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Abstract: We analyze control of the familywise error rate (FWER) in
a multiple testing scenario with a great many null hypotheses about the
distribution of a high-dimensional random variable among which only a
very small fraction are false, or “active”. In order to improve power relative
to conservative Bonferroni bounds, we explore a coarse-to-fine procedure
adapted to a situation in which tests are partitioned into subsets, or “cells”,
and active hypotheses tend to cluster within cells. We develop procedures
for a non-parametric case based on generalized permutation testing and a
linear Gaussian model, and demonstrate higher power than Bonferroni esti-
mates at the same FWER when the active hypotheses do cluster. The main
technical difficulty arises from the correlation between the test statistics at
the individual and cell levels, which increases the likelihood of a hypothesis
being falsely discovered when the cell that contains it is falsely discovered
(survivorship bias). This requires sharp estimates of certain quadrant prob-
abilities when a cell is inactive.
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1. Introduction

We consider a multiple testing scenario encountered in many current applica-
tions of statistics. Given a large index set V and a family (H0(v), v ∈ V ) of null
hypotheses about the distribution of a high-dimensional random vector U ∈ R

d,
we wish to design a procedure, basically a family of test statistics and thresh-
olds, to estimate the subset A ⊂ V over which the null hypotheses are false.
We shall refer to A as the “active set” and write Â = Â(U) for our estimator
of A based on a random sample U of size n from U . The hypotheses in Â(U)
(namely the ones for which the null is rejected) are referred to as “detections” or
“discoveries.” Naturally, the goal is to maximize the number |A ∩ Â(U)| of de-
tected true positives while simultaneously controlling the number |Ac ∩ Â(U)|
of false discoveries. We will assume that U is defined on a probability space
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(Ω,P), that will, as usual, be assumed large enough to allow for the definition
of other random variables used later in our randomization schemes, with the
independence assumptions that will be made at that point.

There are two widely used criteria for controlling false positives:

FWER: The family-wise error rate (FWER) is

FWER(Â) = P

(
Â(U) ∩Ac �= ∅

)
,

which is the probability of making at least one false discovery. This is usually
controlled using Bonferroni bounds and their refinements [11, 14, 13, 12], or
using resampling methods or random permutations.

FDR: The false discovery rate (FDR) is the expected ratio between the num-
ber of false alarms |Ac ∩ Â(U)| and the number of discoveries |Â(U)| [4, 6, 5].

In many cases, including the settings in computational biology which directly
motivate this work, we find |A| � |V |, n � d as well as small “effect sizes.”
This is the case, for example, in genome-wide association studies (GWAS) where
U = (Y,Xv, v ∈ V ) and the dependence of the “phenotype” Y on the “geno-
type” (Xv, v ∈ V ) is often assumed to be linear; the active set A are those v with
non-zero coefficients and effect size refers to the fraction of the total variance
of Y explained by a particular Xv. Under these challenging circumstances, the
methods used to guarantee the FWER criterion are usually very conservative
and power is limited; that is, number of true positive detections is often very
small (if not null) compared to |A| (the “missing heritability”). This is why the
less conservative FDR criterion is sometimes preferred: it allows for a higher
number of true detections, but of course at the expense of false positives. How-
ever, there are situations, such as GWAS, in which this tradeoff is unacceptable;
for example, collecting more data and doing follow-up experiments may be too
labor intensive or expensive, and therefore having even one false discovery may
be deemed undesirable.

To set the stage for our proposal, suppose we are given a family {Tv =
Tv(U), v ∈ V } of test statistics and assume that deviations from the null are
captured by small values of Tv(U) (e.g., p-values). Assume that individual re-
jection regions are of the form {u ∈ U : Tv(u) ≤ θ} for a constant θ independent
of v. Defining Â(U) = {v : Tv(U) ≤ θ}, the Bonferroni upper-bound is

FWER ≤
∑
v∈Ac

P(Tv(U) ≤ θ) ≤ |V |max
v∈Ac

P(Tv(U) ≤ θ).

To ensure that FWER ≤ α, θ = θB is selected such that P(Tv(U) ≤ θB) ≤ α/|V |
whenever v ∈ Ac. The Bonferroni bound can only be marginally improved (see,
in particular the estimator in [14], which will be referred to as Bonferroni-
Holm in the rest of the paper) in the general case. While alternative procedures
(including permutation tests) can be designed to take advantage of correlations
among tests, the bound is sharp when |V | 
 |A| and tests are independent.
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Coarse-to-fine Testing: Clearly some additional assumptions or domain-spe-
cific knowledge are necessary to ameliorate the reduction in power resulting from
controlling the FWER. Motivated by applications in genomics, we suppose the
set V has a natural hierarchical structure. In principle, it should then be possible
to gain power if the active hypotheses are not randomly distributed throughout
V but rather have a tendency to cluster within cells of the hierarchy. In fact, we
shall consider the simplest example consisting of only two levels corresponding
to individual hypotheses indexed by v ∈ V and a partition of V into non-
overlapping subsets (g ⊂ V, g ∈ G), which we call “cells.” We will propose
a particular multiple testing strategy which is coarse-to-fine with respect to
this structure, controls the FWER, and whose power will exceed that of the
standard Bonferroni-Holm approach for typical models and realistic parameters
when a minimal degree of clustering is present. It is important to note that
the clustering property is not a condition for a correct control of the FWER
at a given level using our coarse-to-fine procedure, but only for its increased
efficiency in discovering active hypotheses.

Our estimate of A is now based on two families of test statistics: {Tv(U), v ∈
V }, as above, and {Tg(U), g ∈ G}. The cell-level test Tg is designed to assume
small values only when g is “active,” meaning that g ∩A �= ∅. Our estimator of
A is now

Â(U) = {v : Tg(U) ≤ θG, Tv(U) ≤ θV }.
One theoretical challenge of this method is to derive a tractable method for
controlling the FWER at a given level α. Evidently, this method can only out-
perform Bonferroni if θV > θB ; otherwise, the coarse-to-fine active set is a
subset of the Bonferroni discoveries. A key parameter is J , the number of indices
belonging to active cells, and in the next section we will derive an FWER bound

FWER(Â(U)) ≤ Φ(θG, θV , J)

under an appropriate compound null hypothesis. While J is not known in gen-
eral, we can use or estimate an upper bound, Ĵ . The smaller the value of Ĵ
(implying a stronger clustering of active hypotheses in cells) the greater is the
gain in power compared with the Bonferroni bound. In particular, as soon as
Ĵ � |V |, the coarse-to-fine strategy will lead to a considerably less conservative
score threshold for individual hypotheses relative to the Bonferroni estimate and
the coarse-to-fine procedure will yield an increase in power for a given FWER.
Again, our assumptions about clustering are only expressed through an upper
bound on J ; no other assumptions about the distribution of A are made and
the FWER is controlled in all cases.

The main technical difficulty arises from the correlation between the test
statistics Tg and Tv for v ∈ g. This must be taken into account since it increases
the likelihood of an individual index v being falsely declared active when the
cell g(v) that contains it is falsely discovered (survivorship bias). More specifi-
cally, we require estimates of quadrant probabilities under the joint distribution
of Tg(v)(U) and Tv(U) when g(v), the cell containing v, is inactive. We will
design for this a non-parametric procedure based on generalized permutation
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resampling and invariance assumptions (section 3). This will be combined with
a method for estimating J , also non-parametric and based on permutation sam-
pling.

We will also analyze the standard linear model with Gaussian data, which is
an important parametric model. In this case Φ is expressed in terms of centered
chi-square distributions and the power is expressed in terms of non-centered chi-
square distributions. The efficiency of the coarse-to-fine method in detecting
active hypotheses will depend on effect sizes, both at the level of cells and
individual v, among other factors. This model, which has its own interest, will
also be used to validate the non-parametric approach. Extensive simulations
comparing the power of coarse-to-fine methods and Bonferroni-Holm appear
throughout.

Applications and Related Work: As indicated above, our work (and some
of our notation) is inspired by statistical issues arising in GWAS [8, 10, 3] and
related areas in computational genomics. In the most common version of GWAS,
the “genotype” of an individual is represented by the genetic states Xv at a very
large family of genomic locations v ∈ V ; variations at these locations are called
single nucleotide polymorphisms or SNPs. In any given study the objective is
to find those SNPs A ⊂ V “associated” with a given “phenotype”, for example
a measurable trait Y such as height or blood pressure. The null hypothesis
for SNP v is that Y and Xv are independent random variables, and whereas
|V | may run into the millions, the set A of active variants is expected to be
in the hundreds. (Ideally, one seeks the “causal” variants, an even smaller set,
but separating correlation and causality is notoriously difficult.) Control of the
FWER is the gold standard and the linear model is common. If the considered
variants are confined to coding regions, then the set of genes provides a natural
partition of V (and the fact that genes are organized into pathways provides a
natural three-level hierarchy) [15].

Another application of large-scale multiple testing is variable filtering in high-
dimensional prediction: the objective is to predict a categorical or continuous
variable Y based on a family of potentially discriminating features Xv, v ∈ V .
Learning a predictor Ŷ from i.i.d. samples of U = (Y,Xv, v ∈ V ) is often facili-
tated by limiting a priori the set of features utilized in training Ŷ to a subset
A ⊂ V determined by testing the features one-by-one for dependence on Y and
setting a significance threshold. In most applications of machine learning to ar-
tificial perception, no premium is placed on pruning A to a highly distinguished
subset; indeed, the particular set of selected features is rarely examined or con-
sidered of significance. In contrast, the identities of the particular features se-
lected and appearing in decision rules are often of keen interest in computational
genomics, e.g., discovering cancer biomarkers, where the variables Xv represent
“omics” data (e.g., gene expression), and Y codes for two possible cellular or
disease phenotypes. Obtaining a “signature” Â devoid of false positives can be
beneficial in understanding the underlying biology and interpreting the decision
rules. In this case the Gene Ontology (GO) [2] provides a very rich hierarchical
structure, but one example being the organization of genes in pathways. Indeed,
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building predictors to separate “driver mutations” from “passenger mutations”
in cancer would appear to be a promising candidate for coarse-to-fine testing
due to the fact that drivers are known to cluster in pathways.

