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Abstract

Our goal is an efficient algorithm for image retrieval
based on relevance feedback. We assume the user is
searching for a particular image in o database and re-
sponds to a sequence of machine queries by declaring
which of two (or more) displayed images is “closest”
to his target. Efficiency is measured by the average
number of queries necessary to locate the image. We
introduce a Bayesian feedback model which accounts
for considerable variation in the responses of the user
through a sequence of independent random metrics on
feature space whose distribution may depend on both
the displayed images and the target. Each new query
is chosen to minimize the expected conditional entropy
of the distribution over targets given the previous res-
ponses. The resulting algorithm is demonstrated for
shape and image retrieval and its performance com-
pared with theoretical bounds and previous models.
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1 Introduction

Recently, the number of images stored numerically,
and the number of people searching for particular ones
in large databases, have grown significantly. One pro-
blem is to design an interactive procedure by which
a “user” can retrieve a desired image(s) with a reaso-
nable amount of effort (and before giving up). Unfor-
tunately, natural global descriptions, such as “a land-
scape with o river behind a small cottage,” are vir-
tually impossible to match to specific images in the da-
tabase since the problem of automatically extracting

semantic descriptions of natural scenes is largely un-
solved. Consequently, systems for image retrieval are
often based on a sequence of queries put to the user
in order to garner information about attributes of the
desired image(s). Rarely does the user have any tech-
nical knowledge about images, such as the manner in
which they are stored and analyzed. The answers are
inevitably subjective and the interaction is inherently
stochastic. Indeed, this is the most distinctive aspect
of the image retrieval problem.

The problem is reasonably well-solved for written do-
cuments, such as books in libraries or on web sites.
A query might consist of key word(s) supplied by the
user. The system then displays the matching docu-
ments, either by searching the documents themselves
or pre-processed indices. Automatic indexing of text
is feasible, and searching can be made efficient, by ex-
ploiting the information residing in the statistical dis-
tribution of words and other verbal constructs. It is
not apparent how to extend this to images. One could
index them by “key words” and ask the user to sup-
ply appropriate ones from a given list. But manual
indexing would likely be necessary and a list of indivi-
dual words, however well-chosen, carries relatively less
information for identifying images than for text.

1.1 Previous Work

An alternative is “content-based indexing.” Each image
in the database is represented by a set of feature vec-
tors based on color, edge and other image statistics. In
this way, one can compute a “distance” d(y,y') bet-
ween two images y and 3’ based on standard metrics
adapted to the individual features. Ideally, d(y,y") is
“small” when y and 9’ “look alike” to human beings.



Once the features and the distance are determined, a
variety of search protocols are possible. For example,
the user might be asked to select one image from a
displayed list and then the system might display the
k nearest neighbors. Or the user might be asked to
select the images which are, in his opinion, closest to
the specific image, or general type, he is seeking. The
system then then displays another set of images, ho-
pefully more homogeneous and closer to the target,
and the interaction continues until the target image
is displayed (and presumably recognized). Most image
retrieval algorithms employ some variation of such re-
levance feedback, introduced in [4]; two examples are
the Surfimage system based on “category search” [5]
and the PicHunter system based on “target search” in
[3].

We have adopted the Bayesian framework in [3] ba-
sed on stochastic comparison search. The goal is to
retrieve one target Y, considered to be a random va-
riable with some distribution. In [3], a distance d is
fixed and at each step a pair of images y,y' is dis-
played; the user chooses the one he finds most similar
to Y. If his choices were exactly based on the metric
d, the response would be y if d(y,Y) < d(y',Y) and ¢’
otherwise. Instead, to account for subjectivity, the au-
thors consider a “blurring” of the true answer and the
actual response is modeled as a random variable whose
probability distribution depends on d(y,Y) —d(y',Y).
The current probability distribution on Y is then up-
dated based on the latest response and a new pair of
images is selected based on the updated distribution
over targets.

