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Outline

• Bijective correspondence: Populations studied via   
1-1 mappings to atlas coordinates  (LDDMM)

• Atlas’s: Individual and Population

• Statistics: Gaussian Random Fields

• Representation in anatomical coordinates:  PCA and 
surface harmonics

• P-values, clustering, LDA in diseased cohorts
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Computational Functional Anatomy 
is the study of structure and function response 
variables in populations.

Populations are studied via statistics in the 
template coordinate systems.

Bijective correspondences are used to carry 
information from one coordinate system to 
another - we call these bijections diffeomorphisms.



Populations often involve many modalities: 
B0, FA, T1, T2, Segmentations,…

Atlas: Electronic form of 

anatomical knowledge

Patient data

Bijective

correspondence 

via diffeomorphic

mapping
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The current state of the art 
structural validity for 
subcortical structures in 1mm 
scale MRI.



Kappa ~0.8 Overlap of Subcortical Structures
Blue=LDDMM



Volume Bias ~10%
Blue=LDDMM



Populations are studied via 
templates with statistics 
encoded in template 
coordinates.



Templates encode populations via 
bijections.



Bijective correspondences are generated 
via large deformation metric mapping 
(LDDMM) which are flows of the Euler-
Lagrange equations.

-bijection is generalization of translations, 
rotations, scales to infinite dimensions
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Velocity Field Computed for Curved C-Shapes Mapping
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- subvolumes to connected subvolumes
- surfaces to surfaces
- sulcal curves to sulcal curves

The Euler-Lagrange equations are used to 
constrain the generation of bijections
because they support  large – high 
dimensional - deformations which carry 
structures consistently:



Bijective Euler-Lagrange 
Flows (Diffeomorphisms)

Euler equation flowNo Euler equation flow



Simple example of large deformations 
in human anatomy

Closed lateral ventricles Expanded lateral ventricles
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Bijective Mapping Available via MRIStudio
www.mristudio.org



Individual Templates 
and 

Population Templates



• Full segmentation (200 structures)
• Stereotaxic (MNI and Talairach)
• Gray / white matter assignment 
• Modern Brodmann’s map
• Population-averaged tract coordinates

LDDMM

JHU-MNI Atlas 
www.mristudio.org



Building Population AtlasesAdult atlases

Neonate atlases

Population Atlas



Population based template generation 

via EM Algorithm

The template to be estimated is an unknown deformation of an 

anatomy in the “center” of a collection of human anatomies -

indistinguishable from other anatomical configurations - not  an 

arithmetic average.

The complete data are the deformations  generating the 

(unknown) template mapping to the population data.

•E-step: generates the conditional mean deformations given the 

previous iterate template-old and the observed MRI imagery. 

•M-step: generates template-new maximizing the complete-data 

posterior distribution with respect to the unknown deformation of 

template-old.



EM Algorithm- Iteration 1
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EM Algorithm: Convergence
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LDDMM Subcortical Atlas: An Example

https://caportal.cis.jhu.edu/pipelines/atlases/human

The atlas was built based on the manually labeled image volumes of 41 subjects

using large deformation diffeomorphic metric template mapping algorithm. The

population includes 10 young adults, 10 middle age adults, 10 healthy elders, and

11 Alzheimer’s pateients.

up_1280_800_15.mpg



Statistics
for 

Populations



Statistics are computed using 
Gaussian random fields on the 
response variables and complete 
orthonormal bases indexed over 
the anatomical coordinates.

Statistics



Statistics are studied as pairs (F,M) of function F on 

manifolds M:

• Statistics performed in the coordinates of M

• Statistics via GRF models in H(M)
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Statistics are obtained via template injection onto 

the targets. The bijection encodes in template 

coordinates the target shapes. 

hippocampus

hippocampus
Qiu, Miller “Multi-Structure Network Shape Analysis via Normal Momentum Maps”, NeuroImage, 
2008. caudate

ventricle hippocampus



PREDICT STUDY:  template structures carry a set of 
response variables and surface expansion functions.

Five expansion functions on the template.

A response variable Fk can be generated by taking the Jacobian determinant of the 
template bijection onto the target and projecting onto the basis.

response-
variables

k k

k
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Red Compression



The Atlas to Target Statistical Pipeline

Putamen Template Injected 

into Targets

Shape Encoded on

Template Surface 

Structures via 

Random Field 

Models

MRI Target

Putamen

Red CompressionTemplate

Putamen
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Caudate Template Injected 

into Targets

Shape Encoded on

Template Surface 

Structures via 

Random Field 

Models

MRI Target
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The Atlas to Target Statistical Pipeline



The PREDICT Study: An Example of 
Subcortical Shape Analysis

Human striatal studies of HD patients

Far from 

onset

Close to 

onset

Early 

affected

Younes,  Paulsen, Ross, et. All.,Heterogeneous atrophy of subcortical structures in prodromal HD as 

revealed by statistical shape analysis, submitted.



