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Abstract. We present a new method for computing an optimal deformation be-
tween two arbitrary surfaces embedded in Euclidean 3-dimensional space. Our
main contribution is in building a norm on the space of surfaces via representa-
tion by currents of geometric measure theory. Currents are an appropriate choice
for representations because they inherit natural transformation properties from
differential forms. We impose a Hilbert space structure on currents, whose norm
gives a convenient and practical way to define a matching functional. Using this
Hilbert space norm, we also derive and implement a surface matching algorithm
under the large deformation framework, guaranteeing that the optimal solution is
a one-to-one regular map of the entire ambient space. We detail an implementa-
tion of this algorithm for triangular meshes and present results on 3D face and
medical image data.

1 Introduction

Surfaces embedded in 3D are important geometric models for many objects of inter-
est in image analysis. They are often the appropriate abstractions for studying gross
shape, either because the structure of interest is inherently 2D (e.g. the outer cortex of
the human brain, human face, etc.), or because its shape can be efficiently and com-
pletely captured by its bounding surface (e.g. planes, animals, or anatomical struc-
tures of the human body, etc.). A fundamental task in image analysis applications is
to perform a non-rigid matching (deformation) between two occurrences of the same
structure. For example, it has been recognized as early as 1917 by D’Arcy Thomp-
son [1], that given representations of a particular anatomic structure in two subjects,
an appropriate methodology for comparing their gross morphological differences is to
study a transformation–uniquely characterized by a natural optimality property–from
one structure into the other.

Surface matching is usually achieved via semi-automated procedures in which a
small number of substructures, such as landmark points or curves, are identified by hand
and then used to guide the transformation of the entire surface [2–6]. One interpreta-
tion of the problem is to consider surface matching as a “point correspondence” task:
for each point on the discretized template surface find its corresponding point on the
target. Fully automated approaches to this problem have been developed in [7]. How-
ever, a fundamental issue with this point of view is that, due to discretization, a point
on one surface need not have a homologous point on the other. This problem is handled
in [7] by simultaneously identifying and rejecting points with no corresponding pair as



“outliers”. A second issue is that geometric information is necessarily discarded when
reducing surfaces–inherently 2D objects–to 0-dimensional point sets. Another related
approach is the work of Wang et. al. [8]. This approach does use local geometric con-
straints by including surface curvature in their matching criterion. Its advantage is that
both triangulation and correspondence is established simultaneously. Another elegant
approach includes the work of Davies et. al. [9] in which the correspondence problem
is tackled by building the “best” model via a set of optimality criteria.

We develop a surface matching approach in which the two issues mentioned above
are overcome naturally in the fundamental theoretical framework. Our approach fol-
lows most closely the work of [10], but differs in that we represent surfaces as the
generalized distributions of deRham called currents [11], instead of the classical dis-
tributions of Schwartz. As in [10], distribution representations allow us to get away
from a strict pointwise representation of surfaces and therefore enable us to treat the
problem as true surface matching without the point correspondence issue. Furthermore,
representation via currents captures the geometry of the structure because it is sensitive
to both location and to the first order local geometric structure. We are therefore able
to overcome the two issues above via the natural choice of current representation. In
this paper we provide a detailed theoretical development of a norm on surfaces which
can be used as a matching criterion for finding an optimal transformation from one
surface into another. We present one such variational optimization problem under the
large deformation diffeomorphism framework. Finally, we derive a discretized version
of this variation problem, detail its implementation, and provide results on 3D face and
medical image data.

2 Surfaces as currents

In order to build a surface matching algorithm, we need a criterion that measures how
“close” or similar one surface is to another. Our strategy is to represent surfaces as
objects in a linear space and then to equip this space with a computable norm. The
generalized distributions from geometric measure theory, called currents, will serve as
the representers. In this section we set the notation and introduce currents as representa-
tions of surfaces. The main power, and hence motivation, for using these representations
will become clear in Section 2.2 where we see that they are preserved under coordinate
transformations.

2.1 2-forms and Currents

The paradigm of the approach is built from mathematical objects called differential
m-forms. Although the theory is more general than presented here, we restrict the dis-
cussion to the setting of interest: surfaces embedded in R3. In this setting, we need only
introduce differential 2-forms. A differential 2-form on R3 is a differential mapping
x 7→ ω(x) such that for each x ∈ R3, ω(x) is a skew-symmetric bilinear function on
R3. A 2-form is a natural object to be integrated over an oriented smooth surface S
because, as we will see, it automatically transforms correctly under a change of coor-
dinates. For each x ∈ S, let u1

x, u2
x be an orthonormal basis of the tangent plane at x.



