
MAKING DEEP NEURAL NETWORK FOOLING PRACTICAL

Ambar Pal Chetan Arora

Department of Computer Science and Engineering, IIIT Delhi

ABSTRACT

With the success of deep neural networks (DNNs), the ro-
bustness of such models under adversarial or fooling attacks
has become extremely important. It has been shown that a
simple perturbation of the image, invisible to a human ob-
server, is sufficient to fool a deep network. Building on top of
such work, methods have been proposed to generate adversar-
ial samples which are robust to natural perturbations (camera
noise, rotation, shift, scaling etc.). In this paper, we review
multiple such fooling algorithms and show that the gener-
ated adversarial samples exhibit distributions largely different
from the true distribution of the training samples, and thus are
easily detectable by a simple meta classifier. We argue that for
truly practical DNN fooling, not only should the adversarial
samples be robust against various distortions, but must also
follow the training set distribution and be undetectable from
such meta classifiers. Finally we propose a new adversar-
ial sample generation technique that outperforms commonly
known methods when evaluated simultaneously on robustness
and detectability.

Index Terms— Deep Network Fooling, Robustness of
Adversarial Attacks

1. INTRODUCTION

Success of Deep Neural Networks (DNNs) on the ImageNet
dataset [1, 2] heralded a new era in machine learning and
computer vision. Easy availability of large amounts of data
as well as computational resources have led DNNs to pro-
duce remarkable success in many problems across computer
vision. While DNNs are highly expressive with millions of
parameters, they also end up learning a lot of unintended fea-
tures. Given the central role of DNNs in many safety critical
applications, there is a lot of interest in looking into ways to
generate “adversarial samples”, i.e. inputs which can fool a
network by forcing undesired false positives.

The first type of adversarial techniques are those that per-
form perturbations on the input image, typically looking at
the backpropagated gradient, or aiming to minimize a given
adversarial objective. The fast gradient sign method ([3]),
pushes the image away from the source class by computing
the gradient of the loss with respect to the input and tak-
ing a small step in an opposite direction. The basic iter-

Fig. 1: Robustness across various distortions: The figure shows(left
to right): Original Fooling Image, Gaussian Noise, Rotation, Scaling
and Translation. Various existing methods are shown(top to bottom):
FGSM, Iterative, DeepFool, Ours. The source class is Joystick and
the adversarial class is Bee. Images with a green box are classified
as Bee. It is seen that our adversarial image generation algorithm is
able to fool the network under all perturbations.

ative method is an iterative extension of FGSM([3]) with a
similar update step, but performed multiple times with pixel
wise clipping. [4] show that we can even change the internal
learnt representations adversarially. Recently, deepfool [5]
was proposed to improve upon the above approximate meth-
ods. The method accurately approximates the distance to the
closest hyperplane in the high dimensional feature space that
encloses the source image I, and then computes a perturbation
r such that (I + r) just goes over the decision boundary.

On the other hand, research has shown that these adver-
saries can be easily defended against, by either modifying the
loss function [6], binning the color space [7] or using vari-
ous forms of defensive distillation [8, 9]. Since most of the
fooling techniques make very small adversarial perturbations,
they are highly fragile in the presence of natural perturbations
(camera noise, rotation, shift, scaling etc.) [10], making fool-
ing deep neural networks very difficult in practice.

The key to generating robust adversarial examples([11])
lies in inserting class specific “structure” in the images which
makes them invariant to natural perturbations. It has been
shown that one can produce adversarial images with rich ge-
ometric structure using CPPN and Genetic Algorithms([12]).
[13] approach the robustness problem by simultaneously fool-
ing an ensemble of networks, each operating at a different
scale, rotation and shift. This makes the resultant image ro-

bust to all such natural transformations. However, all these
methods produce unnatural distributions in the features learnt
by the underlying DNN, and hence are detectable. [14] tap
into the activations at different layers of a CNN, and generate
a score to differentiate an adversarial sample from benign.

We argue that there is an inherent trade-off between ro-
bustness and detectability in various adversarial techniques
proposed in recent works. Through our experiments, we con-
clude that there are still no techniques which we can generate
adversarial samples that are robust to sensor noise and distor-
tions while still remaining undetectable to meta detectors. In
this work, we make incremental advances towards the objec-
tive. The specific contributions of this paper are:

1. We evaluate various state of the art adversarial image gen-
eration techniques in terms of robustness and detectability
and make observations on the structure of adversarial ac-
tivations and compare them to non-adversarial activations.
We propose a simple adversarial detector that reliably sep-
arates adversarial inputs from non-adversarial ones.

