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COMPUTAT IONAL MED IC INE

Computational Medicine: Translating Models
to Clinical Care
Raimond L. Winslow,1* Natalia Trayanova,2 Donald Geman,3 Michael I. Miller4

Because of the inherent complexity of coupled nonlinear biological systems, the development of computational
models is necessary for achieving a quantitative understanding of their structure and function in health and disease.
Statistical learning is applied to high-dimensional biomolecular data to create models that describe relationships
between molecules and networks. Multiscale modeling links networks to cells, organs, and organ systems. Compu-
tational approaches are used to characterize anatomic shape and its variations in health and disease. In each case,
the purposes of modeling are to capture all that we know about disease and to develop improved therapies
tailored to the needs of individuals. We discuss advances in computational medicine, with specific examples in
the fields of cancer, diabetes, cardiology, and neurology. Advances in translating these computational methods
to the clinic are described, as well as challenges in applying models for improving patient health.

FROM MODELS TO MEDICINE
There is growing recognition that the tabulation of the molecular
building blocks from which biological systems are composed is not
sufficient for understanding the systems’ functional properties in health
and disease. Indeed, function does not originate exclusively at the level
of the gene, progressing in a feed-forward fashion through higher
levels of biological organization (the original central dogma of biology)
(1). Rather, many of the emergent, integrative behaviors of biological
systems result not only from complex interactions within a specific level
but also from feed-forward and feedback interactions that connect a
broad range of hierarchical levels of biological organization (Fig. 1). As
examples, both RNA and protein expression (2), voltage-dependent
ion channel gating (3), mechanical forces at the level of cells and
tissue (4), and external cues, including environmental factors (5),
can feedback to regulate gene expression. Such interactions between
different organizational levels have been referred to as upward and
downward pathways of causation (6). A consequence of these feed-
forward and feedback pathways is that no particular level, such as
that of the gene, can be considered to be the locus of origin of func-
tion. Instead, function arises from the integrated behavior of the over-
all system.

This inherent complexity necessitates the development of models,
whether at a specific biological level or across levels, based on exper-
imental data to achieve a quantitative understanding of the structure
and function of living systems. Creating these computational models is
the long-term goal of the Virtual Physiological Human and Physiome
Projects. These projects are developing an infrastructure for linking
models of structure and function developed at different biological levels

to create integrative models of cells, tissues, and organs (7, 8). It in-
cludes the development of modeling standards (9), computational tools
(10), and Web-accessible databases of models (11).

Computational modeling can also be applied to understand the
perturbed structure and function of living systems in disease (12),
and insights gained from modeling can in turn be used to develop im-
proved methods for disease diagnosis and treatment. We refer to this
emerging approach as “computational medicine.” This includes not
only models of molecular networks and physiological processes but
also modeling anatomic shapes layered with physiological function.
Although modeling approaches used in each of these areas of compu-
tational medicine differ, the common thread is the use of quantitative
models to understand altered structure and function in disease. Figure 2
gives examples of the different types of models used and types of data
needed to describe biological processes and disease across different
biological scales. It is important that predictions regarding perturbed
structure and function in disease be tested using data not included in
model building. Model predictions may or may not be supported by
results from the studies they motivate. After testing these predictions,
models should be revised as needed to more accurately capture the
nature of disease.

As we gain confidence in the ability of computational models to pre-
dict human biological processes, they will help guide us through the
complex landscape of disease, ultimately leading to more effective and
reliable methods for disease diagnosis, risk stratification, and therapy.
This goal is challenging. Nonetheless, progress is being made across
several medical fields. In this Review, we describe aspects of compu-
tational medicine, from molecules and networks to highly integrated
physiological systems, and how models can be used to improve hu-
man health. In the following sections, we further describe the scientific
disciplines from which computational medicine is composed.

COMPUTATIONAL MOLECULAR MEDICINE

Understanding the function of highly interconnected molecular net-
works has come to be known as “systems biology.” Diseased cells arise
from perturbations in biological networks owing to the net effect of
interactions among multiple molecular agents, including inherited
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and somatic DNA variants; changes in mRNA, microRNA (miRNA),
and protein expression; and epigenetic factors, such as DNA methyl-
ation. An enormous amount of data about these perturbations is being
produced by next-generation sequencing and microarray experiments
of large patient cohorts, making it possible for the first time to dis-

cover the driving differences in the abundance and activity of key bio-
molecules. Analysis of high-dimensional biomolecular data using
methods of statistical learning has the potential to enhance discovery
of molecular disease networks, detection of disease, discrimination
among disease subtypes, prediction of clinical outcomes, and charac-
terization of disease progression (13–15).