There is a literature on coarse-to-fine pattern recognition (see, e.g., [7] and the
references therein), but the emphasis has traditionally been on computational
efficiency rather than error control. Computation is not considered in this paper.
Moreover, in most of that work, especially applications to vision and speech, the
emphasis is on detecting true positives (e.g., patterns of interest such as faces) at
the expense of false positives. Simply “reversing” the role of true positives and
negatives is not feasible due to the loss of reasonable invariance assumptions; in
effect, every pattern of interest is unique.

Finally, in [16], a hierarchical testing approach is used in the context of the
FWER. However, the intention in that paper is to improve the power of detection
relative to the Bonferroni-Holm methods only at level of clusters of hypotheses;
in contrast to our method, there is limited improvement at the level of individual
hypotheses.

Organization of the Paper: The paper is structured as follows: In section
2 we present a Bonferroni-based inequality that will be central for controlling
the FWER using the coarse-to-fine method in different models. In section 3
we will propose our main, non-parametric, coarse-to-fine procedure that will
control the FWER under general invariance assumptions. In section 4, we then
present an estimator for an upper bound on the number of active cells. We then
focus on a parametric model (section 5) on which we will derive a parametric
version of the coarse-to-fine procedure, specific to the model. In this special
case, we are able to obtain power estimates for the coarse-to-fine procedure and
optimize some of its free parameters. This estimator will be used, in particular,
in our simulations (section 6), in which we will compare its power to that of
Bonferroni-Holm, and of our non-parametric coarse-to-fine procedure. Finally,
some concluding remarks are made in the discussion.

2. Coarse-to-fine framework

The finite family of null hypotheses will be denoted by (H0(v), v ∈ V ), where
H0 is either true or false. We are interested in the active set of indices, A =
{v ∈ V : H0(v) = false} and will write V0 = Ac for the set of inactive indices.
Suppose our data U takes values in U . The set Â(U) is commonly designed
based on individual rejection regions Γv ⊂ U , with Â(U) = {v : U ∈ Γv}. As
indicated in the previous section, in the conservative Bonferroni approach, the
FWER is controlled at level α by assuming |V |maxv∈V0 P(U ∈ Γv) ≤ α. If
the rejection regions are designed so that this probability is independent of v
whenever H0(v) is true, then the condition boils down to P(U ∈ Γv) ≤ α/|V |
for v ∈ V0. Generally, Γv = {u ∈ U : Tv(u) ≤ t} for a constant t (or tv) for some
family of test statistics (Tv, v ∈ V ).

While there is not much to do in the general case to improve on the Bonferroni
method, it is possible to improve power if V is structured and one has prior
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knowledge about the way the active hypotheses are organized relative to this
structure. In this paper, we consider a coarse-to-fine framework in which V is
provided with a partition G, so that V =

⋃
g∈G g, where the subsets g ⊂ V

(which we will call cells) are non-overlapping. For v ∈ V , we let g(v) denote the
unique cell g that contains it. The “coarse” step selects cells likely to contain
active indices, followed by a “fine” step in which a Bonferroni or equivalent
procedure is applied only to hypotheses included in the selected cells. More
explicitly, we will associate a rejection region Γg to each g ∈ G and consider the
discovery set

Â(U) = {v ∈ V : U ∈ Γg(v) ∩ Γv}. (1)

We will say that a cell g is active if and only if g ∩ A �= ∅, which we shall also
express as H0(g) = false, implicitly defining H0(g) as the logical “and” of all
H0(v), v ∈ g. We will also consider the double null hypothesisH00(v) = H0(g(v))
of v belonging in an inactive cell (which obviously implies that v is inactive too),
and we will let V00 ⊂ V0 be the set of such v’s.

Let |g| denote the size of each cell g in G, G0 and Gc
0 respectively the set

of non-active cells and active cells. Then, define J =
∑

g∈Gc
0
|g|, the number of

active indices contained in active cells. We will develop our procedure under the
assumption that J is known, or, at least bounded from above. While this can
actually be a plausible assumption in practice, we will relax it in section 3 in
which we will design a procedure to estimate a bound on J .

With this notation, we have the following result:

Proposition 2.1. With Â defined by (1):

FWER(Â) ≤ |V | max
v∈V00

P
(
U ∈ Γg(v) ∩ Γv

)
+ J max

v∈V0

P (U ∈ Γv) .

Notice that the result will obviously still be valid if we replace J by an upper
bound.

Proof. This is just the Bonferroni bound applied to the decomposition

(Â(U) ∩ V0 �= ∅) =
⋃

v∈V00

(U ∈ Γg(v) ∩ Γv) ∪
⋃

v∈V0\V00

(U ∈ Γg(v) ∩ Γv)

⊂
⋃

v∈V00

(U ∈ Γg(v) ∩ Γv) ∪
⋃

v∈V0\V00

(U ∈ Γv)

so that

P (Â(U) ∩ V0 �= ∅) ≤ |V00| max
v∈V00

P
(
U ∈ Γg(v) ∩ Γv

)
+ |V0 \ V00|max

v∈V0

P(U ∈ Γv)

and the proposition results from |V00| ≤ |V | and |V0 \ V00| ≤ J .

The sets Γg and Γv will be designed using statistics Tg(U) and Tv(U) setting
Γg = (Tg(U) ≤ θG) and Γv = (Tv(U) ≤ θV ) for some constants θG and θV .
Letting p00(θG, θV ) be an upper-bound of P

(
(Tg(v)(U) ≤ θG) ∩ (Tv(U) ≤ θV )

)
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for v ∈ V00 and p0(θV ) of P (Tv(U) ≤ θV ) for v ∈ V0, the previous upper bound
becomes

FWER(Â) ≤ |V | p00(θG, θV ) + J p0(θV ). (2)

In the following sections our goal will be to design θG and θV such that this
upper bound is smaller than a predetermined level α. Controlling the second
term will lead to less conservative choices of the constant θV (compared to
the Bonferroni estimate), as soon as J � |V | , depending on the degree of
clustering, the probability p00 of false detection in the two-step procedure can
be made much smaller than p0 without harming the true detection rate and the
coarse-to-fine procedure will yield an increase in power for a given FWER. We
require tight estimates of p00 and taking into account the correlation between
Tg(v)(U) and Tv(U) is necessary to deal with “survivorship bias.”

3. Non-parametric coarse-to-fine testing

3.1. Notation

Recall that U denotes the random variable representing all the data, taking
values in U . We will build our procedure from user-defined scores, denoted ρv
(at the locus level) and ρg (at the cell level), both defined on U , i.e., functions
of the observed data.

Moreover, we assume that there exists a group action of some group S on U ,
which will be denoted

(ξ,u) �→ ξ � u.

The product in S will be denoted (ξ, ξ′) �→ ξξ′. For example, if the observation
is a realization of an i.i.d. family of random variables U = ((Y k, Xk), k =
1, . . . n) where the Y ’s are real-valued and the variables Xk = (Xk

v , v ∈ V )
is a high-dimensional family of variables indexed by the set V , one will take
U =

(
(Y k, Xk), k = 1, . . . , n

)
. S will be the permutation group of {1, . . . , n}

with
ξ �U =

(
(Y ξk , Xk), k = 1, . . . , n

)
.

To simplify the discussion, we will assume that S is finite and denote by μ the
uniform probability measure on S, so that∫

S

f(ξ)dμ(ξ) =
1

|S|
∑
ξ∈S

f(ξ).

Our running assumption will be that,

1. For any v ∈ V00, the joint distribution of (ρg(v)((ξ
′ξ) � U), ρv((ξ

′ξ) �
U))ξ′∈S is independent of ξ ∈ S.

2. For any v ∈ V0, the joint distribution of (ρv((ξ
′ξ)�U))ξ′∈S is independent

of ξ ∈ S.

We will also use the following well-known result.
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Lemma 3.1. Let X be a random variable and let FX(x) = P (X ≤ x) denote
its cumulative distribution function, with left limit F−

X (x) = P (X < x). Define,
for z ∈ [0, 1]

F̄X(x, z) := (1−z)
(
1− F−

X (x)
)
+z (1− FX(x)) = P(X > x)+(1−z)P(X = x).

Then, if Z : Ω → [0, 1] is uniformly distributed and independent from X, one
has, for t ∈ [0, 1],

P
(
F̄X(X,Z) ≤ t

)
= t.

The reader can refer, for example, to [9] for a proof of this lemma in the case
of discrete variable X (which will suffice for our purposes).

3.2. Asymptotic resampling scores

Let Z : Ω → [0, 1] be uniformly distributed and independent of U. We define
the asymptotic scores at the cell and variable level by

Tg(U, Z) = μ (ξ : ρg(U) < ρg(ξ �U)) + Z μ (ξ : ρg(U) = ρg(ξ �U)) (3)

and

Tv(U, Z) = μ (ξ : ρv(U) < ρv(ξ �U)) + Z μ (ξ : ρv(U) = ρv(ξ �U)) (4)

Tg(U, Z) and Tv(U, Z) are the typical statistics used in permutation tests, es-
timating the proportion of scores that are higher than the observed one after
randomizing the sample using the group action, while counting ties with a uni-
formly distributed weight.

For the coarse-to-fine procedure, we will need one more “conditional” statis-
tic. For a given constant θG and a uniform random variable Z̃ independent of
U and Z, we define

NθG
g (U, Z) = μ (ξ : Tg(ξ �U, Z) ≤ θG) . (5)

We then let

T θG
v (U, Z, Z̃) =

1

NθG
g(v)(U, Z)

μ
(
ξ : ρv(U) < ρv(ξ �U);Tg(v)(ξ �U, Z) ≤ θG

)

+
Z̃

NθG
g(v)(U, Z)

× μ
(
ξ : ρv(U) = ρv(ξ �U);Tg(v)(ξ �U, Z) ≤ θG

)
. (6)

We call our scores asymptotic in this section because exact expectations over μ
cannot be computed in general, and can only be obtained as limits of Monte-
Carlo samples. The practical finite-sample case will be handled in the next
section.