1.2 Owur Approach

The real interactive process is more fundamentally
random than a noisy response to a fixed, known me-
tric. In our model, the metric is itself a random va-
riable, and unknown. In fact, the responses of the user
are based on a sequence of independent random me-
trics in feature space whose distribution may depend
both the target Y and the displayed images. The dif-
ferent metrics correspond to different weightings of the
individual features. We wish to accommodate the fact
that some attributes are typically weighted more hea-
vily than others depending on both what the user has
in mind and what he sees. Each new query is chosen
to minimize the expected conditional entropy of the
distribution over targets given the previous response.
This posterior distribution on targets then evolves ac-
cording to the new response. The resulting algorithm
is demonstrated for shape and image retrieval and its

performance compared with theoretical bounds, ideal
scenarios and previous models. There is a clear gain
in efficiency due to generality.

2 Indexing and Comparing
Images

Let Y = {y1,...,yn} denote the database of images.
One of these, Y, is the image the user has in mind and
our goal is to find it as quickly as possible by asking
series of questions based on displaying elements of ).
Many types of queries are possible. One could display k
images at each step and ask the user to choose the one
“closest” to his target. Starting with a random set, the
displayed images could be the k nearest neighbors in
Y under some metric on images. Or one could ask the
user to select the subset of displayed images which are
“most relevant.” In a comparison search exactly two
images are displayed at each step and the user selects
the one which is, in his opinion, closer to his target.
This process continues until one of the two displayed
images is the target; we assume the user recognizes it
and the search is terminated.

From the point of view of the user, there are only
images. However, all the computation performed by
the system - namely choosing which images to dis-
play and updating a probability distribution on )Y -
is based on an “index” f(y) assigned to each image
y € Y and a metric for comparing images based on
this index. The images in )Y are automatically pre-
processed in order to extract discriminating features
grouped into broad classes. The index of y is then of
the form f(y) = (f1(v), ---, fm(y)). We will refer to m
as the dimension of the index. Each feature f,(y) is
itself an vector of real numbers, say of dimension pj,
computed from the raw intensity data and represents
one local or global characteristic of y. Some common
examples are color histograms, Fourier or wavelet co-
efficients, texture attributes and edge statistics (e.g.,
orientation histograms).

The distance between two images is based on the fea-
ture vector. Let d; be a metric on RP* x RPs, s =
1,...,m. These metrics are fixed throughout. For each
set of positive coeflicients a4, ..., o, define a metric
on images by

m

d(y,y') = auds(f:(y), £:(¥)),

s=1

and let D denote the space of all such metrics gene-
rated by coefficients for which ) a, = 1. We will
assume that the procedure for comparing images em-



ployed by the user is actually some element of D, which
might change from query to query, and might depend
on both the target and the query. In contrast, in [3]
there is one frozen metric.

We can now specify the set of queries. For each d €
D,1<i<j<nandy€D,define

B 1 itd(y,y) <d(yj,y)
Xz] (da y) - { 0 otherwise

Here i, j refer to the pair of displayed images and y is
thought of as the target.

3 A Statistical Model

We will construct a joint probability distribution for
queries and targets. This involves a family of auxiliary
random variables based on the metrics. The random
variables are:

Target Variable: The target Y is a random variable
with marginal (or “prior”) distribution py(y),y € V.
This distribution “evolves” as information is collected
from queries. In all our experiments we take py to be
uniform.

Random Metrics: A family {D;;} of random va-
riables with values in D and indexed by pairs 1 <i <
Jj < n; D;j determines the answer to a query if images
y; and y; are displayed. The conditional distribution
of the family given Y is determined by two properties:

1. The {D;;} are conditionally independent given Y.
2. The conditional distribution of D;; given Y is
P(Di; = d|Y =yi) = piu(d),

where {p;;:} are fixed probability distributions on
D.

These two properties imply that

P(Dij=dij,1 <i<j<nlY =y)= H,uz'jl(dij)-
ij

Queries: The queries are now random variables. The
complete family is {X;;(D;;,Y)}, one query X;; for
each pair 4, j of images.

It is then easy to compute the conditional distribution
on any subfamily of queries given Y. Let D;;; = {d €
D : d(yi,y1) < d(yj,y1)}, the subset of metrics for
which the answer is “yes” to the query X;;(d, y;). Then
for any (é1,41), ..., (ix, jr) and sequence of answers
Z1,.., 2 € {0,1}:

P(Xi1j1 = I, "'7Xikjk = $k|Y = yl) =

k
H Mgl (D:'v:jrl) (1)
r=1
where D' = D and D° = D¢.