Abusing notation slightly, we then associate to S the function

S(ω) =
∫

S

ω(x)(u1
x, u2

x)dσ(x), (1)

where dσ is the element of surface area. Thus, the surface S is seen as a linear functional
on the space of 2-forms via (1). More generally, the space of 2-dimensional currents is
defined as the dual space to C∞ 2-forms with compact support. It is equipped with the
correct topology as in the classical theory of distributions of Schwartz. This definition
extends to more singular geometric objects, such as triangular meshes, by replacing
the surface measure with 2-dimensional Hausdorff measure. In fact a wide class of
geometric subsets of R3, called rectifiable sets, can be viewed as currents [12].

In the sequel, we continue to abuse notation by using the same letter to denote both
a surface as well as its associated representation as a current.

2.2 Push forward of a current

The fundamental property ultimately motivating the representation of surfaces by cur-
rents is that it is possible to define an action of diffeomorphisms φ : R3 → R3 on
currents which coincides with the natural action of φ on surfaces (i.e. S 7→ φ(S)).

First define the pull back of a 2-form ω by: φ]ω(x)(η, ν) = ω(φ(x)) ((dxφ)η, (dxφ)ν) .
The push forward φ]S of a current S is φ]S(ω) = S(φ]ω). The change of coordinates
for integration of differential forms [13] states

S(φ]ω) = φ(S)(ω). (2)

That is, φ]S is indeed the current associated with φ(S), which is exactly the natural
property we would like our representations to have.

2.3 Vectorial representation

It will be convenient to use a vectorial representation of skew-symmetric bilinear func-
tions on R3. If B is such a function, its representer B ∈ R3 satisfies B(η, ν) =
B · (η× ν), where · and × are the euclidean dot and cross products respectively. There-
fore a 2-form, ω(x), will be represented by the vector field ω(x) via this association.
Formally, the association between 2-forms and vectors is given by the hodge star oper-
ator and duality (see [13]).

2.4 Hilbert space of currents

Recall that the motivation for introducing representations is as a vehicle for constructing
a norm on the space of hypersurfaces of R3. In practice, this norm must be computable.
We see in this section that the currents of interest, i.e. those associated with hypersur-
faces of R3 via (1), can be equipped with a Hilbert space structure having an easily
computable norm. The machinery of Reproducing kernel Hilbert space (r.k.h.s.) theory
is fundamental in this construction (see [14]). Background in the somewhat uncommon
setting of differential forms is given next, together with the derivation of the norm.



Let (W, 〈·, ·〉W ) be a Hibert space of differential 2-forms. The dual space (space
of continuous linear functionals) of W is denoted W ∗. By the Riesz-Frechet theorem,
each S ∈ W ∗ has a representer KW S ∈ W such that for every ω ∈ W , S(ω) =
〈KW S, ω〉W . KW is in fact an isometry between W ∗ and W . We say that W is a
r.k.h.s. if for every x, ξ ∈ R3, the associated linear evaluation functional, δξ

x, defined
by δξ

x(ω) = ω(x) · ξ belongs to W ∗. If W ∗ is a r.k.h.s., we define the reproducing
kernel operator kW by

kW (x, y)ξ = KW δξ
x(y).

Thus it is in fact the reproducing kernel of W , the space of vector fields corresponding
to W . From this definition follows the formula:

〈δξ
x, δη

y 〉W∗ = kW (x, y)ξ · η (3)

We impose a slightly stronger constraint than continuity of the evaluation function-
als: W is constructed so that it is continuously embedded in the space of continuous
bounded 2-forms. That is, there exists some constant c such that |ω|∞ ≤ c|ω|W for all
ω ∈ W . This immediately implies continuity of the evaluation functionals, and further-
more, if S is a surface, we have

|S(ω)| ≤
∫

S

|δu1
x×u2

x
x (ω(x))|dσ(x) ≤ σ(S) c|ω|W .

Hence S ∈ W ∗, and we are now able to compare submanifolds via the dual space norm
on W ∗.

3 Surface Matching

Equipped with an appropriate representative space W ∗, as described in the previous
section, we can now state an optimization problem for mapping one surface into an-
other. We have chosen the well established “large deformation” setting which provides
a solution that is a diffeomorphism of the ambient space. This framework is founded in
the paradigm of Grenander’s group action approach for modeling objects. Abstractly, an
appropriate group of transformations, G, is defined together with a group action, which
act on a set of objects or structures of interest, M. The idea is to study two elements
S1 and S2 of M through an “optimal” transformation φ ∈ G that registers these objects
(i.e. φS1 = S2). This approach shifts the focus of the modeling effort onto the study of
transformations, as envisioned by D’Arcy Thompson.