With this notation, we let

Â = {v : Tg(v)(U, Z) ≤ θG and T θG
v (U, Z, Z̃) ≤ θV and Tv(U, Z) ≤ θ′V }

which depends on the choice of three constants, θV , θG and θ′V . We then have:
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Theorem 3.1. For all v ∈ V0:

P

(
v ∈ Â

)
≤ θ′V (7)

and for all v ∈ V00,

P

(
v ∈ Â

)
≤ θGθV (8)

This result tells us how to control the FWER for a two-level permuta-
tion test based on any scores in the (generally intractable) case in which we
can exactly compute the test statistics, when we declare an index v active if
and only if Tg(U, Z) ≤ θG and T θG

v (U, Z, Z̃) ≤ θV and Tv(U, Z) ≤ θ′V (or

max
(
T θG
v (U, Z, Z̃), θV

θ′
V
Tv(U, Z)

)
≤ θV if one wants to use a single v-indexed

statistic as considered in section 2).

Proof. For (7), we use a standard argument justifying randomization tests, that
we provide here for completeness. If v ∈ V0, we have

P

(
v ∈ Â

)
= P

(
Tg(U, Z) ≤ θG;T

θG
v (U, Z, Z̃) ≤ θV ;Tv(U, Z) ≤ θ′V

)
≤ P (Tv(U, Z) ≤ θ′V ) .

From the invariance assumption, we have

P (Tv(U, Z) ≤ θ′V ) = P (Tv(ξ �U, Z) ≤ θ′V ) for all ξ ∈ S

=

∫
S

P (Tv(ξ �U, Z) ≤ θ′V ) dμ(ξ)

= E (E (μ (ξ : Tv(ξ �U, Z) ≤ θ′V ) |U))

It now remains to remark that, for fixed U, Tv(ξ �U, Z) = F̄ζU(ζU(ξ), Z) with
ζU(ξ′) = ρv(ξ

′ �U) for x′ ∈ S. Therefore, by Lemma 3.1,

E (μ (ξ : Tv(ξ �U, Z) ≤ θ′V ) |U) = E
(
μ
(
ξ : F̄ζU(ζU(ξ), Z) ≤ θ′V

)
|U

)
= θ′V ,

(9)
which proves (7). Similarly, one has

E(NθG
g (U, Z)|U) = P (Tg(U, Z) ≤ θG|U) = θG. (10)

Let us now prove (8), assuming v ∈ V00 and letting g = g(v). We write

P

(
v ∈ Â

)
≤ P

(
Tg(v)(U, Z) ≤ θG;T

θG
v (U, Z, Z̃) ≤ θV

)
.

and find an upper bound for the right-hand side of the inequality. Using the
invariance assumption, we have

P
(
Tg(U, Z) ≤ θG;T

θG
v (U, Z) ≤ θV

)
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=

∫
S

P

(
Tg(ξ

′ �U, Z) ≤ θG;T
θG
v (ξ′ �U, Z, Z̃) ≤ θV

)
dμ(ξ′)

= E

(
μ
(
ξ′ : Tg(ξ

′ �U, Z) ≤ θG;T
θG
v (ξ′ �U, Z, Z̃) ≤ θV

))
= E

(
E

(
μ
(
ξ′ : Tg(ξ

′ �U, Z) ≤ θG;T
θG
v (ξ′ �U, Z, Z̃) ≤ θV

)
|U, Z

))

Notice that, since μ is right-invariant, we have NθG
g (ξ′�U, Z) = NθG

g (U, Z) for
all ξ′ and

T θG
v (ξ′ �U, Z, Z̃)

=
1

NθG
g (ξ′ �U, Z)

μ(ξ : ρv(ξ
′ �U) < ρv((ξ ◦ ξ′)�U)

;Tg((ξ ◦ ξ′)�U, Z) ≤ θG)

+
Z̃

NθG
g (ξ′ �U, Z)

μ(ξ : ρv(ξ
′ �U) = ρv((ξ ◦ ξ′)�U);

Tg((ξ ◦ ξ′)�U, Z) ≤ θG)

=
1

NθG
g (U, Z)

μ (ξ : ρv(ξ
′ �U) < ρv(ξ �U);Tg(ξ �U, Z) ≤ θG)

+
Z̃

NθG
g (U, Z)

μ (ξ : ρv(ξ
′ �U) = ρv(ξ �U);Tg(ξ �U, Z) ≤ θG)

Let μ̃ denote the probability μ conditional to the event (Tg(ξ �U, Z) ≤ θG)

(U, Z and Z̃ being fixed). Then

1

NθG
g (U, Z)

μ
(
Tg(ξ

′ �U, Z) ≤ θG;T
θG
v (ξ′ �U, Z, Z̃) ≤ θV

)
= μ̃

(
ξ′ : p(ξ′, Z̃) ≤ θV

)
,

where

p(ξ′, Z̃) = μ̃ (ξ : ρv(ξ �U) > ρv(ξ
′ �U)) + Z̃μ̃ (ξ : ρv(ξ �U) = ρv(ξ

′ �U))

Hence, Lemma 3.1 implies that:

E

(
1

NθG
g (U, Z)

μ
(
ξ′ : Tg(ξ

′ �U, Z) ≤ θG;T
θG
v (ξ′ �U, Z, Z̃) ≤ θV

) ∣∣∣U, Z

)
= θV .

Hence,

P

(
Tg(U, Z) ≤ θG;T

θG
v (U, Z, Z̃) ≤ θV

)
= E

(
NθG

g (U, Z)θV
)
= θV E

(
NθG

g (U, Z)
)
= θV θG.



1302 K. Lahouel et al.

Note that Theorem 3.1 is still true if one takes Z = Z̃ = 1 in the definition
of the test statistics, because the obtained detection set would then be a subset
of Â. This would have resulted in a simpler expression in which ties are fully
counted, with very little practical loss because the probability of ties in over
such permutations is typically minuscule. However, equality in equations such
as (9) will be needed in the proof of Theorem 3.2.

As an immediate corollary, we have:

Corollary 3.1.
FWER(Â) ≤ |V |θGθV + Jθ′V .

As mentioned above, this result does not have practical interest because it
requires applying all possible permutations to the data. In practice, a random
subset of permutations is picked instead, and we develop the related theory in
the next section.

3.3. Finite resampling scores

We now replace Tg, T
θG
v and Tv with Monte-Carlo estimates and describe how

the upper bounds in Theorem 3.1 need to be modified. We therefore introduce
an i.i.d. random sample ξ = (ξ1, ..., ξK) : Ω → SK , where ξk ∼ μ and K is a
positive integer. We also introduce the empirical measure:

μ̂ξ =
1

K

K∑
k=1

δξk .

With this notation, we let:

T̂g(U, ξ) = μ̂ξ (ξ
′ : ρg(U) ≤ ρg(ξ

′ �U)) ,

Ť−
g (U, ξ, ξ′) = μ̂ξ (ξ

′ : ρg(ξ
′ �U) < ρg(ξk �U)) ,

T̂v(U, ξ) = μ̂ξ (ξ
′ : ρv(U) ≤ ρv(ξ

′ �U)) ,

and

T̂ θG,εG
v (U, ξ) =

1

θG
μ̂ξ

(
ξ′ : ρv(U) ≤ ρv(ξ

′ �U); Ť−
g (U, ξ, ξ′) ≤ θG + εG

)
.

We denote by Gβ(x, a, b) the c.d.f. of a beta distribution with parameters a
and b evaluated at x ∈ [0, 1], i.e.,

Gβ(x, a, b) =
1

β(a, b)

∫ x

0

ta−1(1− t)b−1dt

with β(a, b) = Γ(a)Γ(b)/Γ(a+b). We recall that if X is binomial with parameter
n and p (X ∼ Bin(n, p)) then, for an integer t ∈ {0, . . . , n}

P (X ≤ t) = Gβ(1− p, n− t, t+ 1).
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We can now define

Â =
{
v : T̂g(v)(U, ξ) ≤ θG − εG and T̂ θG,εG

v (U, ξ) ≤ θV and T̂v(U, ξ) ≤ θ′V

}
and state:

Theorem 3.2. For v ∈ V0,

P

(
v ∈ Â

)
≤ �Kθ′V�+ 1

K + 1
. (11)

and, for v ∈ V00 and g = g(v),

P

(
v ∈ Â

)
≤ cK(θG, εG) + θGθV (12)

where

cK(θG, εG) =
�K(θG − εG)�+ 1

K + 1
Gβ(1− θG,K − �K(θG − εG)�, �K(θG − εG)�+ 2)

(13)

− θGGβ(1− θG,K − �K(θG − εG)�, �K(θG − εG)�+ 1)

+ θGGβ

(
θG, �K(θG + εG)�,K − �K(θG + εG)�

)
.

Here, �x� denotes the integer part of x.

Corollary 3.2. The FWER using the finite resampling scores is controlled by :

FWER ≤ |V |cK(θG, εG) + |V |θGθV + J
�Kθ′V�+ 1

K + 1
.

Theorem 3.2 is proved in the appendix. Neglecting the rounding error in the
last term (letting (�Kθ′V� + 1)(K + 1) � θ′V ), this theorem therefore adds the
finite-sample correction cK(θG, εG) to the asymptotic upper bound (theorem
3.1). Figure 1 plots the level curves of the logarithm of this correction as a
function of K and εG, fixing θG to values that are used in our simulations.

4. Estimating the number of indices inside active cells

We now focus on the issue of estimating from observed data the number J of
indices belonging to active cells.

4.1. Asymptotic resampling scores

Recall that:
J =

∑
g∈Gc

0

|g|,

where G0 is the set of inactive cells. Our estimation will be made based on cell
statistics (Tg(U), g ∈ G) under the following assumption. We will assume that
Tg takes small values when g is active, so that, for a suitable non conservative
threshold t0, we have P (Tg(U) ≤ t0) � 1. To simplify the argument, we will
actually make the approximation that:
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Fig 1. Level curves of the logarithm of cK(θG, εG), with θG = 2.1× 10−3

[A] There exists t0 ∈ (0, 1) such that P(Tg(U) ≤ t0) = 1 if g ∩A �= ∅.
Notice that if we denote by:

G0(U) = {g ∈ G : Tg(U) > t0},

then assumption [A] implies that G0(U) ⊂ G0. This in turn implies that:

N0(U) :=
∑

g∈G0(U)

|g| ≤
∑
g∈G0

|g| = |V | − J.

