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Abstract. We introduce a stochastic model to characterize the online
computational process of an object recognition system based on a hier-
archy of classifiers. The model is a graphical network for the conditional
distribution, under both object and background hypotheses, of the clas-
sifiers which are executed during a coarse-to-fine search. A likelihood is
then assigned to each history or “trace” of processing. In this way, likeli-
hood ratios provide a measure of confidence for each candidate detection,
which markedly improves the selectivity of hierarchical search, as illus-
trated by pruning many false positives in a face detection experiment.
This also leads to a united framework for object detection and tracking.
Experiments in tracking faces in image sequences demonstrate invariance
to large face movements, partial occlusions, changes in illumination and
varying numbers of faces.

1 Introduction

The two main categories of traditional pattern classification methods are gener-
ative and discriminative [1]. Generative methods involve the design and estima-
tion of a probability distribution over features, both observed and unobserved,
which capture the appearance of patterns in each class. Recent variations include
work on spatial arrangements of parts [2], Boolean models [3], reusable parts [4]
and compositional vision [5]. Such methods usually require intense computation
(e.g., computing MAP estimators) and extensive modeling. Nonetheless, in prin-
ciple, they can account for context and semantic labels at many levels, thereby
providing a comprehensive analysis of natural scenes. In contrast, discrimina-
tive methods usually aim at inducing decision surfaces directly from training
data. Popular methods include support vector machines [6, 7], neural networks
[8] and Adaboost [9]. Some are well-grounded in the theory of inductive learning
and achieve high performance in classification. However, they often require very
large training sets and their extension to global, full-scale scene interpretation is



by no means obvious. Of course, these categories are hardly disjoint and many
methods, including those proposed here, involve components of both.

Recently, a different approach has been applied to pattern recognition [10–
12]. In computational modeling, the primary object of analysis is the online com-
putational process rather than probability distributions or decision surfaces. Hi-
erarchies of binary classifiers which cover varying subsets of hypotheses are built
from standard discriminative methods by exploiting shared properties of the
appearance of shapes. Online, the hierarchy is traversed using a coarse-to-fine
(CTF) search strategy: a classifier is evaluated if and only if all its ancestors
have been evaluated and were positive. One important consequence is that com-
putation is concentrated on ambiguous regions of the image; in particular, the
“object hypothesis” is rejected as quickly as possible in background regions. A
limitation of this approach is that statistical interactions among the classifiers
in the hierarchy is not taken into account; in particular, no global likelihoods
are assigned.

Here, we extend computational modeling, and take a step towards contextual
analysis, by introducing a global stochastic network to model classifier interac-
tions. The central concept is the trace of processing, which encodes the computa-
tional history – the family of classifiers performed, together with their outcomes,
during CTF search. Notice that the trace is a far richer structure than the output
of a decision tree; it is in fact a data-driven subtree of the original hierarchy since
many branches may be partially traversed before a negative result is encountered
or a leaf is reached. The trace space is represented by a tree-structured graph-
ical network and a likelihood is assigned to each trace under both object and
background hypotheses. This provides a generative framework for the hierarchy
of classifiers. Detections (full chains of positive responses) can then be analyzed
using likelihood ratio tests, adding a statistical component to sequential search
strategies.

We test the effectiveness of our trace model in experiments in face detection
and face tracking. Single-frame detection is based on the CTF framework pro-
posed in [11], where a hierarchy of linear classifiers is used to efficiently reject
non-face patterns and focus computation on face-like regions. Likelihood ratios
of observed traces represent a measure of confidence for each detection, allow-
ing for higher discrimination than with purely CTF search. This is illustrated
by successfully pruning false positives to produce a strictly superior ROC curve.
Tracking of faces in a video sequence is accomplished by integrating frame-based
probability measures within a spatial-temporal Markov model for the joint evo-
lution of poses and traces. Due to continuously updating detections, there are no
restrictions on face movements. Unlike existing approaches, the motion model is
not used to restrict the search domain but rather only to link detections between
consecutive frames. This framework then unites detection and tracking within a
single stochastic model.

In Section 2, we provides an overview of hierarchical object detection. The
trace model is introduced in Section 3, along with the construction of a probabil-
ity distribution on the space of traces relative to a general hierarchy of classifiers.



Fig. 1. Hierarchical class/pose decomposition. Each cell represents a subset of classes
and poses. An alarm is identified with a fine (leaf) cell Λ if the classifiers for every
coarser cell (i.e containing Λ) responds positively.

In Section 4, we specialize to the case of learning a trace model for a hierarchy
based on the pose of a frontal view of a face and in Section 5 we demonstrate
how this model can eliminate false positives in hierarchical face detection. In
Section 6, the spatial trace model is integrated into a spatial-temporal Markov
model in order to produce a real-time face tracking system. Concluding remarks
are provided in Section 7.