Owing to the massive number of interacting components in bio-
logical systems, the traditional approach to biomedical research—
which is experimental and molecule by molecule—is not feasible for
high-throughput assessment of biological complexity. A principled
learning approach has become indispensable for extracting knowledge
from large arrays of numbers. In the case of computational molecular
medicine, this entails revealing and exploiting disease-related infor-
mation implicitly stored in high-dimensional, high-throughput biolog-
ical data. For example, in Fig. 3, understanding the role of biomolecules
in the list L (left panel) in health and disease requires analyzing the
relationships among them in the context of a network, in particular
identifying the main physical and causal interactions as a wiring di-
agram (middle panel, Fig. 3). A deep understanding also requires a
statistical characterization: Learning the likely and unlikely concen-
trations of these biomolecules—not just individually but collectively
as a multivariate probability distribution—opens the possibility of
making clinical decisions based on these likelihoods (right panel,
Fig. 3). Statistical modeling is motivated by the simple fact that in
functioning organisms, not all combinations of individual molecular
states are equally likely. Some configurations are observed far more
likely than others, and thus, the favored states in health and disease
are markedly different.

APPLICATIONS: LEARNING MOLECULAR SIGNATURES
OF DISEASE

In the statistical learning approach for analysis of genomic data, the
extraction of knowledge is formulated as the recognition of high-
dimensional patterns often referred to as “biomarkers.” Here, these
patterns are network properties and configurations of measurements
that can detect or even characterize phenotypes of interest at the
molecular level, for example, genes with an unusually large number
of connections (“hubs”; middle panel, Fig. 3) and patterns of gene-
protein interactions, which are far more common in disease than in
health. Data generated from gene microarrays and other high-throughput
technologies can be used to identify such network-based signatures,
which can, in turn, assist in early detection or improved prognosis for
complex diseases.

However, proceeding from a list of implicated biomolecules to a
useful signature for disease requires a prediction rule. For example
(right panel, Fig. 3), comparing the likelihoods of observed features
X in health and disease yields a number that is a diagnostic score. Other
diagnostic scores can be computed from molecular network proper-
ties. A few biomarkers and scores have been approved by the U.S. Food
and Drug Administration (FDA) for clinical use [see list of FDA ap-
proved devices (16)]. For example, there are currently three molecularly
based prognostic tests for early-stage breast cancer (17). One of these is
MammaPrint, which was developed from microarray experiments
and combines the expression levels of 70 genes into a score for pre-
dicting 5-year recurrence of breast cancer in both estrogen receptor–
positive and estrogen receptor–negative patient populations (18).

Environment

Organism

Organ systems

Pathways

Organs

Tissues

Cells, organelles

Protein

RNA

DNA

Fig. 1. Function is distributed across multiple biological scales. Physio-
logical systems have feed-forward pathways between successive levels,
and feedback pathways that span levels of biological organization.
Function is distributed and does not necessarily originate from any
one level, such as the gene. As a consequence of this complexity, under-
standing physiological systems in health and disease can only be achieved
through quantitative modeling and cannot be understood using “mental
models.”
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Despite promising beginnings, and with a few exceptions, the re-
sults reported to date using computational learning methods have not
been sufficiently accurate or reproducible for clinical use. We believe
that there are three main barriers to progress in computational med-
icine based on statistical learning: technological, mathematical, and
translational. First, any statistical analysis at the molecular level re-
quires high-quality data collected from a sufficiently large patient co-
hort to represent the population. Sample sizes described in modeling
studies are frequently at least an order of magnitude too small to en-
able the type of pattern recognition that is statistically robust and
consistent across data collection methods. In addition, biological sam-
ples are often degraded by lab and batch effects (19), which severely
limit their use and contribute to a lack of reproducibility in biomarker
analyses. Increases in both the quantity and the quality of data in the
coming years will lower this barrier.

Second, the mathematical challenges are formidable. Extremely
high-dimensional data sets are now ubiquitous in basic biomedical
and engineering research but pose technical difficulties for statistical
learning and inference because of the large number of interacting

components. A prototypical example occurs in predicting the state
of a complex variable, such as a disease phenotype, when the number
n of samples available for learning is small compared to the number
d of potential biomarkers. Ideally, n would be of the same order, or
even larger, than d. However, in actual studies, d ranges from thou-
sands to even millions, and n is several orders of magnitude smaller.
This “small n, large d” dilemma in statistical learning is pervasive in
functional genomics (20). Consequently, in view of well-known trade-
offs in learning theory between sample size and model complexity
(21), and between “bias” and “variance” (22), incorporating rich a
priori knowledge to constrain the set of possible representations for
the data may be unavoidable.