Assumption [A] therefore implies an estimator for a lower bound for |V | − J
and therefore an upper bound for J , with holds with probability one. However,
since the choice of t0 will not be conservative (typically greater than 0.25),
this upper bound will not be sharp enough to be able to take advantage of the
clustering assumption. The purpose of this part is to use the set G0(U) to derive
a less obvious and sharper upper bound of J . We start by defining the statistics
that will be used to derive the estimator. We will as usual denote our group of
transformations by S, the elements of the group by ξ and the group action by
�. We furthermore define:

• for each ξ ∈ S, N1(U, ξ) =
∑

g∈G0(U) 1Tg(ξ�U)≤t0 |g|,
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• q1(U, ε) = sup {n ∈ N : μ (ξ : N1(U, ξ) ≥ n) > 1− ε} .
• Finally,

Ĵ(U, ε) = |V | − (N0(U) + q1(U, ε)) . (14)

With this notation, we have the following main result.

Theorem 4.1. Assuming [A], we have:

P

(
Ĵ(U, ε) < J

)
≤ ε. (15)

Proof. First, let us remark that proving (15) is equivalent to proving:

P

(
N0(U) + q1(U, ε) ≥

∑
g∈G0

|g|
)

≤ ε, (16)

and that we can write

P

(
N0(U) + q1(U, ε) ≥

∑
g∈G0

|g|
)

= P

(
q1(U, ε) ≥

∑
g∈G0

1Tg(U)≤t0 |g|
)
.

Now define:
Ñ1(U) =

∑
g∈G0

1Tg(U)≤t0 |g|.

Since G0(U) ⊂ G0, we have Ñ1(ξ�U) ≥ N1(U, ξ) for every ξ ∈ S, and q̃1(U, ε)
defined as:

q̃1(U, ε) = sup
{
n ∈ N : μ

(
ξ : Ñ1(ξ �U) ≥ n

)
> 1− ε

}
satisfies q̃1(U, ε) ≥ q1(U, ε) so that

P

(
q1(U, ε) ≥

∑
g∈G0

1Tg(U)≤t0 |g|
)

≤ P

(
q̃1(U, ε) ≥

∑
g∈G0

1Tg(U)≤t0 |g|
)
.

By noticing that q̃1(U, ε) = q̃1(ξ�U, ε) for every ξ ∈ S by definition of q̃1, and
that the distribution of

∑
g∈G0

1Tg(U)≤t0 |g| is invariant under the action of any
element ξ ∈ S, we have the following:

P

(
q̃1(U, ε) ≥

∑
g∈G0

1Tg(U)≤t0 |g|
)

= E

(
μ
(
ξ : q̃1(U, ε) ≥ Ñ1(ξ �U)

))
.

But
μ
(
ξ : q̃1(U, ε) ≥ Ñ1(ξ �U)

)
≤ ε

by definition of q̃1 and (16) is proved.

Remark about another version/relaxation of assumption [A]. A re-
laxation of assumption [A] could be the following:
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• [Ã] : Assume that there exists 0 ≤ r ≤ 1 such that:

P (|G0(U) ∩Gc
0| > rJ) = 0

where Gc
0 = V \G0.

The last probability can be non-zero but negligible when compared to the
FWER. Assuming [Ã], one can replace the estimator Ĵ(U , ε) by the following
estimator:

J̃(U , ε) :=
1 + r

1− r
(|V | −N0(U))− q1(U , ε),

and have the same conclusion as theorem (4.1), namely:

P

(
J̃(U , ε) < J

)
≤ ε.

The reason why the theorem is true, assuming [Ã], is that N0(U) = |G0(U)∩
Gc

0|+ |G0(U)∩G0| ≤ rJ + |G0(U)∩G0|. Therefore, |V | −N0(U) ≥ (1− r)J +
|Gc

0(U)∩G0| and 1+r
1−r (|V | −N0(U)) ≥ (1+r)J+ |Gc

0(U)∩G0| with probability
1. Also, we have that q1(U , ε) ≤ q̃1(U , ε) + rJ with probability 1. As a result:

P

(
J̃(U , ε) < J

)
≤ P (q̃1(U , ε) ≥ |Gc

0(U) ∩G0|) .

The proof that the last probability is less than ε is now identical to theorem
(4.1).

Let us now compare the estimators Ĵ(U , ε) and J̃(U , ε). Let us recall that:

Ĵ(U , ε) = (|V | −N0(U))− q1(U , ε).

The difference between the two estimators is the first term of the difference,
which is 1+r

1−r (|V | −N0(U)) for J̃(U , ε). On ”average”, one will get this term

for Ĵ(U , ε) with 1+r
1−r t0 instead of t0 for the assumption [A]. One can therefore

view Ĵ(U , ε) as an estimator that is at least as conservative as the one using
assumption [Ã] with 1−r

1+r t0 instead of t0. In our simulations, we used t0 = 0.3

for the derivation of Ĵ(U , ε). Suppose for example that r = 0.1 in assumption
[Ã]. This implies that our estimator Ĵ(U , ε) is at least as conservative as the
estimator J̃(U , ε) with r = 0.1 and t0 = 0.9

1.10.3 = 0.2454 for [Ã].

4.2. Finite resampling scores

We now discuss how the previous estimation of J can be modified when the uni-
form measure on S is approximated by random sampling. Assuming two inde-
pendent groups of i.i.d. samples of μ, ξ = (ξ1, ξ2, ..., ξK) and ξ′ = (ξ′1, ξ

′
2, ...ξ

′
K′),

and using the notation of section 3.3, we define:

T̂g(U, ξ) = μ̂ξ (ξ
′ : ρg(U) ≤ ρg(ξ

′ �U)) =
1

K

K∑
k=1

1ρg(U)≤ρg(ξk�U)
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and for every i ∈ {1, 2, ...,K ′}:

Ťg(U, ξ, ξ′i) = T̂g(ξ
′ �U, ξ ◦ ξ′i

−1
) =

1

K

K∑
k=1

1ρg(ξ′i�U)≤ρg(ξk�U), .

We replace the assumption [A] of the previous section by the assumption [Â]:

[Â] There exists t0 ∈ (0, 1) such that P(T̂g(U, ξ) ≤ t0) = 1 if g ∩A �= ∅.
Notice that is possible to keep the previous assumption [A] and replace t0 by
t0+ ε in [Â] and the probability 1 by 1−exp (−2Kε2), using a Hoeffding bound.
We now provide an upper bound Ĵ of the number of indices belonging to active
cells using the finite resampling scores. We will use the following notation.

• Let Ĝ0(U, ξ) = {g ∈ G : T̂g(U, ξ) > t0}. (Notice that assumption [Â]

implies that Ĝ0(U, ξ) ⊂ G0).

• Let N̂0(U, ξ) =
∑

g∈G |g|1T̂g(U,ξ)>t0
and N̂1(U, ξ) =

∑
g∈G0

|g|1T̂g(U,ξ)≤t0
,

so that
N̂0(U, ξ) + N̂1(U, ξ) = |V | − J.

• For each i ∈ {1, 2, ...,K ′}, Ň1(U, ξ, ξ′i) =
∑

g∈Ĝ0(U,ξ) |g|1Ťg(U,ξ,ξ′i)≤t0
.

• The order statistics of the K ′ random variables

Ň1(U, ξ, ξ′1), Ň1(U, ξ, ξ′2), ..., Ň1(U, ξ, ξ′K′),

will be denoted by:

Ň1(U, ξ, ξ′(1)), Ň1(U, ξ, ξ′(2)), ..., Ň1(U, ξ, ξ′(K′)).

(Ň1(U, ξ, ξ′(1)) being the smallest statistic).

• Finally, define

Ĵ(U, ξ, ξ′, p) = |V | −
(
N̂0(U, ξ) + Ň1(U, ξ, ξ′(p))

)
.

Notice that the computation of Ĵ(U, ξ, ξ′, p) requires the computation of
just K +K ′ scores.

We have the following result.

Theorem 4.2.

P

(
Ĵ(U, ξ, ξ′, p) < J

)
≤ p− 1

K ′ .

Proof. We first notice that Ĵ(U, ξ, ξ′, p) = J+N̂1(U, ξ)−Ň1(U, ξ, ξ′(p)), so that

P

(
Ĵ(U, ξ, ξ′, p) < J

)
= P

(
Ň1(U, ξ, ξ′(p)) > N̂1(U, ξ)

)
≤ P

(
Ñ1(U, ξ, ξ′(p)) > N̂1(U, ξ)

)
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where for each i ∈ {1, 2, ...,K ′},

Ñ1(U, ξ, ξ′i) =
∑
g∈G0

|g|1Ťg(U,ξ,ξ′i)≤t0

and Ñ1(U, ξ, ξ′(p)) is the corresponding pth order statistic. The last inequality

holds because, for every j, Ñ1(U, ξ, ξj) ≥ Ň1(U, ξ, ξ′j), which implies

Ñ1(U, ξ, ξ′(p)) ≥ Ň1(U, ξ, ξ′(p))

We then have:

P
(
Ñ1(U, ξ, ξ′(p)) > N̂1(u, ξ)

)
= P

(
|{i : Ñ1(U, ξ, ξ′i) < N̂1(U, ξ)}| < p

)
.

Notice that given ξ and U, the variable |{i : Ñ1(U, ξ, ξ′i) < N̂1(u, ξ)}| follows
a Binomial distribution with K ′ number of trials and a probability of success
that is equal to:

μ
(
ξ′ : Ñ1(U, ξ, ξ′) < N̂1(U, ξ)

)
.

Using the fact that Ťg(U, ξ, ξ′) = Ťg(ξ
′ �U, ξ ◦ ξ′−1

), we have:

Ñ1(U, ξ, ξ′) = Ñ1(ξ
′ �U, ξ ◦ ξ′−1

),

and

μ
(
ξ′ : Ñ1(U, ξ, ξ′) < N̂1(U, ξ)

)
= μ

(
ξ′ : Ñ1(ξ

′ �U, ξ ◦ ξ′−1
) < N̂1(U, ξ)

)
.

At this point, we notice that S acts on U ×SK via the group action:

(ξ′, (U, ξ)) → (ξ′ �U, ξ ◦ ξ′−1
),

and this group action leaves invariant the joint distribution of (U, ξ). Therefore,

the distribution of μ
(
ξ′ : Ñ1(U, ξ, ξ′) < Ñ1(U, ξ)

)
is dominated by the distri-

bution of a uniform random variable on [0, 1] and the proof of the 4.2 follows
immediately using the same argument used to prove inequality (19) in Theorem
3.2.