2 Hierarchical Object Detection

Object detection refers to discovering and localizing instances from a list of
object classes based on a grey level image of an underlying scene. The basic
hierarchical framework can be found in [10–13]. In hierarchical detection, both
learning and parsing algorithms are based on a tree-structured representation of
hypotheses – a sequence of nested partitions – which captures shared structure,
e.g., common shape features. Hypotheses correspond to individual class/pose
pairings, although the framework is more general. Whereas scene interpretations
may involve multiple, inter-connected pairings, we shall focus on pure detection.
Each cell of the hierarchy corresponds to a subset of hypotheses and is included
in exactly one of the cells in the preceding, coarser partition (see Fig.1). Fine
cells may not correspond to individual hypotheses.

A binary classifier Xη is associated with the cell at each η ∈ T , where T

denotes the tree graph underlying the hierarchy. Classifier Xη is designed to re-
spond positively (Xη = 1) to all images labeled by the cell at η and negatively
(Xη = −1) to as many images as possible which fall into a suitable alternative
category. These classifiers range from those near the root of T , which accommo-
date many hypotheses simultaneously, to those near the leaves of T , which are
more dedicated (and hence selective). In principle, the classifiers could be con-
structed by any learning algorithm, but under the constraint that each classifier
maintain a very small false negative error rate, which facilitates early termination
of the search.



Scenes are parsed by a coarse-to-fine exploration of the hierarchy, i.e., starting
at the root and evaluating a classifier if and only if all ancestors have been
evaluated and returned a positive answer. This processing strategy is known to
be theoretically optimal [10] under certain assumptions about how the power
and cost of the classifiers are related and how these quantities interact with the
“scope” of the classifiers – the number of hypotheses covered.

The result of processing an image is then the list of hypotheses determined
by the union of all leaf cells η ∈ ∂T with the property that Xη = 1 and all
classifiers at ancestors of η also respond positively. This can be visualized as a
chain of positive responses in the hierarchy of cells (see Fig. 1). Areas of the
image rejected by coarse tests are then rapidly processed, whereas ambiguous
areas are not labeled until at least some fine classifiers have been evaluated. The
resulting distribution of processing is highly skewed and detection is rapid at the
expense of some false positives.

On an empirical level, the success of this technique has been demonstrated in
several contexts, including experiments in face detection [11, 13] and multi-class
character recognition [12]. In the former case, for example, parsing an image
results in a binary decision labeling each non-overlapping k × k window (e.g.,
k = 16) as either “background” or “face”. Although this method is quite fast and
accurate (see Section 5 for comparisons with other methods), it does not assign
any numeric confidence measure to each detection, which can aid in resolving
competing interpretations. More generally, there is no global stochastic model
for the hierarchy of classifiers.

The key to introducing a model, and accounting for context, is to exploit
the rich information provided by hierarchical search. Information is lost by only
collecting the list of complete chains. Clues about the semantic identity of image
regions, specifically the existence and presentations of objects of interest, can
be accumulated by considering the global history of the search process. More
specifically, processing a subimage leaves a fairly distinctive “signature” because
every test tells us something about every possible interpretation. That is, if y ∈ Y

is an interpretation (e.g., face at some pose), then each classifier Xη in the
hierarchy offers some evidence for the presence or absence of y, even if Xη is
based on a subset Λη ⊂ Y which does not contain y. The trace model is intended
to capture this type of global information.

3 The Trace of Coarse-to-Fine Search

Our approach is to model the computational history using a graphical stochastic
network indexed by certain subtrees of T . This then provides a joint probability
distribution over all possible processing records. The nature of the coarse-to-
fine processing makes this feasible as the search imposes major restrictions on
the possible records – subtrees – that can be observed. This in turn leads to a
simple distribution on the search histories or “traces” and provides a natural
likelihood-ratio test for weeding out false detections.



Fig. 2. The result of CTF search is a labeled subtree where dark circles indicate a
positive classifier result and light circles a negative result. The traces are depicted
together with the outcomes of the classifiers performed. Top panel: (a) A hierarchy of
three classifiers; (b) The 5 different traces that can result from CTF search. Bottom
panel: (a) A hierarchy of seven classifiers; (b) Five of the 26 possible traces for this
hierarchy.