In the large deformation setting, G is a subgroup of diffeomorphisms and the struc-
tures of interest in this paper, M, are hypersurfaces of R3. Optimality is realized by
considering all curves φt ∈ G, t ∈ [0, 1] connecting two elements in G via the group
action. The optimal transformation is given by φ1, for the curve which minimizes the
accumulated infinitesimal variations in G through a riemannian structure. We next detail
the construction of the group G and define formally the optimization problem.



3.1 Large deformation framework

The fundamental object of construction is a Hilbert space V , with inner product 〈·, ·〉V ,
of smooth vector fields (at least C1) defined on the background space R3. For all
time dependent families of elements of V , written vt ∈ V for t ∈ [0, 1], such that∫ 1

0
|vt|V dt < ∞, the solution φt at time t = 1, of

∂φ

∂t
= vt ◦ φt, (4)

with φ0(x) = x, is a unique diffeomorphism (see [15, 16]). The collection of all such
solutions defines our subgroup of diffeomorphisms GV , and the inner product 〈·, ·〉V
equips it with a Riemannian structure. We will sometimes denote φv for an element
of G, explicitly characterizing it by its associated vector field v. The geodesics of G
provide the transformations which match objects in the orbit, and are characterized by
extremals of the kinetic energy 1

2

∫ 1

0
|vt|2V dt. In fact, G can be equipped with a natural

right-invariant geodesic distance

dV (φ, φ′) = inf
{( ∫ 1

0

|vt|2V dt
)1/2

, φv
1 ◦ φ = φ′

}
.

3.2 Variational formulation

We define the optimal matching, φ∗ between two currents S and T as a minimizer
of JS,T (φ) .= dV (Id, φ)2 + |φ]S − T |2W∗/σ2

R, where σ2
R is a trade-off parameter.

Equivalently we have φ∗ = φv∗
1 where v∗ is a minimizer of

JS,T (v) =
∫ 1

0

|vt|2V dt +
1

σ2
R

|(φv
1)]S − T |2W∗ (5)

The first term of this energy is referred to as the regularizing term, and the second is
referred to as the matching, or data attachment term.

In practice, a surface is approximated by a triangular mesh, which also has a current
representation. Our strategy is to approximate triangle mesh associated currents in order
to derive a computable gradient of the energy (5). We next detail the approximation and
gradient derivation.

Let S be a triangular mesh in R3. Given a face f of S, let f1, f2, f3 denote its
vertices, e1 = f2− f3, e2 = f3− f1, e3 = f1− f2 its edges, c(f) = 1

3 (f1 + f2 + f3)
its center, and N(f) = 1

2 (e2 × e3) its normal vector with length equal to its area.
We will also denote by St the triangular mesh at time t, with faces ft having vertices
f i

t = φt(f i), i = 1, 2, 3.
The mesh S is represented as a current in the following way

S(ω) =
∑

f

∫
f

ω(x) · (u1
x × u2

x)dσf (x),

where σf is the surface measure on f . Now, we approximate ω over a face by its value
at the center. Thus, we have the approximation S(ω) ≈

∑
f ω(c(f)) ·N(f), so in fact,



the approximation is a sum of linear evaluation functionals C(S) =
∑

f δ
N(f)
c(f) , and the

matching error can be easily computed using the reproducing kernel as in (3).
From the identity φ]S = φ(S) we can infer two possible approximations to φ(S) :

1. compute the approximation C(S) and then apply the push forward formula (φ1)]C(S):

φ]δ
ξ
x = δ

det(dxφ)(dxφ∗)−1ξ
φ(x) (6)

2. first compute S1 and then compute the approximation C(S1).

We have implemented the second approximation. The advantage is that it does not in-
volve the derivatives of φ1, which simplifies the computation of the gradient (cf 3.3).
Note, however, that in this case an additional approximation is made since S1 6= φ1(S).
Given either approximation, we can compute explicitly the metric between two sur-
faces S and T . Let f, g index the faces of S and q, r index the faces of T , the metric
E = |C(S) − C(T )|2W∗ between these two surfaces under the second approximation
becomes

E =
∑
f,g

N(f)tkW (c(g), c(f))N(g)− 2
∑
f,q

N(f)tkW (c(q), c(f))N(q)

+
∑
q,r

N(q)tkW (c(q), c(r))N(r).