4.3. Application to the coarse-to-fine algorithm

Subsection 4.2 provided us with an estimator Ĵ = Ĵε in (14) such that Ĵ > J
with probability larger than 1− ε, which implies that

FWER(Â) ≤ |V | p00(θG, θV ) + Ĵ p0(θ
′
V ),

with probability 1− ε at least.
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In section 3, we provided a nonparametric coarse-to-fine procedure controlling
the FWER by choosing constants θG, θV and θ′V controlling the upper-bound at
a significance level α. This was done using a deterministic upper-bound of J , but
cannot be directly applied with a data-based estimation of J because this would
define data-dependent constants, which cannot be plugged into the definition
of the set Â without invalidating our estimation of the FWER. In other terms,
if, for a fixed number J ′, one defines ÂJ ′ to be the discovery set obtained by
optimizing θG and θV subject to |V | p00(θG, θV ) + J ′ p0(θ

′
V ) ≤ α, our previous

results imply that FWER(ÂJ ′) ≤ α for all J ′ ≥ J , but not necessarily that
FWER(ÂĴ ) ≤ α+ ε.

A simple way to address this issue is to replace ÂĴ with

Ã =
⋂

J ′≤Ĵ

ÂJ ′ .

Because Ã ⊂ ÂJ with probability at least 1− ε, we have

FWER(Ã) = P (Ã ∩ V0 �= ∅) ≤ P (ÂJ ∩ V0 �= ∅) + ε = FWER(ÂJ) + ε,

so that Ã controls the FWER at level α+ ε as intended.

4.4. Suggested coarse-to-fine procedure

The coarse-to-fine estimator relies on the choices of the constants θG, θV , θ
′
V

and εG and on the number of simulations, K. They were determined as follows
in our experiments, for a control of the FWER at level α.

i. Fix ε < α and compute Ĵε, the estimated upper bound of J . We took
ε = α

10 in our experiments.
ii. Fix a small δ > 0 (δ = 10−4 in our experiments), and select θV = θG and

θ′V = |V |θ2G/Ĵε such that 2|V |θ2G ≤ α− ε− δ.
iii. We choose any K and εG such that |V |cK(θG, εG) ≤ δ, for some small

δ > 0.

These choices, which have the merit to be simple, albeit non-optimal, were
found to perform well in our simulations (see section 6).

5. Model-based analysis

In this section, we propose an alternate coarse-to-fine testing procedure, adapted
to a specific regression model. In this framework, it is possible to obtain esti-
mates for the power of the obtained test, and optimize its parameters on this
basis. We will use this analysis as a benchmark to compare with the general
non-parametric approach provided in the previous sections. We will assume, for
simplicity, that all the cells have the same size, so |g| is constant for g ∈ G.
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5.1. Regression model

We assume that the observation is a realization of an i.i.d. family of random
variables U = ((Y k, Xk), k = 1, . . . n) where the Y ’s are real-valued and Xk =
(Xk

v , v ∈ V ) is a high-dimensional family of variables indexed by the set V .
We also assume that Xk

v , v ∈ V , are independent and centered Gaussian, with
variance σ2

v , and that

Y k = a0 +
∑
v∈A

avX
k
v + ψk

where ψ1, . . . , ψn are i.i.d. Gaussian with variance σ2, and av, v ∈ A, are un-
known real coefficients. We will denote by Y the vector (Y 1, . . . , Y n) and let
Ȳ =

(∑n
k=1 Y

k/n
)
1n where 1n is the vector composed by ones repeated n

times. We also let Xv = (X1
v , . . . , X

n
v ) and ψ = (ψ1, . . . , ψn), so that

Y =
∑
v∈A

avXv +ψ.

Finally, we will denote by σ2
Y the common variance of Y 1, . . . , Y n and assume

that it is known (or estimated from the observed data).

5.2. Scores

For v ∈ V , we denote by πv the orthogonal projection on the subspace Sv

spanned by the two vectors Xv and 1n. We will also denote by πg (g ∈ G) the
orthogonal projection on the subspace Sg spanned by the vectors Xv, v ∈ g,
and 1n, and let

Tg(U) =
‖πgY‖2 − ‖Ȳ‖2

σ2
Y

,

Tv(U) =
‖πvY‖2 − ‖Ȳ‖2

σ2
Y

.

(The projections are simply obtained by least-square regression of Y on Xv, v ∈
g, for πg and on Xv for πv.) We now provide estimates of

p00(θG, θV ) = P

(
‖πgY‖2 − ‖Ȳ‖2

σ2
Y

> θG;
‖πvY‖2 − ‖Ȳ‖2

σ2
Y

> θV

)

for v ∈ V00 and g = g(v) and

p0(θV ) = P

(
‖πvY‖2 − ‖Ȳ‖2

σ2
Y

> θV

)

for v ∈ V0. Note that, because we consider residual sums of squares, we here use
large values of the scores in the rejection regions (instead of small values in the
introduction and other parts of the paper), hopefully without risk of confusion.
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Proposition 5.1. For all θG and θV and g ∈ G0:

p00(θG, θV ) ≤ C(|g|) exp
(
−θG

2

)
θ

|g|
2

G

(
1−Gβ

(
θV
θG

,
1

2
,
|g|+ 1

2

))
+ (1− F1(θG − |g|+ 1)) ,

where F1 is the c.d.f. of a chi-squared distribution with one degree of freedom
and

C(|g|) =
exp ( |g|−1

2 )
√
2(|g| − 1)

(
|g|−1

2 )

Γ( |g|2 + 1
2 )

Γ( |g|2 + 1)
.

Moreover
p0(θV ) ≤ 1− F1(θV ).

Note that the upper-bound for p00 is larger than 1 when θG ≤ |g|−1, so that
this estimate is useful only when θG > |g| − 1.

Proof. For v ∈ V00 and g = g(v), we have

σ2
Y =

∑
v∈A

a2vσ
2
v + σ2 =

∑
v∈A∩gc

a2vσ
2
v + σ2

because A ∩ gc = A. Consider the conditional probability:

P

(
‖πgY‖2 − ‖Ȳ‖2

σ2
Y−g

> θG;
‖πvY‖2 − ‖Ȳ‖2

σ2
Y−g

> θV

∣∣∣ (Xv)v∈g

)
.

The conditional distribution of Y given (Xv)v∈g is Gaussian N (0, σ2
Y In)

(where In is the n-dimensional identity matrix). Denote by π′
v the projection on

the orthogonal complement of J in Sv and by π′
g the projection on the orthogonal

complement of Sv in Sg, so that

‖πgY‖2 − ‖Ȳ‖2 = ‖π′
gY‖2 + ‖π′

vY‖2

and
‖πvY‖2 − ‖Ȳ‖2 = ‖π′

vY‖2.
This implies that:

P

(
‖πgY‖2 − ‖Ȳ‖2

σ2
Y

> θG;
‖πvY‖2 − ‖Ȳ‖2

σ2
Y

> θV

∣∣∣ (Xv)v∈g

)
=

P

(
‖π′

gY‖2 + ‖π′
vY‖2

σ2
Y

> θG;
‖π′

vY‖2

σ2
Y

> θV

∣∣∣ (Xv)v∈g

)

At this stage, one can apply Cochran’s theorem to P ′
g(Y/σY) and P ′

v(Y/σY),
which are conditionally independent given Xv, v �∈ G, to reduce the problem to
finding an upper bound for:

P (η + ζ ≥ θG; ζ ≥ θV ) ,
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where η is χ2(|g| − 1) and ζ is χ2(1), and the two variables are independent.
Assume that θ′G = θG − |g|+ 1 > 0 and write this probability as

P (η + ζ ≥ θG, θV ≤ ζ < θ′G) + P (η + ζ ≥ θG, ζ ≥ θV , ζ ≥ θ′G) ,

which is less than:

P (η + ζ ≥ θG, θV ≤ ζ < θG) + (1− F1(θ
′
G)).

The first term in the sum can be re-written as

E
(
P(η ≥ θG − ζ|ζ)1θV ≤ζ<θ′

G

)
.

We will use the following tail inequality for the c.d.f., Fk, of a χ2(k) random
variable, stating that

1− Fk(zk) ≤ (z exp(1− z))
k
2 ,

for any z > 1. We apply this result to k = |g| − 1 and z = θG−V
|g|−1 and write

(using the fact that the p.d.f. of a χ2(1) is z−1/2ez/2/(
√
2Γ(1/2)) for z > 0)

E
(
P(η ≥ θG − ζ|ζ)1θV ≤ζ<θ′

G

)
≤ E

⎛
⎝(

θG − ζ

|g| − 1
exp

(
1− θG − ζ

|g| − 1

)) |g|−1
2

1θV ≤ζ<θG

⎞
⎠

=

∫ θG

θV

(θG − z)|g|/2−1/2

Γ(1/2)
√
2(|g| − 1)|g|/2−1/2

z−1/2e−
tg′
2 dz

≤ θ
|g|
2

G e−
θ′G
2

Γ(1/2)
√
2(|g| − 1)|g|/2−1/2

∫ 1

θV /tg

(1− z)|g|−1/2z−1/2dz

= C(|g|)θ
|g|
2

G e−
θG
2

(
1−Gβ

(
θV
θG

,
1

2
,
|g|+ 1

2

))
.

The second upper-bound, for p0(θV ), is easily obtained, and left to the reader.

This leads us immediately to the following corollary:

Corollary 5.1. With the thresholds θG and θV , an upper bound of the FWER
is:

FWER(Â) ≤ |V |C(|g|) exp
(
−θG

2

)
θ

|g|
2

G

(
1−Gβ

(
θV
θG

,
1

2
,
|g|+ 1

2

))
+ |V | (1− F1(θG − |g|+ 1)) + J |g| (1− F1(θV )) . (17)

Figure 2 provides an illustration of the level curves associated to the above
FWER upper bound. More precisely, it illustrates the tradeoff between the con-
servativeness at the cell level and at the individual index level. In the next
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Fig 2. Level curves of the upper bound of the FWER for the levels 0.2 (blue), 0.1 (green)
and 0.05 (red). The horizontal dashed lines represent the thresholds at the individual level for
a Bonferroni-Holm test, with corresponding colors. For this figure, V = 104, J = 600 and
g = 10

section, the optimization for power will be made along these level lines. Figure
2 also provides the value of the Bonferroni-Holm threshold. For the coarse-to-
fine procedure to be less conservative than the Bonferroni-Holm approach, we
need the index-level threshold to be smaller, i.e., the optimal point on the level
line to be chosen below the corresponding dashed line.