2. We propose two new robust adversarial image generation
algorithms which are difficult to detect. The first one takes
as input a source image database (this can be the data set
on which a network is trained on) and generates adver-
sarial images just by stitching together various portions of
images from the database. In the second algorithm, we
suggest to generate adversarial images while keeping acti-
vations at all intermediate layers of the network similar to
the training set, making the generated adversarial example
extremely hard to detect.

2. PROPOSED METHODS

We explain below our algorithm for detecting adversarial
samples generated from existed state of the art. We go on
to suggest two new algorithms for adversarial generation,
trading off robustness for detectability. Given the space re-
strictions, we have kept the description brief. More details
can be found at the project page: http://www.iiitd.
edu.in/˜chetan/projects/deepnetfooling.

Detecting Adversarial Images By carefully evaluating
some recently proposed DNN fooling methods ([3, 5, 15, 16,
17, 18]), we observe that the adversarial images generated by
these methods can be easily detected to be malicious. Inves-
tigating the internal layer activations of the DNN when fed in
adversarial images, we find that adversarial activations show
distribution graphs which are much more “peakier” than their
non-adversarial counterparts. This motivates us to suggest
a meta-algorithm to detect adversarial samples which works
by simply looking at any change in the distributions of the
layer-wise activations.

We build a 2 class Support Vector Machine(SVM), using
activations of the network on giving an image as the input.

For each image in the train dataset (non-adversarial), we ob-
tain the DNN activations at the intermediate layers, and then
flatten and concatenate all these activations to obtain the input
vectors corresponding to the first class. Similarly, for obtain-
ing the second class input vectors, we generate adversarial
samples for each of the classes and obtain the DNN activa-
tions for these samples.

As we show in the experiments section later, we find that
this simple classifier performs quite well in practice in terms
of detecting any malicious images generated by [3] and [5].

Strong Fooling Algorithm The strong performance of our
relatively simple meta classifier for detecting adversarial im-
ages motivated us to explore a method of generating images
that can fool a DNN. We observe that all existing adversarial
detectors, including ours, try to detect a change in the statis-
tics of the activations at some layer of a DNN. Hence, by
making all the intermediate activations of an adversarial im-
age close to those of a non-adversarial image, we can make
it hard to detect. Accordingly, we modify the source image
so that all the intermediate layer activations of a DNN be-
come close to that of an image selected from the target class.
Specifically, given a source image I0 and an image J belong-
ing to the target class, we solve the following optimization
problem to obtain the adversarial sample:

min
I

Σk‖φk(I)− φk(J)‖22,

where φk(I) denotes the activations at layer k for image I .
The optimization objective is the sum of the differences in
the layer activations output between generated image and an
image of the target class. We start with I = I0 and use the
Adam Optimizer([19]) to update I . We normalize the images
to [0, 1] and maintain it within the range by clipping at the end
of each iteration.

As we show in the experiments, the proposed algorithm
generates adversarial images which are much harder to de-
tect than the state of the art. However, we also observe that
the images generated by this algorithm tend to be less robust
against distortions compared to competitive methods. Trad-
ing detectability for robustness, our new method, described
below, builds up on the Image Stitching algorithm of [20] and
creates robust as well as hard to detect adversarial samples.

Geometric Fooling Algorithm The key to achieving the
robustness objective while maintaining undetectability is to
pick important parts/structures from the input set which when
present in an arbitrary image can make it look like the target
class to a DNN. To achieve the goal, we begin with selecting
a set of candidate images, sayD, which as is may not be clas-
sified as the target class by the DNN but do still manage to get
a high probability score from the DNN (for the target class).
This step is not very critical for the proposed algorithm, but
weeding out images with a low confidence score at an early

Image Dataset Selected

S T

DNN
1. Select Top K high confidence images

2. Stitch by
iteratively

selecting images
in a decreasing
order of target

class confidence

3. Get the
backpropagated

error map
Gradient

Values are
required for
pixel-sink

edges

Pixel Values
required for inter

pixel edges

+ =

4. Input this network to a
minimum cut solver to get

the set of pixels to be
picked from the candidates.