Finally, even assuming ample, high-quality data, it is difficult to
extract information about the underlying biology or generate testable
hypotheses from the results generated by most off-the-shelf statistical
learning techniques such as support vector machines and random
forests. These methods were generally developed for other purposes,
such as computer-based speech and image recognition. Their decision
rules are mathematically complex functions of the input variables, for
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Fig. 2. Representative modeling approaches and their data require-
ments. The abscissa lists different approaches to modeling biological
systems at different scales (ordinate). “Algebraic” models describe classes
of objects in the genome and their relationships [for example, (107)].
“Topological” models describe molecular wiring diagrams [for example,
(108)]. “Statistical” models describe molecular networks as the joint
probability distribution of molecular concentrations [for example, (35)].
“Dynamical,” mechanistic models describe the spatiotemporal evolution

of biological states using ordinary or partial differential equations [for ex-
ample, (68)]. “Agent-based” models describe physiological system compo-
nent interactions using rules, and component location and state evolve in
time [for example, (109)]. “Geometrical” models describe anatomic shape
[for example, (88)]. Representative data types used in these different
modeling approaches and at different biological scales are color-coded.
EEG, electroencephalography; ECG, electrocardiography; PET, positron
emission tomography.
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example, involving nonlinear functions of hundreds or thousands of
gene expression values. Although these prediction rules may be accu-
rate, it can be very difficult, if not impossible, to interpret them to gain
biological insights about why a particular set of genes is a useful bio-
marker. Rules that are easy to understand because they are based on
expression levels of clearly identified gene sets are better for learning
because they can be related more directly to molecular function and
therefore treatment design. For example, when separating two disease
phenotypes on the basis of a gene expression profile, a decision rule
that is based on a regulatory pattern involving a small number of in-
teracting genes can provide valuable information about the possible
targets of intervention.

As an illustration of these technological, mathematical, and trans-
lational barriers, many diseases result from perturbations in signaling
pathways, which can be detected and quantified through microarrays.
Statistical learning has been applied to distinguish among disease
phenotypes from these genomic data. Most of the early applications
were entirely data-driven, that is, not informed by a priori domain
knowledge (23) and used machine-learning methods such as neural
networks (24), random forests (25), and support vector machines
(26), which usually generate complex decision rules involving many
parameters and genes. Traditionally, validation and other follow-up
studies including therapeutic development must be based on small
numbers of biomarkers so that the role of genes and gene products
can be more easily understood. A key observation has been that sim-
plicity does not necessarily limit performance (27) and that prediction
rules based on fewer genes and parameters can be as sensitive and
specific as more complex ones. As an example, the top-scoring pair
method (20) is based on a single binary “switch” that compares the
ordering of expression between two genes. Extensions of this method
to more genes and multiple switches have been used to differentiate

between stomach cancers (28), predict treatment response in breast
cancer (29), grade prostate cancers (30), and prognosticate lung can-
cer (31).

Still, widespread clinical application of diagnostic devices based on
molecular signatures of disease discovered using statistical learning
methods is limited. In particular, to our knowledge, none of the diag-
nostic and prognostic tools mentioned above are in clinical use. Data
quality may be one factor because microarray data are often “noisy”
and subject to lab and batch effects. The sample size issue is still pre-
dominant (small n, large d), leading to overfitting of training data,
which increases study-to-study differences in lists of discriminating
biomolecules and their reported prediction accuracies. The most effec-
tive way to control variability and enhance reproducibility is to restrict
the complexity of decision rules and scores by incorporating carefully
chosen, domain-dependent biases. One example is to limit decision
rules to a smaller set of genes that, on the basis of previous molecular
studies, are members of pathways believed to be associated with the
disease. Limiting the set of genes used in decision rules reduces the
impact of small sample number and the particular choice of samples
used on the variance of decision rule parameter estimates. Conclusions
derived from one study are then more likely to generalize to another.
In more recent applications of statistical learning, there are efforts to
incorporate previous information on molecular networks to identify
differential expression at the level of pathways rather than individual
genes (32, 33).

Further progress in deriving clinical value from high-dimensional
statistical learning will depend on advances in statistical network
modeling, which entails representing and learning the stochastic de-
pendency structure among multiple variables, including disease phe-
notypes, molecular concentrations, and genetic states (Fig. 3). This is
arguably the core challenge of computational systems biology (34, 35).

P( X | disease )

P( X | normal )

X=

SNPs

mRNA

Proteins

L=

X= observations on L

SNP A,

SNP B,

...

mRNA A,

mRNA B,

...

Protein A,

Protein B,

...