4 Query Selection

The procedure for selecting the two displayed images
is recursive, based on the current “posterior” distri-
bution on targets. Suppose k pairs of images, deno-
ted (41,71),---, (ix, Jr), have been displayed, resulting
in (binary) answers x1, ..., £x. The “testing history” is
then

Bk = {X’iljl =1, "'7X'ikjlc = xk}

and the posterior distribution is

pe(y) = P(Y = y|By),y €,

computed via Bayes formula from py and (1). We have
experimented with several protocols, such as random
sampling and displaying the images y;, y; with the two
largest masses under py.

The consistently most efficient procedure, albeit inten-
sive, is stepwise entropy reduction, the standard recipe
for constructing decision trees in machine learning and
statistics [1]. At step k =1,

(i1,51) = argng_n H(Y|X;;(D;;,Y))

where P(D;; = d,Y = yi) = piji(d)po(yi). (Here,
H(U|V) denotes the conditional Shannon entropy [2]
of U given V, i.e., the expectation with respect to py
of H{U|V = wv).) The first pair of displayed images is
then y;,,y; and we model the user’s response z; as
the answer to the query Xj, ;, (D;,;,,Y). The k + 1’st
query depends on the previous ones and is determined
by

(ik+17jk+1):argH%nH(YlBk:Xij(Dija ). (2)

For each fixed 4j, the entropy in (2) is determined by
the distribution of (Y, ‘D’iljl’ ceey Dikjk y Di]‘).

In the following three sections we consider three examples
in more detail:

— One Fixed Metric: The “baseline” case (least
amount of uncertainty). The distributions p;;; are
all point masses.

— One Fixed Distribution: The distributions u;j;
are all identical but non-degenerate.

— The General Case: The distributions are display-
dependent and target-dependent.



We will argue, and attempt to demonstrate, that the
general case is in fact the most realistic (as a model
for human subjectivity) and in fact the most efficient
in experiments with people.

5 One Fixed Metric

This is the “ideal” case - one fixed metric d* € D
which determines every user response. In the nota-
tion above, piji = 64+ for all 451 and hence D;; = d*.
In addition, this metric is known (by the system).
(One could also imagine trying to estimate it during
a training phase, as in [3].) Therefore, the only source
of randomness is Y, which then determines the res-
ponses Zi,...,Lx, and for any testing history By, ei-
ther P(Bg|Y = y) = 1, which occurs if z1, ...,z are
consistent with using d* in the queries X;;(d*,Y") ap-
pearing in By, and P(Bg|Y = y) = 0 otherwise.

The conditional entropy simplifies to
H(X;;(d*,Y)|Bs).

Since H(Y|By) is independent of 4§, minimizing the
lefthand side is equivalent to maximizing the last term
on the righthand side. Further, since the posterior dis-
tribution pg(y) = P(Y = y|By,) is uniform on the sub-
set of targets which are consistent By, and since Xj;
is binary, this maximization is equivalent to choosing
the query which divides the active targets (i.e., those
with positive mass under py) as evenly as possible.

H(Y|By, Xi;(d",Y)) = H(Y|By) -

Let E,, denote the expected number of queries until Y’
is uniquely determined. It can be shown [6] that

1
=logyn —2+ O(—=— 08y 1t

), m—oo.  (3)
Of course this is the result expected from coding theory
since H(Y) = H(py) = logy n. (The universal bound
E, > H(po) [2] is violated due simply to the supple-
mentary feedback provided when the user terminates
the search.)

This strategy was executed in [6] on artificial data-
bases (points in Euclidean space) of various sizes n
and dimensions m, and with various priors py. Exten-
sive experiments show that the only meaningful para-
meter is n, the size of the database. In particular, the
dependence on m is minimal. One simulation is given
in Figure 1; the results match (3) quite well.

Needless to say, postulating any given metric d* as
the source of the answers to real queries is not realis-
tic. Nor is it realistic to compel the user to “explain”
his choices, and thereby try to infer an approximating
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Fi1G. 1 — Dependence of search depth on database size
in the ideal case.

metric. Even assuming d is random, but stays fixed,
i.e., that d is chosen from a fixed distribution on D
but remains the same for all queries, does not lead
to good performance in experiments with people, al-
though better than with d fized and non-random; see
the results in [6]. In the next section we move one step
closer to capturing the level of uncertainty in actual
interactions.