3.1 Trace Configurations

Depending on the image I, certain nodes η ∈ T are visited during CTF search
and their corresponding classifiers Xη ∈ {−1, 1} are evaluated. The result of
CTF search is then a labeled subtree of T , which we call the trace of image I.
The nodes of the trace correspond to the classifiers evaluated and the labels
correspond to the outcomes. Specifically, let S(I) ⊂ T denote the set of visited
nodes, a random subtree, and write Z(I) = {Xη, η ∈ S(I)} ∈ Z for the trace,
where Z denotes the set of all possible traces for a given hierarchy. In addition,
let Aη denote the set of parent nodes of η. For any trace Z(I), certain constraints
result from the fact that a classifier Xη is performed if and only if all ancestor
classifiers {Xξ, ξ ∈ Aη} are performed and each one is positive. In particular, i)
the classifier at any non-terminal node of S(I) must be positive; ii) the classifier
at any node which is terminal in S(I) but not terminal in T must be negative;
and iii) the classifier at a terminal node of both S(I) and T can be either positive
or negative.

The situation is illustrated in Fig. 2 for two simple binary hierarchies. For
three nodes and three corresponding binary classifiers X1,X2,X3, there are 23

total possible full realizations but only five possible traces, listed in the upper
right of Fig. 2. With seven nodes and classifiers, there are 27 = 128 full realiza-
tions and twenty-six possible traces, five of which are shown in the lower right
of Fig. 2. In general, the total number of traces depends on T .



Fig. 3. (a) A trace Z from a binary hierarchy with three levels; (b) All possible full
configurations X that could result in Z.

The hierarchies we construct in our experiments are not binary. However,
in the binary case, there is a simple relationship between the number of sub-
trees, nsub(k), of a tree T with depth k (the depth of the root is 1) and the
number of traces, ntr(k) = |Z|. In fact, it is easy to show there is a one-to-one
correspondence between Z and the subtrees of a tree of depth k + 1, and hence
ntr(k) = nsub(k +1). Given the trace of a tree of depth k, expanding every “on”
node (which is necessarily terminal) into two children gives a subtree of a tree of
depth k + 1; conversely, every subtree can be identified with a trace by cutting
off its terminal leaves. It follows that

ntr(k) = nsub(k + 1) = n2
sub(k) + 1 = n2

tr(k − 1) + 1, k ≥ 2.

In particular, ntr(1) = 2, ntr(2) = 5 and ntr(3) = 26 (see Fig. 2(b)).

3.2 Trace Distributions

CTF search induces a mapping τ : {−1, 1}T → Z from full configurations X

to traces Z. In general, many realizations X are mapped to the same trace Z.
In Fig. 3, the four configurations in (b) are mapped to the trace in (a). This
mapping induces a partition of the entire configuration space. Consequently,
given any probability distribution pX for X, we have

∑

z∈Z

pX(τ−1(z)) = 1. (1)

However, in order to construct a distribution on Z we need not start with a
distribution on the full configuration space.

One natural distribution on Z can be constructed directly along the lines
of graphical models. This direct construction has the added advantage that the
model requires only one parameter for each node in T . In contrast, learning a
graphical model for X on the full realization space {−1, 1}T can be difficult
for large T even with conditional independence assumptions since the number
of nodes, as well as the number of parameters determining each conditional
probability, increases exponentially with |T |. Moreover, in terms of online com-
putation, the original motivation for constructing a hierarchy of classifiers under



the zero false negative constraint was the amount of computation involved in
evaluating classifiers at many image locations and resolutions.

Theorem 1. Let {pη, η ∈ T} be any set of numbers with 0 ≤ pη ≤ 1. Then

P (z) =
∏

η∈Sz

pη(xη) (2)

defines a probability distribution on traces where Sz is the subtree identified with
z and pη(1) = pη and pη(−1) = 1 − pη.

Proof. There are several ways to prove that (2) implies
∑

z P (z) = 1 using the
type of “peeling” argument common in graphical models. The “direct” proof
proceeds by performing the summation one node at a time starting from the
leaves of T . Start with any terminal node η of T and divide all traces into three
disjoint groups: those for which S does not contain η; those for which η ∈ S and
xη = 1; and those for which η ∈ S and xη = −1. The second and third groups
are of equal size and there is a one-to-one pairing between them in which each
pair is the same trace except for the sign of xη. Adding the probabilities in each
pair, and using pη(1) + pη(−1) = 1, results in a reformulation of the problem
with probabilities identical to those in (2) except that node η does not appear,
i.e., the trace space is relative to T \ {η}. Recursively looping over all the leaves
of T then reduces the problem to a hierarchy of depth k−1; continuing this way,
proving

∑
z P (z) = 1 eventually reduces to pη(1) + pη(−1) = 1 for the root η of

T .
⊓⊔

There is obviously a natural connection between the trace distribution given
by (2) and a graphical model pX on the full configuration space, linked by defin-
ing

pη(xη) = pX(xη|xξ = 1, ξ ∈ Aη). (3)