Fig. 3. Statistical learning of molecular networks and disease pheno-
types. The panel on the left shows the names of a set L of measured
molecular species, where X represents the observed states [for single-
nucleotide polymorphisms (SNPs)] or concentrations (for mRNAs and
proteins) for an individual. A topology of parts (molecular network) is
then constructed, where nodes are the measured species L and edges

represent molecular interactions. The rightmost panel shows how a sta-
tistical model of disease, expressed as the likelihood of the measure-
ments X, in disease divided by likelihood in normal, is used to make a
personalized diagnosis. Building this classifier for diagnosing the indi-
vidual requires knowing the likely and unlikely states that distinguish
health from disease.
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A “wiring diagram” depicts the interactions among the system com-
ponents (genes, RNA, and proteins) in the form of an annotated graph
but does not provide quantitative information about the most likely or
unlikely interactions and their patterns. Statistical modeling is differ-
ent. From a mathematical perspective, it is a more ambitious under-
taking than biomarker discovery or prediction, both of which can be
accomplished by proceeding directly from examples to decisions. In-
deed, uncovering a complex statistical dependency structure within a
large number of variables, many of which are hidden (unobservable),
from a limited number of samples can stretch de novo learning to the
limit. Once these dependency structures are learned, information from
both wiring diagrams and statistical models can then be combined to
suggest mechanistic explanations for decision rules.

Despite the variety and level of detail of real molecular networks,
the computational challenge in learning from data is again to control
the complexity of the models. It is essential to balance scope and bio-
chemical fidelity with a useful level of abstraction and computational
efficiency (35, 36). Discovering rich structure from small samples
would seem to require severely restricting the search space. This could
be accomplished by reducing the size of the networks or by incor-
porating bias in the form of a priori information about likely states
and plausible interactions, in which case learning may become more
efficient owing to variance reduction. Progress in this direction has
been made using Bayesian networks and other restricted topologies
and by imposing experimentally derived constraints, such as informa-
tion about transcription factor targets when studying cell signaling
(37). Learning stable and accurate models will also require integrating
evidence from multiple biological levels (Fig. 1). For example, iden-
tifying the drivers of cancer can be improved by integrating data on
genetic variations (for example, copy number aberrations) with gene
expression (38).

The potential benefits of robust statistical network modeling are
considerable. Given phenotype-specific models, one can make predic-
tions and balance sensitivity and specificity with classical likelihood
ratio tests, which are theoretically optimal. Modeling may be necessary
to reach a deep understanding of the hierarchical nature of gene reg-
ulation and how malignant phenotypes arise from the net effect of
interactions among multiple genes and other molecular agents within
biological network. Analysis of high-dimensional biomolecular data
using methods of statistical learning has the potential to enhance dis-
covery of molecular disease networks, detection of disease, discrimi-
nation among disease subtypes, prediction of clinical outcomes, and
characterization of disease progression (13). In this way, modeling nat-
urally elucidates mechanism (39, 40), which is important for drug de-
sign, and may contribute to new computational learning paradigms
for disease treatment.

COMPUTATIONAL PHYSIOLOGICAL MEDICINE

The goal of computational physiological medicine is to developmech-
anistic models of biological systems in disease and how system prop-
erties may change over time, and then translate insights gained from
these models to improved therapies. Mechanistic modeling differs
from statistical modeling. As described in the previous section, a sta-
tistical network model describes the likelihood of different config-
urations of molecular concentrations as a multivariate probability
distribution (Fig. 3). Knowledge regarding disease is gained by learn-

ing which state configurations are more likely in disease than in
health. In contrast, a mechanistic network model describes the mol-
ecules that interact with one another, their concentrations, the rates
at which they interact, the biochemical nature of these interactions,
the factors that control them, and how concentrations can change
over time. Mechanistic network models often take the form of cou-
pled systems of ordinary differential equations where the states are
concentrations of molecules, possibly including their modified forms.
Model equations are solved to observe how states evolve in time as
they interact with one another and respond to network inputs. Oth-
er modeling approaches are used as well, including stochastic pro-
cesses or stochastic ordinary differential equations (41), in cases where
it is important to capture the ways in which processes evolve ran-
domly in time, and partial differential reaction-diffusion equation
(42) and agent-based models (43) for processes that evolve in time
and space.

At the network, pathway, and cell levels, the number of states in
mechanistic models is typically smaller than in statistical models. This
is because it can be difficult to measure certain states and/or reaction
rates experimentally, and it is therefore necessary to make assump-
tions about which biological processes and components should be in-
cluded in the models. It is always desirable to start the model-building
process with a minimal set of assumptions regarding the numbers of
states and parameters, and then test the extent to which this “minimal
model” reproduces as well as predicts experimental data. From there,
complexity can be expanded as warranted (44). Despite the relative
low dimension of these models, their advantage is the ability to predict
emergent behaviors of biological systems in health and disease because
they incorporate the biological mechanisms by which system compo-
nents interact.