6 One Fixed Distribution

In this section we assume the metrics all have the same
distribution: p;; = p. In other words, the random va-
riables {D;;} are independent and identically distri-
buted, and independent of Y. In this case, it follows
from (1) that the posterior distribution is

po(y) Ty o (DWT )

Zln:1 po(yl) HT L (Dz”r ) . (4)

pe(yt) =

If po is uniform on Y and p is uniform on D, which we
assume in our experiments, we have

k(Y1) o H |D7 4l (5)

We estimate the posterior distribution and the entropy
values by Monte Carlo sampling. For each y; € )V, we
randomly sample a fixed number of metrics in D and
count the number C' of these which satsify the inequa-
lity appearing in the definition of D;j;; for sufficiently
large C' this gives a reasonable approximation to the



volume in (5). The posterior distribution is then easily
obtained by normalization. Estimating the entropy is
more intensive because it involves estimating p; with
X;; =0 or X;; = 1 adjoined to By for each possible
pair (¢, 7). Instead of examining all (¢, 7) in (2), we take
a random sample of pairs for which y;,y; which have
the largest masses under p; and then select the pair
which minimizes the entropy. The results are nearly

the same as with a full search; some additional details
may be found in [6].

Fic. 2 — A sample of polygon images.

We have performed three types of experiments. The
first type, mentioned in the preceding section, is enti-
rely artificial in that the elements of )V are the feature
vectors and the responses are generated automatically
(i.e., without human intervention) from the model.
The second type represents an intermediate step bet-
ween the first type (simulated objects and queries) and
the third type, namely people searching for images. We
replace full, complex scenes by a single geometric ob-
jects - polygons. In this way we can do controlled ex-
periments to compare the performance (measured by
search length) of the various levels of model generality.

Images contain one polygon characterized by four fea-
tures: size, number of vertices, darkness and “flatness.”
Thus there are m = 4 scalar features. Although simple,
such images are sufficiently “meaningful” to allow hu-
mans to make comparisons among them. In Figure 2
we show a sample of randomly generated polygons.

To assess the performance of the fixed distribution mo-
del, a database of polygons was randomly and uni-

| Polygons browser

= D

Choice 1 Choice 2

Statistics
EXIT

Target :
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Fi1G. 3 — The user interface for finding a polygon.

formly generated. By way of a user interface (see Fi-
gure 3), a randomly chosen target is displayed, and the
user is asked to answer a series of questions of the form
“Which of these two polygons is closer to the target?”.
(Of course the user is not told that the polygons are
represented by the four features.)

It is instructive to compare real and simulated queries,
that is, human responses and computer-generated res-
ponses in accordance with the model. Evidently, there
is less uncertainty when the metric is fixed and ran-
dom; therefore it is not surprising that, in the case
of with simulated answers, the search length increases
when a new metric is chosen at each query. In Figure
4 we compare the search length for various database
sizes and several protocols with simulated answers. In
Figure 5 we compare the same protocols with real ans-
wers (polygon world). Notice that, in contrast with
Figure 4, varying D now performs considerably bet-
ter than D;; = D. Apparently, accommodating more
variation in the responses more than offsets the addi-
tional complexity.

Finally, since computing or estimating entropies is com-
putationally intensive, we tried a much simpler me-
thod of query selection - sampling two images from
pr. As indicated earlier, the posterior distribution is
very easy to estimate and sampling from it is virtually
instantaneous. Unfortunately, entropy reduction per-
forms appreciably better. One way to characterize the
difference is in the evolution of the posterior distribu-
tion. The lefthand panel of Figure 6 displays, from top
to bottom, the histograms of p; for n = 100 polygon
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FiG. 6 — Evolution of the posterior distribution when
queries are selected by entropy (left) minimization and
random sampling (right).

images after £k = 0,1,2,3,4 queries; query selection
is based on entropy reduction. The righthand panel
is the same thing with random sampling. Clearly py
“peaks” more rapidly with entropy.

7 Dedicated Distributions

Until this point the probability distributions of the
metrics have been independent of both the target and
the displayed images. Surely this is unrealistic in hu-
man interactions. If a person has a green disk in mind
and is shown a red disk and a blue square, he will li-
kely base his answer on shape and declare the red disk
to be closer to his target; whereas if he is shown a
green triangle and a blue square he will likely choose
the green triangle due to color. And similarly with at-
tributes of real images.