Here, the distribution pX on {−1, 1}T is determined by imposing the splitting
property of DAGs [14]:

pX(x) = P (Xη = xη, η ∈ T ) =
∏

η∈T

P (Xη = xη|Xξ = xξ, ξ ∈ Aη). (4)

We can choose any graphical model pX consistent with (3). Then we only need
to show that (2) holds; normalization is guaranteed by the mapping from full
realizations to traces. Proving this is again a standard argument in graphical
models. In fact, (3) holds relative to any sub-configuration on a subtree of T (i.e.,
whether or not the node histories consist of all positive responses). In particular,
if Ω(z) is the subset of the full configuration space that maps to trace z, we
clearly have:

P (Z = z) =
∑

x∈Ω(z)

pX(x)

=
∑

x∈Ω(z)

∏

η∈T

p(xη|xξ, ξ ∈ Aη).



This reduces to (2) by factoring the product of conditional probabilities into two
groups and by extracting common terms in a recursive fashion.

The important point is that the conditional probabilities in the full model are
reduced to binomial terms pη(xη) since all the conditional events are “positive
histories.” Consequently, specifying a single parameter pη(1) for every node η ∈ T

yields a consistent probability model on traces. In contrast, in the full model
with binary trees, 2k parameters would be required to specify each conditional
probability for a history of length k, and hence order 4k parameters would be
required altogether, at least without imposing further Markov assumptions on
path histories.

4 Learning Trace Models for a Pose Hierarchy

In this section, we specialize the trace formulation to the case of a pose hierarchy
for faces. A reference set of poses is recursively partitioned into finer and finer
cells Λη and the classifier Xη for cell η is designed to detect all faces with
poses in Λη. The manner in which the classifiers are constructed from training
data, and full scenes are processed, will be reviewed only briefly in the following
section since these issues have been discussed in previous work; for example
further details may be found in [11] and [12]. Here we review what the hierarchy
represents in order to understand what the corresponding trace distributions
mean and how they are estimated from data.

4.1 Pose Hierarchy

The space of hypotheses is the set of poses of a face. Each classifier is trained
on a specific subset of face subimages which satisfy certain pose restrictions. In
detecting frontal views of faces, tilts are restricted to the range −15◦ ≤ α ≤ 15◦.
The base detector is designed to detect faces with scales (the number of pixels
between the eyes) in the range 8 ≤ s ≤ 16. The position of the face (taken
to be the midpoint between the eyes) is unrestricted. To detect larger faces,
the original image is downsampled before applying the base detector. With four
levels of downsampling, one is able to detect faces with sizes from 8 to 128 pixels.

Processing an entire image with a single hierarchy of classifiers would entail
building a root classifier which applies to all face positions simultaneously, and
to tilts and scales in the ranges given above. Instead, the face location in the
coarsest cell in the hierarchy is restricted to an 8× 8 block and the entire image
is processed by visiting each (non-overlapping) 8 × 8 block and applying the
base detector to the surrounding image data. Specifically, then, the classifier
at the root of the hierarchy is designed to detect faces with tilts in the range
−15◦ ≤ α ≤ 15◦, scales in the range 8 ≤ s ≤ 16, and location restricted to
an 8 × 8 window. The leaf cells localize faces to a 2 × 2 region with ∆α = 10◦

and ∆s = 2 pixels. In particular, faces are not detected at the resolution of one
specific position, scale and tilt, but rather at the resolution of the leaf cells. For



ease of notation, however, each leaf cell s ∈ ∂T in the hierarchy T is represented
by a single pose in that cell, call it θs.

The discussion in Section 3 about constructing trace distributions can now be
applied conditionally on each leaf cell s, i.e., under the hypothesis that there is a
face with pose in Λs. Using the representative pose θs to signify this hypothesis,
the conditional probability of observing a trace z in the pose hierarchy is then

P (z|θs) =
∏

η∈Sz

pη(xη|θs). (5)

4.2 Learning

The task of learning is then to estimate the probabilities pη(1|θs), η ∈ T , for
each leaf cell s ∈ ∂T . Recall that this probability represents the likelihood that
the classifier at node η responds positively given that all its ancestors have re-
sponded positively. In addition, detection will involve a likelihood ratio test for
the hypothesis “θs” against a universal “background hypothesis,” denoted by
B. Under B, the trace data follow another distribution estimated from non-face
subimages. Consequently, we must also learn the probabilities pη(1|B), η ∈ T .