Understanding disease and treatment options also requires devel-
opment of models spanning different levels of biological organization
(Fig. 1). For example, cancer begins at the molecular level as a result of
mutations of oncogenes, tumor suppressor genes, miRNA, and changes
in DNA methylation. This leads to dysregulation of many different sig-
naling pathways involved in cell growth, angiogenesis, and apoptosis.
Tumor cells also interact with their local environment (extracellular
matrix and cells) by secreting signaling molecules. Changes to this sig-
naling can ultimately affect cell adhesion and migration, tissue invasion,
and metastasis. Cancer is clearly a multiscale disease, and mechanistic
models spanning these scales are being developed and applied to pre-
dicting the progression of tumors (45–48). Efforts to develop multiscale
mechanistic models of cardiac electromechanics, microcirculatory,
renal, gastrointestinal, lung, and immune system function in health
and disease are under way (49–56). For certain disease areas, there
are promising results (described below), indicating that computational
models will ultimately contribute to patient treatment, including indi-
vidualized patient therapy.

APPLICATIONS: MODELING PHYSIOLOGICAL
FUNCTION IN DISEASE

Cancer
As described above, there is a large body of work on computational
modeling of cancer processes and mathematical methods for detection
(57). Multiscale models of tumor growth, for example, include factors
such as signaling events in tumor cells, interactions between cells (for

REV I EW

www.ScienceTranslationalMedicine.org 31 October 2012 Vol 4 Issue 158 158rv11 5

 o
n 

O
ct

ob
er

 3
1,

 2
01

2
st

m
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

http://stm.sciencemag.org/


example, adhesion), interactions between cells and extracellular matrix,
changes in cell environment (for example, oxygen diffusion), and angio-
genesis (45–47). These models have made it possible to study the im-
pact of these factors on tumor development. Recently, several groups
have investigated how these models may be tailored to the individual
patient. Macklin et al. (48) developed a patient-specific mechanistic
model of ductal carcinoma in situ (DCIS), the most prevalent precur-
sor to invasive ductal carcinoma, that describes the spatiotemporal dy-
namics of DCIS. Using this model, they showed that the volume of
breast with in situ tumors could be predicted by adjusting parameters
that could be measured for each patient using biopsy analysis results.
The ability of the model to predict the volume of tissue that should be
resected will help guide surgeons during these procedure and may re-
duce the need for repeat resections.

In a more minimalist approach, Swanson and co-workers devel-
oped a partial differential reaction-diffusion equation model of glio-
blastoma development, which describes the rate of change of glioma
cell density as a function of tumor growth and invasion, and the frac-
tion of cells that survive exposure to ionizing radiation (58). The
parameters of this model can be estimated from as little as two mag-
netic resonance (MR) images taken before treatment. This model has
been used to evaluate the therapeutic value of different radiation ther-
apies (59) and tumor resection procedures in individual patients (58).

In silico modeling of cancer therapy has also been done at the level
of cell signaling networks. Recently, a kinetic model of the ErbB tu-
morigenic signaling network was developed, and sensitivity analysis
was used to identify an optimal drug target, ErbB3 (60). Using this in-
formation, a novel, fully human monoclonal antibody (MM-121) that
binds with high affinity to inhibit ErbB3 was developed. Multiple
phase 1 to 2 clinical trials are now under way to test MM-121, either
alone or combined with pharmacotherapy, in treating lung, breast, and
ovarian cancers, and advanced solid tumors refractory to therapy (61).

These results demonstrate that computational models are influencing
cancer diagnosis and treatment. However, there remain several chal-
lenges to overcome before such computational models see more wide-
spread use. There is a need for more digitized, multimodality diagnostic
data sets (genomics to imaging) that gather information over multiple
time points to constrain and test models and diagnostic algorithms on
a per-patient basis. The field needs improved methods for rapid mod-
eling across multiple scales to readily simulate therapeutic scenarios.
Finally, methods for presenting information from simulations within
the electronic patient record must be developed to provide actionable,
point-of-care decisions.