After a considerable amount of theoretical work, we have arrived at a fairly simple
formula which we can analyze intuitively. The first and last terms enforce structural
integrity of the two surfaces, while the middle term penalizes geometric and spatial
mismatch. Using this approximation we now turn to the computation of the gradient
with respect to vt.

3.3 Gradient of J in L2([0, 1], V )

Let xj index the vertices of S. Like all point-based matching problems in the large
deformation setting, it can be shown that the optimal vector fields vt are of the form

vt(x) =
∑

j

kV (xj , x)αj
t , (7)

where kV denotes the reproducing kernel of the deformation space V (see [4, 5]). The
vectors αj

t are referred to as momentum vectors do to the connection of the large
deformation setting to Hamiltonian mechanics (see [17, 18]). It follows from the flow
equation that the matching functional (5) is a function only of the trajectories xj

t .

Gradient of the data attachment term The gradient of the data attachment term, E , in
the space L2([0, 1], V ) of vector fields is of the form∇Et(x) =

∑
j kV (xj

t , x)dxj
t
φ∗t1∇xj

t
E .



Indeed, for a variation vt,ε = vt + εṽt of the vector field vt, the corresponding variation
of xj

1 = φ1(xj) is (see [19])

x̃j
1 = ∂εx

j
1|ε=0 =

∫ 1

0

dxj
t
φt1ṽt(x

j
t )dt,

and thus the variation of E is

∂εE|ε=0 =
∑

j

∂xj
t
E x̃j

1 =
∫ 1

0

∂xj
t
Edxj

t
φt1ṽt(x

j
t )dt

=
∫ 1

0

〈kV (xj
t , ·)dxj

t
φ∗t1∇xj

t
E , ṽt〉V dt

We have reduced the computation to the derivative of |C(S1) − C(T )|2W∗ with respect
to the vertices of S1. Let ∂fi

1
E denote the contribution of a face f1 to its vertex f i

1. We
have ∂fi

1
E η = 2[∂fi

1
C(S1) η](ω), where ω = KW (C(S1) − C(T )) and C(S1)(ω) =∑

f δ
N(f1)
c(f1)

(ω) =
∑

f N(f1) · ω(c(f1)). Thus,

∂fi
1
E η = 2∂fi

1
N(f1) η · ω(c(f1)) + N(f1) · dω(c(f1))∂fi

1
c(f1) η,

= (η × ei
1) · ω(c(f1)) +

2
3
N(f1) · dω(c(f1)) η,

so that ∇fi
1
E = (ei

1 ×ω(c(f1))) + 2
3dω(c(f1))∗N(f1). It is left to compute dxi

t
φt1. It

follows from properties of the differential that d
dt (dxi

t
φt1) = −dxi

t
φt1dxi

t
vt (see [10]).

Therefore we have the ordinary differential equation

d

dt
∇xi

t
E = −(dxi

t
vt)∗∇xi

t
E , (8)

which can be solved by integrating backward from time t = 1, since we can compute
dxi

t
vt using (7). Finally, we obtain ∇xi

1
E by summing ∇fj

1
E over all faces which share

xi
1 as a vertex.

Gradient of J By a direct computation, the gradient of the regularization term,
∫ 1

0
|vt|2V ,

is simply 2vt so that the gradient of the functional J becomes

∇Jt(x) = 2
∑

j

kV (xj
t , x)(dxj

t
φ∗t1∇xj

t
E + αj

t ) (9)

3.4 Description of the algorithm

On the basis of remarks made in 3.3, we compute the functional and gradient as func-
tions of the momentum variables αj

t . The trajectories xj
t = φt(xj) being computed by

solving the flow equation, written ∂tx
j
t =

∑
k kV (xk

t , xj
t )αk

t . Therefore the dimension
of the parameter space is 3 ∗ nt ∗ nf where nt is the number of time steps and nf
the number of faces of S. Equipped with equations (8) and (9), we implement a simple
steepest descent algorithm.



Fig. 1. Left: template, right: target, center: mapped template.