The derivation of (17) is based on the assumption that we have a fixed cell
size (across all the cells). If this is not true, it is easy to generalize the previous
upper bound. Letting

φ(|g|, θG, θV ) = C(|g|) exp
(
−θG

2

)
θ

|g|
2

G

(
1−Gβ

(
θV
θG

,
1

2
,
|g|+ 1

2

))
,

it suffices to replace |V |φ(|g|, θG, θV ) in (17) with
∑

g∈G |g|φ(|g|,
√
|g|θG, θV )

where θG does not depend on the cell g.

5.3. Optimal thresholds

Equation (17) provides a constraint on the pair (θG, θV ) to control the FWER
at a given level. We now show how to obtain “optimal” thresholds (θ∗G, θ

∗
V ) that

maximize the probability of detection subject to this constraint. The discussion
will also help understanding how active indices clustering in cells improves the
power of the coarse-to-fine procedure.

The conditional distribution ofY given (Xv, v ∈ g) isN (
∑

v∈g∩AavXv, σ
2
Y−g)

with σ2
Y−g =

∑
v∈A∩gc a2vσ

2
v+σ2. It follows from this that, conditionally to these

variables, (‖PgY‖2 − ‖Ȳ‖2)/σ2
Y−g follows a non-central chi-square distribution

χ2(ρg(Xv, v ∈ g), |g|), with

ρg(Xv, v ∈ g) =
‖
∑

v∈g∩A av(Xv − X̄v)‖2

σ2
Y−g
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where X̄v = 1
n

∑n
k=1 X

k
v1n. Using the fact that ρg(Xv, v ∈ g)/n converges to

ρg :=

∑
v∈g∩A a2vσ

2
v

σ2
Y−g

,

we will work with the approximation

‖PgY‖2 − ‖Ȳ‖2

σ2
Y−g

∼ χ2(nρg, |g|).

With a similar analysis, and letting for v ∈ A, σ2
Y−v =

∑
v′∈A\v a

2
v′σ2

v′ + σ2, we
will assume that

‖PvY‖2 − ‖Ȳ‖2

σ2
Y−v

∼ χ2(nρv, 1)

with

ρv :=
a2vσ

2
v

σ2
Y−v

.

Therefore, an approximation of a lower bound for the probability of detection
of an active index v in a cell g will be:

P

(
v ∈ Â

)
≥ 1− F|g|(θG, nρg)− F1(θV , nρv), (18)

where Fk(x, δ) is the c.d.f of a non-central chi-squared distribution with k de-
grees of freedom and δ as a non-centrality parameter evaluated at x.

We use the lastest result in the following way. One can fix a target effect
size η (the ratio of the effect of Xv compared to the total variance of Y), and a
target cluster size, k, that represents the number of active loci that we expect to
find in an active cell, and take ρv = η and ρg = kη to optimize the lower-bound
in (18) subject to the FWER constraint (17). This provides optimal constants
(θG, θV ) for this target case. This is illustrated with numerical simulations in
the next section.

6. Simulations and power comparison

In this section, we will first generate simulations under the model of section 5.
The purpose of the simulations will be to first show the effect of the coarse-to-fine
algorithm on the detection power. It will also illustrate the effect of optimizing
the thresholds, assuming a parametric model. Of course, as mentioned in the
introduction, the default coarse-to-fine algorithm that should be considered is
the non-parametric version of section 3. Therefore, we will compare it with the
Bonferroni-Holm approach but also the parametric coarse-to-fine when the data
has been generated by the parametric model.

Our second set of experiments uses the software PLINK [17] to simulate case
control genome-wide association studies, where the indices will corresponds to
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SNPs and compare the (non-parametric) coarse-to-fine approach to the Bonferroni-
Holm procedure. In this setting we will also allow the variables Xv to be corre-
lated.

As a main expected observation, all these simulations will illustrate the idea
that the more clustered the active indices, the more powerful the coarse-to-fine
procedure will be compared to the Bonferroni-Holm procedure.

6.1. Simulations under the parametric model

We let |V | = 104 with 400 cells of size |g| = 25 each. We assume n = 300
observations for the model

Y k = a0 +
∑
v∈A

avX
k
v + ψk, k = 1, . . . , n

with a0 = 0 and av = 1, for all v ∈ A. We also let the Xv’s and ψ be i.i.d
standard normals. We will control the FWER at level α = 0.1.

We will consider two versions of the parametric coarse-to-fine procedure. The
first one is a best-case scenario, run under the optimistic assumption that the
true values of ρg and ρv are known in (18). The second is a more realistic, but
sub-optimal, procedure in which the sum of the first two terms in (17), and the
last term in the same equation are adjusted to both equal α/2. Both will be
compared to the Bonferroni-Holm procedure.

The first simulation illustrates the effect of optimization over the thresholds
on the parametric version of the coarse-to fine algorithm. More precisely, we
consider 3 scenarios of a fixed active index contained in a cell having respectively
0,1 and 2 other active indices. For each of these scenarios, we will be interested in
the probability of detection of such an index. This is illustrated in figures 3, 4 and
5. Unsurprisingly, the procedure using optimized parameters outperforms the
other two but the coarse-to-fine approach using default parameters significantly
improves on Bonferroni-Holm when the number of active indices in the cell is
more than 1. We also note that the lower bound computed in (18) is most of
the time quite close to the true probability of detection.

In the second set of simulations, we consider five scenarios varying the number
of active cells and indices, namely (1) 20 active cells with 1 active index each;
(2) 10 active cells with 2 active indices; (3) 4 active cells with 5 active indices;
(4) 2 active cells with 10 active indices; (5) 1 active cell with 20 active indices. In
each case, we ran 100 simulations from which we computed the average number
of true detections. The results are provided in table 1 and also include the non-
parametric coarse-to-fine method. We found that the fully-informed parametric
methods outperforms all others with some margin, the parametric method with
default parameters is only slightly better than the non-parametric one. All three
outperform Bonferroni-Holm as soon as the number of active indexes in cells is
more than 1.

Figure 6 provides the average estimated upper-bound for the number of active
cells used in the coarse-to-fine methods. Even is this upper-bound is conserva-
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Fig 3. Probability of detection as a function of θV in the admissible space, using the para-
metric coarse-to-fine procedure for an active cell with 1 active index. The value of θG is
determined by the implicit equation FWER(θV , θG) = α. Coarse-to-fine true represents the
estimated true probability of detection via Monte Carlo simulation. Coarse-to-fine lower bound
represents the lower bound of the probability of detection obtained via (18). We fixed Ĵ0.01 to

the value 40×25, which is an upper bound of Ĵ for all the simulations performed. As expected,
the Bonferroni-Holm procedure is better, given that the clustering assumption is not true.

Fig 4. Probability of detection as a function of θV in the admissible space, using the para-
metric coarse-to-fine procedure for an active cell with 2 active indices. The CTF procedure
outperforms Bonferroni-Holm in this case (even when using the default choice for the thresh-
olds). See Fig. 3 for additional details.

tive and estimate about 20 more cells that their real number, the number of
detections is only slightly affected.

6.2. Simulations using the PLINK software

In a second set of simulations, we use the PLINK software to generate case
control studies, where the indexes v ∈ V represent SNPs. The variable Xv takes
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Fig 5. Probability of detection as a function of θV in the admissible space, using the para-
metric coarse-to-fine procedure for an active cell with 3 active indices. The CTF procedure
outperforms Bonferroni-Holm. See Fig. 3 for additional details.

Table 1

Average number of true detections for each of the 4 methods, from left to right:
coarse-to-fine using the optimized thresholds, parametric coarse-to-fine using the default
thresholds, non parametric coarse-to-fine using default parameters, and Bonferroni-Holm.

The total number of active indices is 20 in all cases.

Active indices Optimal Parametric Nonparametric
per active cell CTF CTF CTF BH

1 3.88 3.88 3.85 5.11

2 7.82 7.35 6.09 5.11

4 9.69 8.56 8.13 5.11

5 11.03 8.68 8.15 5.11

20 11.52 9.34 9.12 5.11

ternary values: 0 if both alleles in the SNP are wild-type (the major allele in
the population), 1 if one of the alleles is a variant and 2 if both alleles are.
The major allele frequency range is [0.8, 0.95]. The total number of SNPs is
|V | = 104. The Xv’s will either be simulated as independent variables, of with
some “linkage disequilibrium” (LD) in which case each SNP is paired is another
with a correlation equal to 0.8.

From these SNPs, a binary phenotype Y (cases vs. controls) is generated,
yielding n = 600 samples, 300 cases (Y = 1) and 300 controls (Y = 0). The
generative model for Y is logistic

P (Y = 1|Xv, v ∈ V ) ∝ exp

(
a0 +

∑
v∈A

avXvY

)
,

with av = log 2 for v ∈ A. This sets the odds ratio for active SNPs is set to 2,



1318 K. Lahouel et al.

Fig 6. Plot of the average upper bound of the number of active cells as a function the true
number. Even though this upper bound is not particularly tight, it will be sufficient to ensure
that coarse-to-fine outperforms the Bonferroni-Holm procedure.

where

odds ratio =
P (Y = 1|Xv = 1, Xv′ , v′ �= v)/P (Y = 0|Xv = 1, Xv′ , v′ �= v)

P (Y = 1|Xv = 0, Xv′ , v′ �= v)/P (Y = 0|Xv = 0, Xv′ , v′ �= v)
= eav .