Diabetes
The Artificial Pancreas Project (62), funded by the Juvenile Diabetes
Research Foundation, is an effort to develop a closed-loop subcuta-
neous insulin delivery system for treatment of type 1 diabetes mellitus.
A subcutaneous continuous glucose-monitoring sensor is coupled to
an insulin infusion pump, and a control algorithm is used to adjust
insulin delivery as a function of measured glucose level. A major chal-
lenge in developing these systems is devising the appropriate strategy
for controlling insulin delivery. Such strategies can be developed using
animal models of diabetes; however, the duration and expense of these
studies are prohibitive. Development of implantable closed-loop controlled
insulin pumps would be accelerated if an accurate model of the glucose-
insulin system were available to control algorithms. Dalla Man et al.
(63) developed a computational model of the glucose-insulin system

that includes the major glucose and insulin fluxes in response to a
mixed meal. Model parameters were estimated in a patient-specific
manner using data from glucose isotope labeling experiments. Models
of glucose sensor errors for commercially available systems and insulin
kinetics in the subcutaneous space were integrated with the glucose-
insulin metabolism model (64).

With these model components, a simulation system was developed
in which (i) glucose-insulin fluxes following meal ingestion are simu-
lated, (ii) simulation results are input to the glucose sensor model, (iii)
output of the glucose sensor is input to the control algorithm under
development, (iv) control signals produced by the algorithm are input
to the insulin pump model, and (v) simulated insulin delivery is input
to the diabetes model (64). Together, this system enabled the testing of
closed-loop glucose control strategies. This model-based computational
system for testing strategies for controlling type 1 diabetes using im-
plantable insulin pumps was sufficiently predictive that, in 2008, the
FDA approved this system for testing closed-loop insulin pumps in lieu
of animal models.

Challenges to be addressed in future work include developing ar-
tificial pancreas control strategies specialized to different scenarios
such as type 2 diabetes, diabetes in the setting of other systemic dis-
eases, nighttime basal regulation, and control for preventing hypo-
glycemia in exercise. Use in outpatient settings will require development
of remote monitoring and management tools, and approaches by
which users will receive alerts. It will also require that the reliability
and durability of these systems be established (65). Finally, it is pos-
sible to scan public spaces for insulin pump controllers and break into
these devices to manipulate pump settings (66). In response, the Ge-
neric Infusion Pump Project (http://rtg.cis.upenn.edu/gip.php3) is
using the open source approach to develop and test infusion pump
designs and software so that the community can evaluate both the
accuracy of design and correctness of code implementation, as well
as security. Security has therefore emerged as a critical problem that
must be solved for all medical devices using embedded software.

Heart disease
Among computational models of the various physiological systems,
the heart is one of the most highly advanced examples of a “virtual
organ.” One reason for this is that there is a long history of cardiac
modeling, beginning more than 50 years ago with publication of the
first model of the cardiac myocyte action potential (67). Since then,
myocyte modeling has progressed rapidly by incorporating descrip-
tions of many different subcellular processes and the ways they regu-
late properties such as the action potential (68). Models typically take
the form of deterministic systems of coupled, nonlinear, ordinary dif-
ferential equations that are integrated numerically to simulate time-
evolving behaviors of the cell. Integrative myocyte models are now
providing valuable insights into the molecular basis of cellular arrhyth-
mias in heart disease (69, 70).

Cardiac modeling has also progressed to the level of the whole
heart. The key step in achieving this goal has been the application of
diffusion tensor MR imaging (DTMRI) to measure the anatomy, fiber,
and sheet structure of the heart (71). Whole-heart image-based models
take the form of reaction-diffusion partial differential equations, where
the reaction term is specified by the system of equations modeling the
myocyte, and the diffusion term is specified by the image-based mea-
surements of heart anatomy along with estimated cell-to-cell coupling
by gap junctions. This has led to a new generation of whole-heart
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image-based models with unprecedented structural and biophysical
detail, including cardiac electromechanics (72), and even models inte-
grating from the levels of cellular electrophysiology to electromechanics,
to fluid dynamics of blood flow within the left ventricle (73). These
models are being used to gain insights into mechanisms of arrhythmia
in the setting of idiopathic dilated cardiomyopathy (74), myocardial
ischemia (75), and channelopathies (76). The models are being applied
in a patient-specific manner to investigate improved methods for car-
diac resynchronization therapy in dyssynchronous heart failure (movie
S1) (77, 78).

A major thrust in computational physiology is to use models as a
test bed for evaluation of new antiarrhythmic drug therapies. It is now
possible to collect the experimental data
needed to constrain models of ion chan-
nel gating and drug binding, and use these
data to test hypotheses regarding mech-
anisms of drug action on heart cells
and tissues (79, 80) as well as whole heart
(81). Furthermore, multiscale heart mod-
els of antiarrhythmic drug interactions
with ion channels have provided insights
into why certain pharmacological inter-
ventions result in proarrhythmia, where-
as others do not (81). This work has the
potential to more effectively guide the drug
development pipeline—a process that is
well known to have high failure rate and
expense.