Curved Coordinate System 
Representations via an 

Orthonormal Basis

PCA and Surface Harmonics

structure-function    Laplace-Beltrami or
response-variables          PCA Basis
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PCA, one orthonormal base in 
Anatomical Coordinates



Principle Components are an orthonormal basis 
which can be used, requiring training data.

caudate

putamen

expansion

shrinkage

PCA mode 1 PCA mode 2 PCA mode 3

response-variables    PCA Basis
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Laplace-Beltrami, another orthonormal
base in anatomical coordinates not 
requiring training data (generalization 
of the  Fourier basis)



Spherical 

Harmonics:

one example 

Laplace-

Beltrami

basis for the sphere.

Complete orthonormal bases via harmonics of the 

Laplacian operator; like the Fourier basis no training 

data required.



response-variables    Laplace-Beltrami 
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response-variables    Laplace-Beltrami 
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Laplace-Beltrami Orthonormal Base

response-variables    Laplace-Beltrami 
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Atrophy patterns: PREDICT
Rank sum tests thresholded at 5% family-wise 
significance (significant regions in red)

Younes,  Paulsen, Ross, et. All.,Heterogeneous atrophy of subcortical structures in prodromal HD as 

revealed by statistical shape analysis, submitted.



Atrophy pattern: Left Putamen

Two views of the atrophy pattern estimated on the left 
putamen

Younes,  Paulsen, Ross, et. All.,Heterogeneous atrophy of subcortical structures in prodromal HD as 

revealed by statistical shape analysis, submitted.



Atrophy pattern: Right Putamen

Two views of the atrophy pattern estimated on the right 
putamen

Younes,  Paulsen, Ross, et. All.,Heterogeneous atrophy of subcortical structures in prodromal HD as 

revealed by statistical shape analysis, submitted.



Atrophy Pattern: Left Caudate

Two views of the atrophy pattern estimated on the left 
caudate

Younes,  Paulsen, Ross, et. All.,Heterogeneous atrophy of subcortical structures in prodromal HD as 

revealed by statistical shape analysis, submitted.



Atrophy Pattern: Right Caudate

Two views of the atrophy pattern estimated on the right 
caudate

Younes,  Paulsen, Ross, et. All.,Heterogeneous atrophy of subcortical structures in prodromal HD as 

revealed by statistical shape analysis, submitted.



Clustering



Clustering Based on Significant 
Discriminating Features

Left putamen Right putamen

Left caudate Right caudate
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Statistical Significance



Left 

putamen

Right 

putamen

Left 

Caudate

Right 

Caudate

Volume 0.0006 0.00005 0.0066 0.0031

Jacobian <0.0001 .0001 0.011 .0015

Jacobian centered .0011 .0003 .0014 .043

Tangential atrophy 0.0005 <0.0001 0.005 0.0004

Centered T. atrophy 0.094 0.0012 0.0001 0.0024

Jacobian on 

harmonics

.0005 .0001 <.0001 .035

PCA on momentum .0011 .001 .0034 0.0088

PCA on jacobian .0004 <.0001 .0012 .0013

P-values

p-value accuracy: .0001

Younes,  Paulsen, Ross, et. All.,Heterogeneous atrophy of subcortical structures in prodromal HD as 

revealed by statistical shape analysis, submitted.



The Locality of 
Shape Change in
ADHD



ADHD: Basal Ganglia Shape Analysis
N gender Age(SD)

Female Male 

CON 66 31 35 10.5 (1.3)

ADHD 47 20 27 10.4 (1.2)

Caudate

Putamen

Globus Pallidus

Basal Ganglia Template

compress

expand

Qui A, Crocetti D, Adler M, 

Mahone EM, Denckla M, 

Miller MI, Mostofsky SH 

(2009) Basal Ganglia Volume 

and Shape in Children With 

Attention Deficit Hyperactivity 

Disorder. Am. J. Psychiatry. 

166: 74-82. 

Reconstructions in 

statistically 

significant 

Eigenfunctions 

p<.05 



shrinkageexpansion

Subcortical Shape Analysis in Dementia

Groups N
gender age

(mean±SD)male female

control 133 71 62 75.8±4.90

MCI 170 119 51 74.6±7.39

AD 80 49 31 75.2±7.62

CON vs. AD

Am

V

Hp

V

Reconstructions in statistically significant p<.05 
Anqi Qiu Christine Fennema  Notestine, Anders M. Dale, Michael I. Miller, and the Alzheimer’s Disease 
Neuroimaging Initiative, "Regional Subcortical Shape Abnormalities in Mild Cognitive Impairment and Alzheimer's Disease ", 
NeuroImage,45:656-661, 2009



The End