We have performed experiments in the polygon world
with sequences of non-identically distributed metrics
where the distribution y;;; depends on an interaction
between the target and the displayed images. For po-
lygons, the possible metrics are

4
d(y, yl) = Z asds(fs(y), fs(yl))a

where ) o, =1 and dy,...,d4 are simply Euclidean
distances on the quantized range of values of the four
attributes, normalized to have maxy , d,(fs(y), fs(y'))
1. The probability distribution of (o, ..., a4) is based
on dy(ys;,y1) and ds(yj,y1). Given the display is y;, y;
and the target is y;, we assign a, the uniform distri-
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Fic. 7 — Allowing the probability distribution of ans-
wers to depend on the displayed images.

bution on the interval

[07 |d5(fs(yi)a fS(yl)) - ds(fs(yj),fs(yz)l]-

In this way, attributes are emphasized for which the
target is much closer to one displayed image than the
other. One experimental result is given in Figure 7.
There is a pronounced improvement in the mean search
length compared with Figure 6.

8 Experiments with Real Images

To date, we have only done a few experiments with one
small image database. It was provided by the IMEDIA
project at INRIA-Rocquencourt and consists of 166
pre-processed images clustered into approximately 20
subjects. A sample of these images appears in Figure
8. There are three features for each image with indivi-
dual dimensions as real vectors ranging from 64 to 90.

Experiments are based on the second model, i.e., a se-
quence of independent and identically distributed me-
trics. In particular, the metric distribution depends
neither on the target nor the two displayed images.
Implementing the algorithm in precisely the same way
as before gave poor results. The reason is due to clus-
tering of the images into very distinct groups. When
the user is presented with two images, both very dif-
ferent from his target, his answer is virtually random.
For instance, if he is searching for a forest, how does
he choose between a calm sea and a brick wall? Yet
for certain metrics in D, one of these might be much
farther from a potential target than the other and
hence the feedback is misleading. Consequently, we
introduced a third option for the user: Choose nei-
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FiG. 8 — A sample of images from the database

ther image. In this case, we simply modify the pos-
terior distribution by assigning zero mass to the two
displayed images and renormalizing. The mean search
time is then reduced to approximately 20 queries (in-
cluding the third option). In view of the exhaustion
factor, the small size of the database and the fact that
the mean search time for a totally random search is
S5 | ki2e = 42, this result remains poor.

Basically, there is an inefficient, transient search for
the right “cluster” - the one containing the target -
and an efficient, within-cluster search rather similar to
that with polygons. One way to diminish the transient
portion is to increase the number of images presented
at each iteration. We displayed four images, allowing
the user to select either no images or the ones closest
to his target. This is equivalent to a superposition of
binary comparisons and can be directly accommoda-
ted by the comparison search. The mean search time
is then reduced to 11.

9 Conclusions

The experiments with real images are entirely prelimi-
nary. Perhaps a more “coarse-to-fine” search is neces-
sary, where the database is organized hierarchically
and the search proceeds in corresponding stages. It
may be that two stages are enough, an initialization
along the lines in [5] or with nearest-neighbors, and
then entropy-based comparison search. Also, the uni-
form distribution over metrics is highly inefficient; as



with polygons, there is likely to be a substantial gain
with dedicated distributions. Indeed, preliminary ex-
periments in this direction, and with large image da-
tabases, are encouraging.

Our principal conclusion is that there is a sharp diffe-
rence in the way performance depends on model com-
plexity in simulations and in experiments with people.
In the former case, when the answers are simulated
according to the model, efficiency declines as com-
plexity grows; the more randomness, the worse the
performance. This is to be expected and is consistent
with conventional patterns in inductive learning and
nonparametric statistics, where complexity comes at a
price. However, when human beings provide the ans-
wers, the efficiency grows with complexity; in parti-
cular, the most general model with dedicated distri-
butions consistently performs better than simpler mo-
dels. This seems to be due to “allowing more room”
for variation and subjectivity in human decisions. Fi-
nally, it remains to be seen whether any of the models
presented here is sufficiently general to accommodate
very large databases.
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