Due to the natural assumption of space-invariance (i.e., the trace distribu-
tions are block-independent), we need to only learn the responses of classifiers
for all poses contained within a single, reference block. Moreover, two pose cells
at the same level in the (reference) hierarchy which differ only in the location
of the subset of positions (i.e., cover the same subset of scales and tilts and the
same subset of positions up to translation) can evidently be aggregated in col-
lecting statistics. Notice also that, in estimating pη(1|θs) for a fixed η, all the face
training data with poses in the leaf cell represented by θs are also aggregated in
compiling empirical statistics.

The model parameters are learned for the object model by accumulating the
results of classification tests over a standard face database and for the back-
ground model from subimages randomly sampled from the WWW. Fig. 4 illus-
trates the distribution of the model parameters pη(1|θs) for one specific pose θs

and under the background hypothesis. Only the section of the hierarchy that
contains the complete chain corresponding to the pose θs is illustrated. A darker
circle indicates a higher value of the probability pη(1|θs). As expected, we observe
darker circles along the chain that corresponds to the true pose. A consistent
decrease in the darkness at deeper levels is observed for the background model.

5 Experiments in Face Detection

We now demonstrate the advantage of the trace model with respect to the base-
line detector utilized in previous work [12, 10, 11] on coarse-to-fine object detec-
tion. Briefly, the baseline detector operates as follows: The image is partitioned
into disjoint 8×8 blocks and the image data surrounding each block is processed
by the hierarchy of classifiers which corresponds to the (reference) pose hierarchy.



Fig. 4. (a) The learned parameters pη(1|θs) under the hypothesis of a face with pose
in the cell represented by θs; (b) The same parameters for the background model. Only
the section of the full hierarchy that contains the complete chain to the cell represented
by θs is shown. A circle shaded darker indicates a higher value of the parameter.

The search is breadth-first CTF. A detection is declared at a terminal pose cell ξ

when there is a chain in the hierarchy, from the root to ξ, for which Xξ = 1 and
Xη = 1, η ∈ Aξ. In the baseline system, when multiple detections are recorded
for a given block, some criterion must be used to identify a unique detection
for that block. The details are not important for our purposes. The important
point is that there is no global probabilistic model for assigning likelihoods to
detections or measuring one detection against another, or against a background
hypothesis. The trace model provides for this.

The general design of the hierarchy and the classifiers follows previous work
[11]. In this work, we use a slightly modified pose hierarchy (see §4.1) and make
use of both positive (face) and negative (non-face) training instances in con-
structing the classifiers. We use the Adaboost [9] learning algorithm to build
each Xη, η ∈ T . The features are the same oriented binary edge fragments from
[11]. The same learning algorithm is applied to each cell; only the training set
changes. More specifically, a standard training dataset is used to build both the
hierarchical classifiers and the trace models. 1600 faces are synthesized from the
dataset for each different pose and 10000 randomly selected image patches were
downloaded from the WWW and used as “non-faces”. The non-face instances
used at cell η are those which have responded positively to the preceding clas-
sifiers Xξ, ξ ∈ Aη. In this way, in training Xη, the system is competing with
those particular non-faces encountered during CTF search, which increasingly
resemble faces.



5.1 Trace-Based Likelihood Ratios

Assume the hierarchy of classifiers has been constructed and processed using
the baseline detection system, resulting in a susbset (usually empty) of complete
chains for a given 8× 8 block W . (Recall that the baseline detector is applied to
each in a series of downsampled images in order to detect faces at a wide range
of scales.) Let Z(W ) denote the trace of block W . For each complete chain in W ,
say arriving at leaf node s ∈ ∂T , we perform a likelihood ratio test, comparing
P (Z(W )|θs) to P (Z(W )|B). A detection is declared “at θs” if

P (Z(W )|θs)

P (Z(W )|B)
≥ τ.

An ROC curve may then be constructed by varying τ and collecting statistics on
a test set; see below. The smallest value of τ , i.e., the most conservative in terms
of retaining faces at the expense of false positives, is determined by studying the
distribution of the likelihood ratio over a training set of faces and non-faces and
choosing a value that maintains every face.

NOTES:

– The speed of the algorithm is mainly governed by the baseline detection
scheme as the evaluation of each trace likelihood is only performed at com-
plete chains.

– However, restricting the search to complete chains is merely a computational
shortcut. Very little would change if screening for complete chains was omit-
ted and hence the likelihood ratio was maximized over every pose hypothesis
in each block. This is due to the underlying false negative constraint on each
classifier. Given a face with pose θ, any trace z which does not contain a
path to the leaf containing θ, including a positive value at the leaf, has very
small probability compared with P (z|B). As a result, the likelihood ratio is
smaller than even the smallest value of τ described above and consequently
there is no detection at (the leaf cell containing) θ. Hence, the detector for
block W is effectively a true likelihood ratio test.