We consider cells (loosely interpreted as “genes”) of fixed size, νG, with a ran-
dom assignment of active SNPs to cells based on a variant of a Chinese restau-
rant process [1]. More precisely, assume that the active indices are 1, 2, ..., |A|,
and denote by C1, C2, . . . , C|A| the random variables representing the cells to
which each active index is assigned. The sequence C1, . . . , C|A| is generated as
follows.

i) C1=1
ii) Iterate over k = 1, 2, . . . , |A| (|A| = 25 for all cases). For a given k, let

Nk = maxk{C1, . . . , Ck} and for i = 1, . . . , Nk, let ni =
∑k

j=1 1Cj=i be
the number of indices assigned to cell i. Then

P (Ck+1 = i) ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α

k + α
if i = Nk + 1

ni

k + α
if i ≤ Nk and ni < νG

0 otherwise

Here, α is a parameter controlling the clustering of the indices. The smaller α,
the more clustered the active indices will be within active cells (see figure 7).
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Fig 7. Expected number of active indices per active cell as a function of α, the clustering
parameter of our assignment process. In this case where the size of a cell is greater or equal
than the number of active indices, our clustering process corresponds exactly to a Chinese
restaurant process.

We generated datasets with the previous parameters, iterating over α = 0.5,
1, 5, 10, 20, 30, 40 and 50 in the Chinese restaurant process and considering
four cases: (I) νG = 10, no LD; (II) νG = 25, no LD; (III) νG = 10, LD = 0.8;
(III) νG = 25, LD = 0.8. In each case, we took the average over 50 simulations.

Since we are interested in the effect of clustering on the performance of the
coarse-to-fine algorithm compared to the Bonferroni-Holm procedure, and not
the effect of α itself, we excluded the rare events where we generated a ran-
dom clustering where the number of active cells decreased after increasing the
parameter α. Table 2 illustrates the estimation of the upper bound of the num-
ber of active cells for the independent and correlated datasets. Tables 3 com-
pares the performance of the non-parametric coarse-to-fine procedure with the
Bonferroni-Holm procedure.

7. Discussion

Given a partition of the space of hypotheses, the basic assumption which allows
the coarse-to-fine multiple testing algorithm to obtain greater power than the
Bonferroni-Holm approach at the same FWER level is that the distribution of
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Table 2

Comparison between the true number of indices in active cells (J) and the estimated upper

bound (Ĵ) averaged over 50 simulations, as a function of the clustering parameter of the
Chinese restaurant process (α), for cell sizes |g| = 25 or 10, in the independent and

correlated cases.

Independent SNPs Correlated SNPs

|g| = 25 |g| = 10 |g| = 25 |g| = 10

α J Ĵ J Ĵ J Ĵ J Ĵ

0.5 50 595 30.4 344.2 85 535 34.2 184.6

1 132.5 658 51.2 373.8 128 556.5 50.6 192

5 232 711 94 398.4 218.5 600 89.8 217.2

10 316 754.5 124.4 426.6 298 632.5 119.4 232.8

20 390.5 791 154.4 447.2 376 690 151.2 255.6

30 454 809 178.8 463.2 441 704.5 177.6 271.2

40 502 821.5 192.6 481 500.5 730.5 197 282

50 530.5 830 202.2 482.4 525 750 212.2 285.8

Table 3

Comparison between the average number of true detections for the coarse-to-fine (CTF) and
Bonferroni-Holm (BH) procedures averaged over 50 simulations, as functions of the

clustering parameter of the Chinese restaurant process (α), for cell sizes |g| = 25 or 10, in
the independent and correlated cases.

Independent SNPs Correlated SNPs

|g| = 25 |g| = 10 |g| = 25 |g| = 10

α CTF BH CTF BH CTF BH CTF BH

0.5 10.6 5.2 9.4 5.08 10.6 4.76 11.6 3.7

1 9.94 5.2 8.66 5.08 10.14 4.76 10.08 3.7

5 9.18 5.2 7.76 5.08 9.52 4.76 10.02 3.7

10 8.14 5.2 7.36 5.08 8 4.76 9.68 3.7

20 7.22 5.2 7.04 5.08 7.28 4.76 8.24 3.7

30 6.26 5.2 6.88 5.08 6.68 4.76 7.64 3.7

40 4.06 5.2 5.2 5.08 5.06 4.76 5.8 3.7

50 3.8 5.2 5 5.08 4.6 4.76 4.98 3.7

the numbers of active hypotheses across the cells of the partition is non-uniform.
The gap in performance is then roughly proportional to the degree of skewness.
The test derived for the parametric model can be seen as a generalization to
coarse-to-fine testing of the F-test for determining whether a set of coefficients is
zero in a regression model; the testing procedure derived for the non-parametric
case is a generalization of permutation tests to a multi-level multiple testing.
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This scenario was motivated by the situation encountered in genome-wide
association studies, where the hypotheses are associated with genetic variations
(e.g., SNPs), each having a location along the genome, and the cells are as-
sociated with genes. In principle, our coarse-to-fine procedure will then detect
more active variants to the extent that these variants cluster in genes. Of course
this extent will depend in practice on many factors, including effect sizes, the
representation of the genotype (i.e., the choice of variants to explore) as well as
the phenotype, and complex interactions within the genotype. It may be very
difficult and uncommon to know anything specific about the expected nature of
the combinatorics between genes and variants. In some sense, “the proof is in
the pudding,” in that one can simply try both the standard and coarse-to-fine
approaches and compare the sets of variants detected. Given tight control of
the FWER, everything found is likely to be real. Indeed, the analytical bounds
obtained here make this comparison possible, at least under linear models com-
monly used in GWAS and in a general non-parametric model under invariance
assumptions.

Looking ahead, we have only analyzed the coarse-to-fine approach for the
simplest case of two-levels and a true partition, i.e., non-overlapping cells. The
methods for controlling the FWER for both the parametric and non-parametric
cases generalize naturally to multiple levels assuming nested partitions. The
analytical challenge is to generalize the coarse-to-fine approach to overlapping
cells, even for two levels: while our methods for controlling the FWER remain
valid, they are likely to become overly conservative if cells overlap (however, one
could artificially create the partitions by imposing the constraint of assigning
at most one cell to an index). This case is of particular interest in applications,
where genes are grouped into overlapping “pathways.” For example, in Systems
Biology, cellular phenotypes, especially complex diseases such as cancer, are
studied in the context of these pathways and mutated genes and other abnor-
malities are in fact known to cluster in pathways; indeed, this is the justification
for a pathway-based analysis. Hence the clustering properties may be stronger
for variants or genes in pathways than for variants in genes.

Appendix A: Proof of Theorem 3.2

The proof of Theorem 3.2 is based on the introduction of randomized finite
sampling scores, allowing us to use lemma 3.1 at multiple occurrences. These
randomized scores will be less conservative (but significantly more complex)
than the scores that were introduced before Theorem 3.2, which will therefore
be obtained as a corollary of the present proof.

Let us first recall our notation and introduce some new one. For a positive
integer K, we let μ be the uniform probability on S and let ξ = (ξ1, ..., ξK) ∈
SK where ξ1, . . . , ξK are independent and have distribution μ. Also, we de-
fine Z = (Z1, ..., ZK) and Z̃ = (Z̃1, ..., Z̃K) where Z1, . . . , ZK and Z̃1, . . . , Z̃K

are independent random variables uniformly distributed on [0, 1], that are also
independent of U and ξ. We will also need two additional independent uni-
formly distributed variables, Z and Z̃, also independent of all other variables.
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All these variables are assumed to be defined on a probability space (Ω,P). We
also introduce the empirical measures

μ̂ξ =
1

K

K∑
k=1

δξk , μ̂ξ,Z =
1

K

K∑
k=1

δξkδZk
, and μ̂ξ,Z̃ =

1

K

K∑
k=1

δξkδZ̃k
.

With these notations, we let:

T̂g,r(U, ξ,Z, Z)

= μ̂ξ (ξ
′ : ρg(U) < ρg(ξ

′ �U)) + μ̂ξ,Z ((ξ′, z′) : ρg(U) = ρg(ξ
′ �U); z′ ≤ Z)

=
1

K

K∑
k=1

(
1ρg(U)<ρg(ξk�U) + 1ρg(U)=ρg(ξk�U)1Zk≤Z

)

Ťg,r(U, ξ,ZK , ξ′, Z) = T̂g(ξ
′ �U, ξ ◦ ξ′−1

,Z, Z)

=
1

K

K∑
k=1

(
1ρg(ξ′�U)<ρg(ξk�U) + 1ρg(ξ′�U)=ρg(ξk�U)1Zk≤Z

)
,

T̂v,r(U, ξ,Z, Z)

= μ̂ξ (ξ
′ : ρv(U) < ρv(ξ

′ �U)) + μ̂ξ,Z ((ξ′, z′) : ρv(U) = ρv(ξ
′ �U); z′ ≤ Z)

and

T̂ θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃)

=
1

θG
μ̂ξ

(
ξ′ : ρv(U) < ρv(ξ

′ �U); Ťg(U, ξ,Z, ξ′, Z) ≤ θG + εG
)

+
1

θG
μ̂ξ,Z̃

(
(ξ′, z′) : ρv(U) = ρv(ξ

′ �U); z′ ≤ Z̃; Ťg(U, ξ,Z, ξ′, Z) ≤ θG + εG

)
We can now define:

Âr =
{
v : T̂g(v),r(U, ξ,Z, Z) ≤ θG − εG and T̂ θG,εG

v,r (U, ξ,Z, Z) ≤ θV

and T̂v,r(U, ξ,Z, Z̃, Z, Z̃) ≤ θ′V

}

It is easy to see that Â ⊂ Âr. Therefore, the following result implies Theorem
3.2.

Theorem A.1. For v ∈ V0,

P

(
v ∈ Âr

)
≤ �Kθ′V�+ 1

K + 1
. (19)

and, for v ∈ V00 and g = g(v),
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P

(
v ∈ Âr

)
≤ �K(θG − εG)�+ 1

K + 1
Gβ(1−θG,K−�K(θG−εG)�, �K(θG−εG)�+2)

− θGGβ(1− θG,K − �K(θG − εG)�, �K(θG − εG)�+ 1)

+ θGGβ

(
θG, �K(θG + εG)�,K − �K(θG + εG)�+ 1

)
+ θGθV . (20)

Proof of Theorem A.1.