The feasibility of subject-specific mod-
eling has been demonstrated through the
use of animal models of infarcted hearts,
which have shown good correspondence
between in silico and experimental maps
of wavefront propagation, and predict
mechanisms of infarct-related ventricular
tachycardia (VT) (82). The advancing
capabilities of MR and CT (computed to-
mography) imaging now make it possible
to construct models of an individual pa-
tient heart (Fig. 4). Detailed heart model
reconstructed from clinical MRI scans
has been used to evaluate infarct-related
VT, which may help predict optimal lo-
cations of catheter ablation in individual
patient hearts (83, 84).

The use of heart models in personal-
ized diagnosis, treatment planning, and
prevention of sudden cardiac death is
slowly becoming a reality. Nevertheless,
there are several challenges that need to
be addressed to clear the way for the trans-
lation of patient-specific heart modeling
into the clinic. First, heart disease also
manifests with other diseases such as obe-
sity, diabetes, or pulmonary edema. A ma-
jor focus of the modeling community to
date has been on understanding mech-
anisms of arrhythmia as a primary risk

factor, so understanding it in these more complicated settings of comor-
bidity must be addressed. Second, clinical heart imaging data are cur-
rently of low spatial resolution, limiting the ability to develop
structural heart models with the spatial resolution needed to model
electrical activation of the heart. More widespread use of state-of-
the-art CT systems with large numbers of detectors and better spa-
tiotemporal resolution will help resolve this problem (85). Third,
broader use of cardiac models in treatment planning will require
real-time information and model adjustment using patient-specific car-
diac electrophysiological and mechanical information. Finally, to im-
plement heart modeling at the bedside, improved approaches for
high-speed simulations will need to be developed.

Fig. 4. Modeling electrical activity in the infarcted heart. Clinical MR scan of an infarcted pa-
tient heart before ablation (treatment) and the corresponding segmentation: healthy (red),
gray zone (GZ) of functional but impaired tissue surrounding the scar (green), or scar (yellow).
A three-dimensional geometric model of the patient heart was rendered with the epicardium
and the infarct border zone semitransparent. An in silico activation map of VT reveals reentry
on the left ventricular endocardium. The color code in the bottom right shows electrical acti-
vation time.
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COMPUTATIONAL ANATOMY

Advances in imaging technology have progressed to the point where it
can be argued that the interpretation of medical images for disease
diagnosis is no longer limited by poor image quality, but rather is
limited by inherent subject-to-subject variation of anatomies in health
and disease. Understanding how ensembles of anatomies differ within
and between healthy and diseased states has required the develop-
ment of a mathematical theory of shape and its variation—an approach
known as computational anatomy (CA) (86–88). In CA methods, a
global shape model (template) representing typical structures in an
ensemble of anatomic image volumes is constructed. To illustrate one
approach to CA, an example template of the hippocampus con-
structed from a set of MR image volumes collected in a study of struc-
tural brain changes in Alzheimer’s disease (AD) is shown in Fig. 5A
(88). Variation within the ensemble of targets (the hippocampi sur-
rounding the template) is captured by defining geometric transforma-
tions that perform the dilation, contraction, and warping needed to map
each voxel of the hippocampal template anatomy onto corresponding
pixels of the individual hippocampi (89).

Because these transformations are invertible, CA methods can be
described as placing each of the individual target anatomies into a
common coordinate system—that of the template. This set of trans-
formations can then be analyzed to determine the distance between
each target and the template (numbers in Fig. 5A) and the significant
dilations and contractions that distinguish anatomic structures in
health from those in disease. Figure 5B shows patterns of hippocampal
change over a 2-year period in healthy subjects (top row) and subjects
with very mild AD. Detection of very mild AD in the elderly has been
performed, where a statistical measure of the rate of shape and volume
change over a 2-year period separated the two populations (90).

APPLICATIONS: MODELING THE SHAPE OF DISEASE

There are three major directions of research in CA. The first is theory
and tool development (91–95). The second is understanding alteration
of brain structure in neuropsychiatric illnesses and neurodegenerative
diseases (96–100). The third, which builds on the ability to detect
these anatomic changes, is to couple the benefits of modern high-
resolution imaging techniques with CA methods to perform early de-
tection of disease.

Csernansky et al. (96) showed that hippocampal shape changes
were predictive of progression of nondemented elderly subjects from
a score of 0 (no dementia) on the Clinical Dementia Rating scale to a
score of 0.5 (very mild dementia). McEvoy et al. (101) separated healthy
controls from subjects with mild AD with 83% sensitivity and 93%
specificity. Subjects diagnosed with mild cognitive impairment with
the AD shape phenotype showed a significant 1-year cognitive decline.
This predictive indicator of decline could be important as a clinical
marker. Moreover, a fully automated data analysis pipeline for differ-
entiating very mild dementia from normal elderly subjects has been
implemented (102), demonstrating the feasibility of applying these
algorithms in the clinical setting.