Loop, setting the base
image to this new image

Fig. 2: Block diagram of the Geometric Fooling technique

stage ensures that the algorithm makes rapid progress in gen-
erating adversarial samples.

Once the candidates have been selected, we sort them in
decreasing order of DNN confidence for the target class. Now
we start the iterative procedure(Alg. 1), whereby in each step
we pick the next image from the candidate set in sorted order.
This image is then paired with the current base image. For
each image in this pair, we take a forward pass through the
DNN and then back-propagate the error for the target class.
This gives us a per pixel error map for each image. To gen-
erate a noise robust and natural looking image from the two
images in the pair on the basis of their error map, we would
like to pick important parts/structures rather than individual
pixels.

Kwatra et al. [20] have suggested a graph based technique
to stitch two images by finding a minimum cut in an appropri-
ately constructed flow graph. We use their technique and cre-
ate a graphG(V,E) where V is the set of nodes (referred to as
Pixel nodes) and are equal to the number of pixels in the im-
age. We also add special nodes s and t and add edges between
s to pixel nodes and from pixel nodes to t. We also add undi-
rected edges between two pixel nodes if they are neighbours
spatially(Line 4 of Alg. 2). The edges are supplied weights as
defined in Line 5 of Alg. 2. Regularising constants Γ and λ
are used to balance between the adversarial image confidence
and structure preservation in the output image.

We then find the minimum cut in the created flow graph,
and compute sets S and T containing nodes s and t respec-
tively. For all the pixel nodes which are in S set, we copy the
value of pixel from the second candidate image to the output.
Remaining pixels are copied from first candidate image.

The process is repeated each time by using the output im-
age of the previous iteration (as the base image) and the next
candidate image in order. We iterate until the output image
is declared as the target class by the DNN. Alg. 1 gives a
complete description with Alg. 2 as a subroutine. Fig. 2

Algorithm 1: Stitch Adversary Creation
Input: Image List D, Target Class T , Steps K
Output: Adversarial sample Ak

1 Sort D in decreasing order of confidence for class T
2 Initialize A1 ← D1

3 for each image Di in sorted order, i ∈ [2 : K] do
4 Ai = Stitch(Ai−1, Di, T) {# Algorithm 2}
5 end

Algorithm 2: Image Stitching Algorithm
Input: Image A, Candidate C, Target Class T
Output: New Adversarial Image A′

1 PA, PC ← Confidence of A and C for T respectively
2 BA, BC ← Error map backpropagated from the DNN

setting target class as T for A,C respectively
3 Normalize BA and BC to [0, 1]
4 Let G = (V,E) where V = {vi,j | 1 ≤ i ≤

width(A), 1 ≤ j ≤ height(A)} ∪ {s, t} and
E = {(vi,j , va,b) : |i− a|+ |j − b| ≤ 1}

5 Let Epq be the edge between pixels p and q. The edge
weight function w : E → R is defined as:
w(vp, vq) = λ · (‖A(p)− C(p)‖1 + ‖A(q)− C(q)‖1)
w(s, vp) = BC(p) + PA · Γ
w(vp, t) = BA(p) + PC · Γ, where Γ, λ are tunable

6 Compute max s− t flow in G, let (S, T)← mincut(G)
7 Compute new adversarial image A′ by copying values

of pixels in set S from A and other pixels from C

gives a block diagram of our method. Though we have given
a method to generateD, the algorithm itself is independent of
it, and any other D can be provided by the user.

3. EXPERIMENTS

We now describe our experiments aimed at evaluating exist-
ing adversarial image generation techniques and subsequently
look at the proposed defense and attacks from a joint perspec-
tive of robustness and detectability. We aim to show how ex-
isting methods perform poorly on a “practical” fooling met-
ric, and how our methods improve upon them. All the exper-
iments are performed on a 3 Ghz CPU with 8 GB RAM and
Nvidia GTX 1080 Ti GPU card.

We use the datasets CIFAR-10 and ImageNet-10(a sub-
set of ImageNet created by randomly selecting 10 synsets 1

from the set of available ImageNet synsets, following [14]).
For each class, we generate 500 training and 100 testing ad-
versarial examples. For CIFAR-10, we use the model archi-
tecture shown in Table 3. For ImageNet-10, we use the com-
monly used VGG-16 Architecture [21].