5.2 Towards a Global Model

One might ask whether this block-by-block likelihood ratio test can be related
to a full-image search based on a global, generative model. Consider a single
hierarchy for the entire image; suppose there is a branch from the root to the
subset of poses corresponding to each region Wi, 1 ≤ i ≤ n, for a partition
of the image pixels into non-overlapping 8 × 8 blocks. Suppose also that the
root test is virtual – always positive. How might the global trace Z be used
to make inferences about the poses of all faces in the image? Let Θ denote a
collection of poses representing a global (image-wide) hypothesis. Suppose the
prior distribution P (Θ) forbides any two components of Θ with positions in
the same 8 × 8 block W ; otherwise it is uniform. (This only rules out severe



occulsion.) We make no assumptions about the number of faces in the image
(up to the number of blocks). Let Θ = {γ1, ..., γn} where γi = B signals “no face
in block Wi” and γi = θi is a pose with location in Wi.

Let Z(i) correspond to the trace generated with image block Wi. Make the
convenient assumptions that that the components of Z are conditionally inde-
pendent given both Θ and background, that P (Z(i)|Θ) = P (Z(i)|γi) and that
P (Z(i)|γi = B) follows a universal “background law” denoted P (Z|B). (The con-
ditional independence assumption is violated in practice because Z(i) depends
on the image data surrounding Wi; for example, in the scale range 8 ≤ s ≤ 16,
faces might occupy a region of order 32 × 32 and hence adjacent traces have
overlapping supports. The other assumptions are reasonable.) Then

P (Z|Θ)

P (Z|B)
=

n∏

i=1

P (Z(i)|γi)

P (Z(i)|B)
=

∏

i∈F (Θ)

P (Z(i)|θi)

P (Z(i)|B)
(6)

where F (Θ) ⊂ {1, ..., n} is the set of blocks for which γi 6= B. Maximizing this
over all Θ is evidently intractable. However, visiting the blocks one-by-one and
performing an individual likelihood ratio test is a reasonable approximation.

5.3 Results

Our algorithm is implemented in C++ on a standard Pentium 4 1.8GHz PC,
and we use a subset of the CMU+MIT [8, 15] frontal face test set to estimate
performance. Images with strong pose variations in 2D and out-of-plane face
orientations are removed from the original test set. Figure 5 shows the result of
the trace-based system at a high detection rate (i.e., small τ) on a few images
of this test set. Processing a 320 × 240 image takes only a fraction of a second.

Fig. 6 illustrates the difference in detection performance between the trace-
based system and the baseline detector on some images from the test set. Typ-
ically, true detections and false positives produce different types of traces. For
instance, the trace signatures of false positives tend to have multiple complete
chains and generate larger subtrees S. The traces generated by actual faces are
usually more locally concentrated with fewer long chains. These phenomena are
manifested in the learned trace models, which is why the likelihood ratio test is
efficient in reducing false positives while maintaining faces.

Some comparisons with the baseline CTF system as well as other face detec-
tion methods are reported in Table 1. A detection rate of 88.8% with 126 false
positives is achieved on 164 images from the test set. For the same detection rate,
the false positive rate for the trace-based system is lower than that of the baseline
CTF system. The trace-based results are also comparable to other well-known
systems. It should be noted that the results from each system are reported on
slightly different subsets of the CMU+MIT test set. Also, the performance of
both the baseline CTF system and the trace-based system could very likely be
improved by considering a richer feature set and/or a richer training set.



Fig. 5. Detection results on the CMU+MIT test set.

Table 1. Detection rates for various face detection systems

Detection False positives / image

Trace-Based CTF 89.1% 0.77

Baseline CTF 89.1% 1.11

Viola-Jones 90.8% 0.73

Rowley-Baluja-Kanade 89.2% 0.73

5.4 Comparison of ROC Curves

Another way to compare the baseline and trace-based systems is using ROC
curves. The ROC principle is based on varying a free parameter (e.g., a thresh-
old) in order to quantify the tradeoff between false positive and false negative
error rates. In the case of the baseline CTF system, the parameter τ is the mini-
mum number of complete chains required for an 8× 8 window to be classified as
containing the location of a face. For example, when τ = 1 the detector produces
a high number of false positives but few missed detections. For the trace-based
system, the parameter is the threshold on the likelihood ratio, as discussed ear-
lier. If multiple chains yield likelihood ratios above the threshold, the trace-based
system chooses the chain (for that 8 × 8 block) that maximizes the likelihood
ratio. For selected values of these thresholds, the false alarm rate and the true
detection rate on the CMU+MIT test set are plotted in Fig. 7. The trace ROC
curve is strictly superior, indicating that information does indeed reside in the
“history of processing.”



