radius
as 5.4 and outer radius as 8.3 . Red arrows point out where the holes on the
original functional maps are closed on the smoothed maps.

central disk defined as (radius: 1.5 ). During a 72-s cycle,
six stimuli are shown on the screen for 12 s in the order 5, 3,
1, 4, 2, and ; four cycles are in each run. By using the gen-
eral linear regression model, we compute the -statistics for
each ring’s response versus others in the functional magnetic
resonance imaging (fMRI) volume, and then superimpose the
positive -value on the occipital manifold. The -statistics map
is smoothed on the manifold represented by 11512 triangles
with 5896 vertices. Finally, the significant retinotopic activation
is shown by giving the threshold. Fig. 8(b) depicts the retino-
topic activations to ring 3 (inner radius as 3.5 and outer ra-
dius as 5.4 ) on the manifold. Fig. 8(d) depicts the response
to ring 4 (inner radius as 5.4 and outer radius as 8.3 ) on the
manifold. Smoothed results associated with them are shown in
Fig. 8(d) and (e), respectively. Red arrows emphasize the place
where the holes on the original functional response maps are
closed on the smoothed maps.

VI. CONCLUSION

In this paper, we have generalized the spline smoothing
problem from a unit sphere to an arbitrary Riemannian mani-
fold with boundaries. The paper has focused on the use of the
LB operator for the generation of a complete set of real-valued
orthonormal basis functions on the manifold embedded in .
Neumann boundary conditions taken into account are suitable
to smooth surface metrics on an open manifold of the brain.
The power of the approach taken is that such a basis for each
curved cortical manifold is an ideally suited basis for repre-
senting and smoothing functions such as curvature, thickness,
and functional responses intrinsically to the local coordinates
of the individual neocortex. Furthermore, this approach gener-
alizes the Fourier orthonormal representation of functions on
the Euclidean regular grid to the orthonormal representation
of functions on an arbitrary manifold. The stochastic signal
processing procedure can be simply applied on the manifold.

The proposed method from classical FEM is a robust ap-
proach for computationally generating base. FEM for solving
the diffusion equation on brain manifolds can also be found
in references [7], [9]. This method is robust in a sense that it
discretizes the LB operator in the volume rather than on the
manifolds themselves. Compared to finite difference method,
the boundary of manifolds can be taken into account automati-
cally without expanding the region. For example, applying the
Laplace operator on a regular Euclidean square, we used to ex-
pand the square to give a boundary information so that the solu-
tion is equivalent to what is obtained by finite element method.
However, it is difficult to expand local coordinates on manifolds
to have the same formulation as on the Euclidean coordinate
system.

Such an approach recovers continuous functions on the brain
manifolds, which is a crucial step in many brain image appli-
cations. For instance, the smoothed representation of the curva-
ture map is helpful to accurately delineate gyri or sulci on brain
manifold [3], [26]. For functional statistical maps, this approach
clusters activation based on the statistics of the neighborhood,
which implies that the activation at one vertex on the manifold
is significant but it may not be shown after smoothing due to the
weak activation of the vertex’s neighbors.

Specific work on the application of the diffusion equation
with the LB operator for smoothing and interpolation can as well
be found in [4], [5], [7]–[11] and [47]. The diffusion smoothing
is an iterative process and stop criterion is hard to control. In
this paper, our smoothing problem is an algebraic problem and
directly gives the solution for a data model with Gaussian noise,

. Moreover, in the practical point of view,
basis functions can be used to smooth different functions on
a manifold, (e.g., curvature maps, functional maps, and cor-
tical thickness maps). In addition, our approach taken here is
a significant extension of these diffusion equation smoothing
methods to the induction of Gaussian random field models on
the neocortex for studying intrinsic properties of the cortex. In
details, such a Gaussian random field ,
where are independent, Gaussian random vari-
ables with fixed means and variances

. The Gaussian field is completely specified by



QIU et al.: SMOOTH FUNCTIONAL AND STRUCTURAL MAPS 1305

its mean and covariance operator,
. Then, a statistical testing (e.g., Hotelling test)

can be directly applied to such a coefficient vector instead of
. This framework is very useful to investigate differences in

cortical thickness and functional statistical maps on the cortex
as well as cortical shape analysis. Such a framework extends the
previous work on surface harmonic representation for shapes
such as curved manifolds. The earliest work in computer vision
was that of Pentland and Sclaroff on surface harmonics in the
deterministic setting [48]. Joshi [28] then extended this for sto-
chastic representations such as appropriate for morphometric in-
ference such as being pursued by the Csernansky group in the
hippocampus [2], [49].

APPENDIX

Week Form of the Eigenvalue Problem

The eigenvalue problem in (15) for the LB operator is equiv-
alent to the variational problem in (19), where eigenfunctions
are subject to Neumann boundary conditions given in (17).

Proof: From the divergence theorem, for a real-valued
function in , we have

(30)

Substituting Neumann boundary conditions yields

(31)

Replacing , we have

By multiplying (15) by and integrating, we see immediately
that if satisfies (15), then

which tells satisfies (18).
If (18) is satisfied we have

and taking the gradient of the function with
respect to and evaluating it at we find

If , substituting (31) yields

for any . Therefore, we have

is Semi-Positive Definite

Matrix has the property that sum of each row and sum
of each column are zero. It is obvious that has zero as an
eigenvalue and an eigenvector with ones for all entries. In the
following, we show that is a semi-positive definite matrix.
To begin with proving that matrix in triangle (see the
right panel in Fig. 1) is semi-positive definite by showing that
the determinants associated with all upper-left submatrices are
nonnegative

Assume is a matrix with upper-left submatrix
and zeros for other entries. is an identity matrix by swapping
the first row with the th row, the second row with the th row,
and the third row with the th row. Matrix is also semi-
positive definite. Matrix can be described by the sum of semi-
positive definite matrices as the form

If two matrices are semi-positive definite, then their sum matrix
is semi-positive definite. So is a semi-positive definite matrix.
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