The robustness score is created to capture the extent to

1bee, cardigan, confectionary, dugong, joystick, modem, palace, persian
cat, stone wall, valley

Dataset O FG BI DF SF G

Gaussian 0.50 0.56 0.89 0.82 0.42 0.59
Rotation 0.50 0.44 0.72 0.67 0.31 0.61

Translation 0.55 0.39 0.72 0.67 0.38 0.66
Scaling 0.61 0.51 0.82 0.76 0.43 0.74
Average 0.54 0.47 0.78 0.73 0.38 0.65

Table 1: Robustness Scores on CIFAR-10. Please refer to the text
for methods compared.

Dataset FG BI DF SF G

conv2
0.48

(0.99)
0.78

(1.00)
1.19

(0.54)
0.97

(0.41)
1.33

(0.32)

dense1
0.53

(0.93)
0.79

(0.99)
1.27

(0.46)
1.16

(0.22)
1.39

(0.26)

Table 2: Combined Scores for CIFAR-10, calculated as
(Robustness Average) + (1−Detectability). The score in the bracket
denotes the detectability score

which a generated adversarial sample is resistant to a particu-
lar perturbation. In other words, it is a measure of the extent
to which an adversarial sample gets classified as the target
class even after adding noise/distortion. For original, non-
adversarial images, the robustness scores reported denote the
extent upto which the image is classified as the original class
on adding noise/distortion.

For noise robustness scores we use gaussian noise,
N(µ, σ) with varying µ and σ. All the input images are
scaled to [0, 1] before feeding in to the networks. At a par-
ticular µ and σ, the robustness score for a set of adversarial
images, Sadv, generated according by the adversary adv and
DNN f is defined as:

Rf (Sadv, µ, σ) =
ΣIa∈Sadv [f(Ia) = f(Ia + r)]

|Sadv|
, r ∼ N (µ, σ)

The reported scores are averages over all pairs of µ and σ,
such that µ, σ ∈ {0.0, 0.05, 0.1, 0.15, 0.2, 0.25}. We rotate
the adversarial images by 0◦ to 45◦, and report rotation ro-
bustness scores. We translate the adversarial images by upto
30% of the image size in all the four directions and report
translation robustness scores. We scale the adversarial im-
ages from 1.1× to 2×, in steps of 0.1, and take an average
over the scaling robustness scores thus obtained. Finally, we
take features from one of the middle layers of the DNN and
classify using an SVM for the detectability scores. All the
scores are also shown on the Original Unperturbed Images(O)
for comparison.

For FGSM (FG, [3]), we perform standard non-targeted
fooling with ε set to 0.1 in our experiments. For the Itera-
tive method (BI, [3]), 10 iterations of the Algorithm are per-
formed, with the step size α = 0.05. We perform 50 and
1000 iterations per image for DeepFool(DF [5]), and pro-
posed Strong Fooling(SF) algorithms, respectively. G refers

Layer Type Filter Size Output Size

data - - (32, 32, 3)
conv1 Convolution (3, 3) (32, 32, 32)
pool1 Pooling (2, 2) (16, 16, 32)
drop1 Dropout(0.25) - (16, 16, 32)
conv2 Convolution (3, 3) (16, 16, 64)
conv3 Convolution (3, 3) (16, 16, 64)
pool2 Pooling (2, 2) (8, 8, 64)
drop1 Dropout(0.25) - (8, 8, 64)
dense1 Fully Connected - (512)
drop2 Dropout(0.5) - (512)
dense2 Fully Connected - (10)

Table 3: Model Used on CIFAR-10

Dataset O FG BI DF SF

Gaussian 0.11 0.16 0.16 0.14 0.16
Rotation 0.44 0.20 0.20 0.18 0.09

Translation 0.54 0.18 0.17 0.14 0.07
Scaling 0.56 0.29 0.27 0.26 0.16
Average 0.41 0.20 0.20 0.17 0.12

Table 4: Robustness Scores on ImageNet-10. Please refer to the text
for methods compared.

to the proposed Geometric Fooling algorithm(Alg. 1). The
robustness scores are shown in Table 1 and Table 4. It can be
seen from Table 2 that a detector looking at an intermediate
conv layer is better than one closer to the output. This can
be explained as a decrease of the fooling “effect”, as we go
deeper into the network.