4 Experiments

4.1 Experiments with faces dataset

In this experiment we used 10 segmented surfaces from the USF HumanID database
[20] together with manually selected landmarks. The landmarks are used only for val-
idation purposes. The first face was chosen as the template S to be matched to the
other 9 surfaces. For each experiment we downsampled the original surfaces from 60
thousands triangles to 5 thousands triangles and we computed the optimal deformation
between the downsampled meshes. Figure 1-left shows the image of the original tem-
plate surface with its landmarks overlayed. Figure 1-right shows a target surface with

Fig. 2. Face experiments: distance graphs for vertices (left) and landmarks (right). Mean distance
is given by the bold curves

its landmarks as well as the landmarks of the mapped surface. The mapped template is
shown in the center panel. Figure 2-left shows distance error graphs, before and after the
matching process (i.e. between S and T and between φ(S) and T ). The left graph plots



the percentage of vertices whose distance to the other surface is less than d, as a func-
tion of distance d. On the right we plot the distance graphs for the sets of landmarks, i.e.
the percentage of landmarks on target T such that the distance to their corresponding
landmarks on S (resp. φ(S)) is less than d. Note that the matching is visually satisfying,
which is confirmed by the surface distance graph. However, success in matching some
of the landmarks such as those along the chin, neck and jaw was not achieved. In fact,
this may reflect the somewhat unreliable choice of these landmark points, which do not
necessarily correspond to clearly defined features that can be reliably identified.

template 1 2 3 8 9 10

Fig. 3. up: 7 left hippocampi segmented surfaces (1,2 and 3 are of Alzheimer type). bottom:
deformations of template through the action of the optimal diffeomorphisms.

4.2 Experiments on hippocampus data

Next we applied the matching algorithm to 15 left hippocampi segmented surfaces (see
[21] for the method used); the first 7 belong to patients with Alzheimer disease and the
others belong to normal subjects. In this experiment, the surfaces were downsampled to
500 triangles.

Figure 3 displays the deformations of the template surface from the matching pro-
cess. Figure 4 shows the distance graph for this set of experiments. Note that for almost
all vertices the distance is lower than 2mm. Also notice the small variance for these
experiments.

4.3 Experiments on planum temporale segmented surfaces

As a final experiment, we applied the surface matching algorithm to segmentations of
left and right planum temporales (PT) from 17 different subjects with 8 having auditory
disorders. There is a high variability in sizes and shapes for this part of the brain, even
between normal subjects, and also between left and right PTs of the same subject.

We chose to run two types of experiments on this set of data. In the first experi-
ment we fixed one PT surface as the template and then registered it to the other 16 PTs



with our current matching algorithm. This was done for both left and right sets of data.
Bilateral PT asymmetry studies are an active area of research, so in the second experi-
ment we mapped each PT to its symmetric pair of the same subject. I.e. for each left PT
we used its corresponding right PT as the template, and conversely for each right PT
we used its corresponding left PT as the template. Figure 5 shows the distance graphs
obtained for the left PT data of the first experiment, and for the left to right symmetry
matchings.

The mean performance for this data was

Fig. 4. Distance graph for the hippocampi
experiments

quite good, and similar to the performance
for the hypocampus. Note, however the high
variance of the distance measures in the
graphs. This may be explained by the fact
that the boundaries of the mapped template
and target need not match if the geome-
tries near the boundary are quite different
from one another. For example, in Figure
6 we show a template on the left and two
targets in the top row. In the bottom row
are the mapped templates corresponding to
the target of the same column. Overlayed
on the template are manually defined land-
marks which are also flowed under the map-
ping and overlayed on the mapped template.
The landmarks shown on the target were estimated from the mapped template by choos-
ing the closest point on the target for each landmark on the mapped template. In the first

Fig. 5. Distance graphs for the planum temporale experiments.

case (left) the algorithm gives correspondences which are consistent with what one may
select by hand, whereas in the second case it gives correspondences for c and d land-
marks which are not on the boundary. Indeed here there are no obvious corresponding
landmarks on the target since its shape is globally different from template.



template

Fig. 6. Planum temporale experiments: correspondences of landmarks selected on template.

5 Conclusion

We have presented a novel matching criterion for surfaces based on a sound theoreti-
cal framework. We integrated this criterion into a large deformation based variational
problem, derived a discrete version and an algorithm for implementing its optimiza-
tion via gradient descent. Finally we demonstrated its performance on different types of
data. The main contribution was in recognizing currents as an appropriate mathematical
modeling object for surfaces. Given the recent active developments in exterior calculus
[22] and current based approaches to curvature estimation [23], we expect the represen-
tations to become more sophisticated (perhaps incorporating second order geometric
information), and that discretization will continue to get better.

A promising and exciting immediate application of the diffeomorphic matching in
this paper is in statistical inference of shape via momentum representation of flow, as
described in [18]. It has been shown in [17] that the image of the template S under
the flow φt is completely determined by the momentum (αi) at time t = 0. Hence,
the momenta encode the non-linear transformation from one structure into another, and
furthermore, they live in a linear space which lends itself to linear statistical analysis.
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