CA methods have compelling use in neonatal neurology because it
is difficult to diagnose neurological disease in neonates during the first
year of life. As a first step in this direction, a neonatal brain atlas has
been developed (103) using images from normal neonates ranging in

age from 37 to 53 weeks after conception. The atlas is a template de-
scribing anatomical regions of the brain and the premyelinated struc-
tures connecting them. The template was segmented into 122 different
brain regions. Transformations taking the neonatal brain atlas onto
targets carry with them the location of these different brain regions.

3.7

4.3

3.4

2.7

3.6

3.5
3.2

2.5

4.1

Template

Target

A

Healthy
subjects

Very mild
AD

Year 0 Year 2B

Outward,
1 mm

Inward,
1 mm

Fig. 5. Methods of computational anatomy. (A) A sample of hippocampi
from a population of healthy subjects (n = 57) and subjects with very mild
AD (n = 38) (88). The anatomical template was generated from all hippo-
campi from this study. Also shown are the distances between nine individual
hippocampi selected from the population and the template. (B) Patterns
of hippocampal shape change over a 2-year period in healthy elderly
subjects and subjects with very mild AD (90). The shape and volume
changes revealed using CA methods support the detection of AD onset.
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Ensembles of target brains can then be analyzed region by region for
structural differences. The authors used this atlas to better understand
the time course of changes in neonatal brain structures with cognitive
function. A future application could be to detect neurodevelopmental
disorders within the first few months after birth.

The flood of new information from MR scanners is a substantial
bottleneck in radiological diagnosis. However, with 30-min scan times
already presenting a premium in terms of health care costs, use of
automated methods to perform brain shape analysis and diagnosis
must be faster and more sensitive and specific. The major challenge to
be confronted by next-generation CA methods is to achieve both high
sensitivity and specificity so as not to increase false alarm rate. Devel-
oping these methods will require large case study data sets to be online
and indexed to support application of machine-learning methods.

THE FUTURE OF COMPUTATIONAL MEDICINE

We are poised at an exciting moment in medicine. The fruits of re-
ductionist biology; the advances in high-throughput assays; the emer-
gence of new technologies for measuring properties of cells, tissues,
and organ function; and the continuing consequences of Moore’s law
and its impact on computational science are coming together to drive
the creation of new, quantitative, model-based approaches to medicine.
To date, the primary accomplishment of computational medicine has
been to provide us with a more quantitative, deeper understanding of
disease. There are few applications of computational medicine that are,
as of yet, in routine clinical use. Each of the model applications in can-
cer, diabetes, and heart disease described here is in the early stages of
development. It is a long road from medical discovery to translation
and clinical application. Clinical translation of model-based approaches
requires sufficient evidence to convince regulatory agencies to approve
clinical trials. Once in clinical trials, it will be necessary to show that
clinical outcomes are improved before widespread use will be achieved.

Despite these challenges, we have described how CA methods have
been applied successfully in several different disease settings. In addi-
tion, CA algorithms have recently been used directly in the clinic in
the form of an iPad application. This application helps physicians se-
lect deep brain stimulation parameters by mapping an image of the
patient’s brain and electrode position onto a brain atlas, and then sim-
ulating distribution of current within the brain given brain structure,
electrode placement, and conduction parameters (104, 105). This allows
selection of stimulus parameters that localize current to the structures
that should be stimulated. CA methods will likely transition to addi-
tional clinical applications over the next several years. Methods of
computational molecular medicine have already led to FDA-approved
assays (16), and their performance will improve as new methods of
data collection and biomarker identification and validation are devel-
oped. Applications of personalized physiological models in medicine
are being developed for brain, heart, cancer, diabetes, and lung disease
(106). Owing to advances in imaging capabilities and ever increasing
computational power, improvements in predictive ability of these
models as well as approaches for constraining models using clinical
data are being made rapidly. Each of the computational areas de-
scribed in this review has potential for application in personalized
medicine. Computational medicine will continue to grow as a discipline
because it is providing a new, quantitative approach to understanding,
detecting, and treating disease at the level of the individual.

SUPPLEMENTARY MATERIALS

www.sciencetranslationalmedicine.org/cgi/content/full/4/158/158rv11/DC1
Movie S1. Electromechanical simulations of left bundle branch block (LBBB) and cardiac resyn-
chronization therapy (CRT) with a biophysically detailed, MRI-based electromechanical model
of the dyssynchronous failing canine heart.
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