Fig. 6. Top row: The results of pure detection using the baseline CTF system. Bottom
row: False positives are eliminated by setting an appropriate threshold on the trace
likelihood.

6 Application to Face Tracking

Face tracking usually involves characterizing the temporal evolution of shapes,
features or statistics. Tracking might be keyed by low level features such as color
[16] and contours [17]. In some model-based methods [18], foreground regions are
segmented by constantly updating a background model. Monte Carlo methods
[19] applied to the posterior probability distribution of the object state employ
dynamic sampling and Bayesian inference to estimate parameters of interest.
Non-parametric methods, such as the mean-shift algorithm [20], have also been
proposed for visual tracking. Most of these approaches exploit the temporal
correlation between successive frames in order to refine the localization of a
target. In most cases, real-time performance is achieved by restricting the search
space by way of a highly constrained motion model. In general, work in face
tracking has progressed largely independently from work in face detection and
only a few approaches have attempted to merge them into a single framework
[21].

In order to make inferences about a dynamical system, it is customary to
specify two models – one that describes the evolution of the state with time
(the system model) and one that relates the noisy measurement to the state
(the measurement model). In our work, the state at time t is the set of poses of
the faces in frame t and the trace is the measurement. A simple joint Markov
model provides a natural probabilistic formulation and allows for the updating
of information based on new measurements.

6.1 A Model for Face Tracking

In order to illustrate the role of the trace model, we shall only discuss tracking
a single face, assumed visible throughout the sequence. We use I0:t−1 and θ0:t−1



Fig. 7. ROC curve - detection rate vs. false positives on the MIT+CMU test set for
the baseline CTF and the trace-based system

to denote the set of observed image frames and the set of observed poses, re-
spectively, from time 0 to t− 1. The (global) trace for image frame It is denoted
by Zt; recall from Section 4.2 that Zt = {Zt(i)}, where Zt(i) is the trace for the
hierarchy corresponding to the i’th block. The tracking problem is formulated by
estimating the pose of a face for every time t, given (i) a new trace, Zt; (ii) the
previously recorded set of traces, Z0:t−1; and (iii) the set of previously observed

poses, θ0:t−1. The MAP estimate θ̂t of the pose at time t is

θ̂t = arg max
θt

P (θt|Z0:t, θ0:t−1)

= arg max
θt

P (Z0:t, θ0:t)

P (Z0:t, θ0:t−1)

= arg max
θt

P (Z0:t, θ0:t)

= arg max
θt

P (Zt, θt|Z0:t−1, θ0:t−1)

where we have rearranged the terms and dropped those independent of the ar-
gument θt. The trace and the pose are assumed to be a joint Markov process
(Zt, θt), t ≥ 0. The maximization is then simplified to

θ̂t = arg max
θt

P (Zt, θt|Zt−1, θt−1)

= arg max
θt

P (Zt|Zt−1, θt, θt−1)P (θt|Zt−1, θt−1).

We further assume that the trace Zt is conditionally independent of the previous
trace and the previous pose given the current pose θt, and that the current pose



Fig. 8. Top row: The result of our tracker in three different frames. Bottom row: The
raw results of pure detection in the same three frames.

θt is independent of the previous trace Zt−1 given the previous pose θt−1. These
assumptions are reasonable and are consistent with other probabilistic-based
tracking approaches. This leads to the following baseline tracker

θ̂t = arg max
θt

P (Zt|θt)P (θt|θt−1). (7)

The likelihood function P (Zt|θt) of the global trace Zt = {Zt(i), i = 1, ..., n} is
defined in the same way as in Section 5.2, but under the simplifying constraint
that all but one of the components of Θ represent “background”. Writing W (i(t))
for the (unique) block containing the location component of θt, this likelihood
can be written:

P (Zt|θt) = C(Zt) ×
P (Zt(i(t))|θt)

P (Zt(i(t))|B)
(8)

where

C(Zt) =
n∏

i=1

P (Zt(i)|B)

is independent of θt.
A new track is initialized by examining the likelihood ratio as before, i.e., the

maximization can be restricted to those θt which fall inside terminal pose cells
at the end of complete chains. An old track is continued by restricting the pose
space to regions in a neighborhood of the previous pose θt−1. The size of the
neighborhood is determined by the variability captured by the pose transition
model. The restriction of the pose-space does not limit the ability of the tracker
to handle faces with large motions; these faces are detected as new faces by the
CTF detection scheme.