4. CONCLUSION

In this work, we have introduced the notion of Practical Fool-
ing of Deep Neural Networks, where we look at adversarial
samples such that they are both undetectable to be an adver-
sarial sample as well as robust to natural perturbations like
camera noise, scaling, rotation, shift etc. We found that exist-
ing adversarial image generation techniques either create un-
natural distributions in the DNN internal activations or make
imperceptible changes to the image. In the former case, the
fooling image is easily detectable while in the latter case it is
not robust. We propose that preserving the natural structure
of an image is crucial to generating practical adversarial sam-
ples. We have suggested a new method for adversarial image
generation, using information from the back-propagated gra-
dient and the pixel intensities to stitch together structurally
important regions from the image.

Acknowledgement: Chetan Arora is supported by Infosys
Center for Artificial Intelligence and Visvesaraya Young Fac-
ulty Research Fellowship by MEITy, Government of India.

5. REFERENCES

[1] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei, “Imagenet large scale visual
recognition challenge,” International Journal of Com-
puter Vision, 2015.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” Neural Information Processing Sys-
tems, 2012.

[3] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy, “Explaining and harnessing adversarial exam-
ples,” International Conference on Learning Represen-
tations, 2015.

[4] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J.
Fleet, “Adversarial manipulation of deep representa-
tions,” International Conference on Learning Represen-
tations, 2016.

[5] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
and Pascal Frossard, “Deepfool: a simple and accurate
method to fool deep neural networks,” 2016.

[6] Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang,
“A unified gradient regularization family for adversar-
ial examples,” IEEE International Conference on Data
Mining, 2015.

[7] Akash V Maharaj, “Improving the adversarial robust-
ness of convnets by reduction of input dimensionality,”
2016.

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distill-
ing the knowledge in a neural network,” Neural Infor-
mation Processing Systems(Workshop), 2014.

[9] Nicolas Papernot, Patrick Drew McDaniel, Xi Wu,
Somesh Jha, and Ananthram Swami, “Distillation as a
defense to adversarial perturbations against deep neural
networks,” IEEE Symposium on Security and Privacy,
2015.

[10] Abigail Graese, Andras Roza, and Terrance E Boult,
“Assessing threat of adversarial examples on deep neu-
ral networks,” in Machine Learning and Applications
(ICMLA), 2016 15th IEEE International Conference on,
2016.

[11] Nicholas Carlini and David Wagner, “Towards evaluat-
ing the robustness of neural networks,” in Security and
Privacy (SP), 2017 IEEE Symposium on, 2017.

[12] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and
TAMT Meyarivan, “A fast and elitist multiobjective ge-
netic algorithm: Nsga-ii,” IEEE Transactions on Evolu-
tionary Computation, 2002.

[13] Anish Athalye and Ilya Sutskever, “Synthesiz-
ing robust adversarial examples,” arXiv preprint
arXiv:1707.07397, 2017.

[14] Jan Hendrik Metzen, Tim Genewein, Volker Fischer,
and Bastian Bischoff, “On detecting adversarial pertur-
bations,” arXiv preprint arXiv:1702.04267, 2017.

[15] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami,
“The limitations of deep learning in adversarial set-
tings,” in Security and Privacy (EuroS&P), 2016 IEEE
European Symposium on, 2016.

[16] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang
Su, Xiaolin Hu, Jianguo Li, and Jun Zhu, “Boost-
ing adversarial attacks with momentum,” CoRR, vol.
abs/1710.06081, 2017.

[17] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus, “Intriguing properties of neural networks,”
International Conference on Learning Representations,
2014.

[18] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi,
and Cho-Jui Hsieh, “Ead: elastic-net attacks to deep
neural networks via adversarial examples,” arXiv
preprint arXiv:1709.04114, 2017.

[19] Diederik Kingma and Jimmy Ba, “Adam: A
method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[20] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and
Aaron Bobick, “Graphcut textures: image and video
synthesis using graph cuts,” in ACM Transactions on
Graphics (ToG), 2003.

[21] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” arXiv preprint arXiv:1409.1556, 2014.