Step 1. We start with (19) which is simpler and standard. Let v ∈ V0. Condition-
ally to U and Z, KT̂v,r(U, ξ,Z, Z) follows a binomial distribution Bin(K,Tv(U,
Z)) (with Tv defined by equation (4)), so that

P(v ∈ Âr) ≤ P(T̂v,r(U, ξ,Z, Z) ≤ θ′V )

= E (Gβ(1− Tv(U, Z),K − �Kθ′V�, �Kθ′V�+ 1)) .

Theorem 3.1 states that Tv(U, Z) follows a uniform distribution on [0, 1]. There-
fore,

P(v ∈ Âr) ≤
∫ 1

0

Gβ(t,K − �Kθ′V�, �Kθ′V�+ 1)dt =
�Kθ′V�+ 1

K + 1
.

Step 2. We now consider (20) and take v ∈ V00, g = g(v). We first prove that:

P

(
T̂g,r(U, ξ,Z, Z) ≤ θG − εG; T̂

θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
(21)

≤ P

(
Tg(U, Z) ≤ θG; T̂

θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
+

�K(θG − εG)�+ 1

K + 1
Gβ(1− θG,K − �K(θG − εG)�, �K(θG − εG)�+ 2)

− θGGβ(1− θG,K − �K(θG − εG)�, �K(θG − εG)�+ 1)

Notice that:

P

(
T̂g,r(U, ξ,Z, Z) ≤ θG − εG; T̂

θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
−

P

(
Tg(U, Z) ≤ θG; T̂

θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
≤ P

(
T̂g,r(U, ξ,Z, Z) ≤ θG − εG; Tg(U, Z) ≥ θG

)
Now, write:

P

(
T̂g,r(U, ξ,Z, Z) ≤ θG − εG; Tg(U, Z) ≥ θG

)
= E

(
P

(
T̂g,r(U, ξ,Z, Z) ≤ θG − εG; Tg(U, Z) ≥ θG |U, Z

))
.

By the same remark used to prove (19), we have that:
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P

(
T̂g,r(U, ξ,Z, Z) ≤ θG − εG; Tg(U, Z) ≥ θG |U, Z

)
= 1Tg(U,Z)≥θGGβ(1− Tg(U, Z),K − �K(θG − εG)�, �K(θG − εG)�+ 1).

Taking the expectation over U and Z, and using the fact that 1 − Tg(U, Z)
is uniformly distributed over [0, 1] under the “double null” hypothesis:

P

(
T̂g,r(U, ξ,ZK , Z) ≤ θG − εG; Tg(U, Z) ≥ θG

)
=

∫ 1

θG

Gβ(1− t,K − �K(θG − εG)�, �K(θG − εG)�+ 1)dt

=
�K(θG − εG)�+ 1

K + 1
Gβ(1− θG,K − �K(θG − εG)�, �K(θG − εG)�+ 2)

− θGGβ(1− θG,K − �K(θG − εG)�, �K(θG − εG)�+ 1)

Step 3. Let

T̃ θG
v,r (U, ξ,Z, Z̃, Z, Z̃)

=
1

KθG

K∑
k=1

1ρv(U)<ρv(ξk�U)1Tg(ξk�U,Z)≤θG

+
1

KθG

K∑
k=1

1ρv(U)=ρv(ξk�U)1Z̃k≤Z̃1Tg(ξk�U,Z)≤θG

=
1

KθG
μ̂ξ (ξ

′ : ρv(ξ
′ �U) > ρv(U); Tg(ξ

′ �U, Z) ≤ θG)

+
1

KθG
μ̂ξ,Z̃

(
(ξ′, z′) : ρv(ξ

′ �U) = ρv(U); z′ ≤ Z̃ Tg(ξ
′ �U, Z) ≤ θG

)

We now prove that

P

(
Tg(U, Z) ≤ θG; T̂

θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
≤ P

(
Tg(U, Z) ≤ θG; T̃

θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
+ θGGβ(θG, �K(θG + εG)�+ 1,K + 1). (22)

Notice that:

P

(
Tg(U, Z) ≤ θG; T̂

θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
− P

(
Tg(U, Z) ≤ θG; T̃

θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
≤ P

(
Tg(U, Z) ≤ θG; T̂

θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ T̃ θG

v,r (U, ξ,Z, Z̃, Z, Z̃)
)

Conditioning on U and Z taking the expected value:



Coarse-to-fine multiple testing strategies 1325

P

(
Tg(U, Z) ≤ θG; T̂

θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ T̃ θG

v,r (U, ξ,Z, Z̃, Z, Z̃)
)

= E

(
1Tg(U,Z)≤θGP

(
T̂ θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ T̃ θG

v,r (U, ξ,Z, Z̃, Z, Z̃) |U, Z
))

We rewrite the last expectation as:

E

(
1Tg(U,Z)≤θGP

(
K∑

k=1

(1ρv(U)<ρv(ξk�U) + 1ρv(U)=ρv(ξk�U)1Z̃k≤Z̃)

× (1Ťg,r(U,ξ,ξk,Z,Z)≤θG+εG
− 1Tg(ξk�U,Z)≤θG) ≤ 0

∣∣∣U, Z

))
.

In order that

K∑
k=1

(1ρv(U)<ρv(ξk�U) + 1ρv(U)=ρv(ξk�U)1Z̃k≤Z̃)

× (1Ťg,r(U,ξ,ξk,Z,Z)≤θG+εG
− 1Tg(ξk�U,Z)≤θG) ≤ 0, (23)

there must exist k0 ∈ {1, 2, ...,K} such that Ťg,r(U, ξ, ξk,Z, Z) > θG + εG and
Tg(ξk �U, Z) ≤ θG. Letting Mg(ξ,U,Z) denote the number of indexes k such
that Tg(ξk�U, Zk) ≤ θG, the existence of such a k0 implies that Mg(ξ,U,Z) >
K(θG + εG). Indeed, we first notice that, for a every 0 ≤ j, k ≤ K:

1ρg(ξk�U)<ρg(ξj�U) + 1ρg(ξk�U)=ρg(ξj�U)1Zj≤Z ≤ 1Tg(ξj�U,Zj)≤Tg(ξk�U,Z).

This statement is obvious when ρg(ξk �U) = ρg(ξj �U) and Zj ≤ Z and can
be checked by proving that Tg(ξj �U, 1) ≤ Tg(ξk �U, 0) when ρg(ξk �U) <
ρg(ξj �U). Therefore, if k0 exists, we must have

Ťg,r(U, ξ, ξk0 ,Z, Z) ≤ 1

K

K∑
j=1

1Tg(ξj�U,Zj)≤Tg(ξk0
�U,Z)

≤ 1

K

K∑
j=1

1Tg(ξj�U,Zj)≤θG .

Because E (μ(Tg(ξ �U, Z) ≤ θG)|U) = θG, we can bound the probability of
(23) conditional to U and Z by the probability that a binomial Bin(K, θG) is
larger than �K(θG + εG)�, which is given by

Gβ(θG, �K(θG + εG)�+ 1,K − �K(θG + εG)�).

We therefore have

P

(
T̂ θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ T̃ θG

v,r (U, ξ,Z, Z̃, Z, Z̃) |U, Z
)

≤ Gβ(θG, �K(θG + εG)�+ 1,K − �K(θG + εG)�).
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Now, finally notice that

P (Tg(U, Z) ≤ θG) = θG,

and we have proved (22).

Step 4. We finally show that

P

(
Tg(U, Z) ≤ θG; T̃

θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
≤ θV θG (24)

For this, we note that

KθGT̃
θG
v,r (U, ξ,Z, Z̃, Z, Z̃) =

K∑
k=1

1ρv(U)<ρv(ξk�U)1Tg(ξk�U,Z)≤θG

+

K∑
k=1

1ρv(U)=ρv(ξk�U)1Z̃k≤Z̃1Tg(ξk�U,Z)≤θG .

Conditionally to U, Z and Z̃, this variable follows a binomial distribution with
probability of success NθG

g (U, Z)T θG
v (U, Z, Z̃). Therefore:

P

(
Tg(U, Z) ≤ θG; T̃

θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
= E

(
1Tg(U,Z)≤θGGβ(1−NθG

g (U, Z)T θG
v (U, Z, Z̃),

K − �KθGθV�, �KθGθV�+ 1)
)

We now use the fact that The distribution of U is invariant under the action of
the group S and that NθG

g (ξ�U, Z) = NθG
g (U, Z) for all ξ ∈ S to write, intro-

ducing a new random variable ξ̄ independent from the others in the expectation

P

(
Tg(U, Z) ≤ θG; T̃

θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
= E

(
1Tg(ξ̄�U,Z)≤θGGβ(1−NθG

g (U, Z)T θG
v (ξ̄ �U, Z, Z̃),

K − �KθGθV�, �KθGθV�+ 1)
)

Now, using lemma 3.1, we notice that, given U and Z, the random variable
T θG
v (ξ �U, Z, Z̃) is, conditionally to Tg(ξ �U, Z) ≤ θG, uniformly distributed

over [0, 1]. Recall also thatNθG
g (U, Z) is, by definition, equal to P(Tg(ξ̄�U, Z) ≤

θG|U,Z). From this, it follows that

P

(
Tg(U, Z) ≤ θG; T̃

θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)
= E

(
NθG

g (U, Z)

∫ 1

0

Gβ(1−NθG
g (U, Z)t, Z, Z̃),

K − �KθGθV�, �KθGθV�+ 1)dt
)
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= E

(
NθG

g (U, Z)

∫ 1

0

∫ 1−N
θG
g (U,Z)t

0

sK−	KθGθV
−1(1− s)	KθGθV
dsdt

)

= E

⎛
⎜⎝NθG

g (U, Z)

∫ 1

0

sK−	KθGθV
−1(1− s)	KθGθV

∫ min

(
1−s

N
θG
g (U,Z)

,1

)
0

dtds

⎞
⎟⎠

≤ E

(
NθG

g (U, Z)

∫ 1

0

sK−	KθGθV
−1(1− s)	KθGθV

∫ 1−s

N
θG
g (U,Z)

0

dtds

)

= E

(∫ 1

0

sK−	KθGθV
−1(1− s)	KθGθV
+1ds

)

=
�KθGθV�+ 1

K + 1
.

Hence we proved (24), which finishes the proof of lemma A.1 and of theorem
3.2.
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