The transition probability P (θt|θt−1) is assumed stationary and captures
our prior knowledge about how the pose moves from one frame to another. Our



Fig. 9. Trajectories for the x and y coordinates of the estimated position during a
tracking sequence. The dashed line represents ground truth and the solid line is the
outcome of the trace-based Markov tracker. The right panel illustrates the results in
some static frames extracted from the sequence.

transition model is learned from a set of training video sequences, recorded in
a video conference setting with a subject normally seated not far from a fixed
camera; there is then limited motion of the subject’s face. The training sequences
are manually landmarked and provide ground truth data for estimating pose
transitions. A histogram of the pose differences θt − θt−1 is generated for the
entire training set and serves as a good estimate for the pose transition model
P (θt|θt−1).

Multiple faces and varying numbers of faces can also be accommodated since
the evaluation of the trace is global. Multiple faces are tracked by implement-
ing the baseline tracker independently for each new face. We omit the details
concerning the initialization of new tracks and the removal of existing ones. Ex-
tending the algorithm to accommodate more variations in the pose of a face
is straightforward. Pose hierarchies corresponding to left and right profiles are
learned separately and are added directly to the original hierarchy (frontal faces)
via a virtual node at the root and pose representation is augmented by a para-
meter indicating whether the view is frontal, left profile or right profile.

6.2 Results

Video sequences from commercial films and the Web are used to test the per-
formance of the tracker. The sequences contain multiple faces per frame under
various conditions of illumination and occlusion. With a standard desktop PC
and with no MMX optimizations, faces are tracked at around 15 frames per



Fig. 10. Tracking of multiple faces: occlusion handling.

second. Since the evaluation of trace likelihoods is restricted to regions of inter-
est, the speed of the tracker is mainly determined by the efficiency of detection.
Real-time performance can be obtained by only executing the full-image detector
every few frames or by incorporating global temporal information.

Fig. 6 illustrates the difference in the quality of single-frame detection be-
tween the trace-based Markov tracking model and the static algorithm (with-
out the trace model) in [11]. Naturally, exploiting temporal continuity and the
trace model removes false detections. In fact, tracking generally results in both
a higher detection rate and a lower false positive rate. A higher detection rate
is achieved because of the tracker’s ability to “interpolate” when the detector
fails to signal an alarm. The interpolation is possible due to the trace model’s
ability to produce valid probability measures even for poses that do not corre-
spond to detected alarms. This phenomenon is mainly observed in cases where
a subject temporarily violates the pose requirements or in cases of temporary
occlusion. The state estimation of the Markov model filters out false positives
which normally appear as high-frequency noise throughout a video sequence.

An empirical analysis of the tracker’s performance is illustrated in Fig. 9.
A single face is tracked in each sequence and its image coordinates are plotted
through a segment of 200 frames. The video sequences are provided by [22] and
are available at http://www.cs.bu.edu/groups/ivc/HeadTracking/. The frames in
the right panel of Fig. 9 illustrate the result of the tracker at different points
throughout the sequence. The dashed line represents ground truth which is ob-
tained by manually landmarking the video sequence. The solid line is the out-
come of the trace-based Markov tracker. As can be observed, the face position
is correctly determined through most of the sequences. Some discontinuities are
observed and are attributed to a failure of the CTF detection algorithm. The
second sequence in Fig. 9 exhibits varying illumination; as a result, the detector
provides inconsistent initialization and this propagates to the tracker, generating
the observed discontinuity. A slight amount of jitter in position is attributed to
inability of the first-order Markov model to integrate information over multiple
frames.

Fig. 10 shows the result of tracking multiple faces through occlusions. Fig. 11
depicts the result of tracking a subject in a very challenging video sequence [23].
The face of the subject is successfully tracked despite heavy camera panning
and unsteady focus. Unlike most tracking algorithms, the search is global and



Fig. 11. Tracking results on a difficult sequence with high camera instability.

the influence of the CTF detection model reduces the dependence on accurate
motion estimation.

7 Conclusions

We have characterized the online computational process of an object detection
system in the context of a graphical model for the history or “trace” of process-
ing. This introduces a generative component into sequential detection strategies
based on coarse-to-fine processing of a hierarchy of classifiers. The trace model
captures and exploits the interactions among various classifiers within the hier-
archy.

The utility of the trace model is demonstrated with experiments in face de-
tection and tracking. There is a substantial gain in selectivity. Roughly speaking,
at the same detection rate, the trace model eliminates around 40% of the false
positives in deterministic hierarchical search. It also provides a unified framework
for static face detection and dynamic face tracking, in which frame-based trace
measures are merged with time-varying pose parameters within a simple Markov
model. Unlike traditional tracking algorithms, there are no restrictions on the
motion of a face. This is possible due to the computational efficiency of CTF
detection, allowing for a nearly real-time search for multiple faces over an en-
tire video frame at each instant. Further experiments will appear in forthcoming
work.
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