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Robust determination of differential abundance
in shotgun proteomics using nonparametric
statistics†

Patrick Slama, ‡ab Michael R. Hoopmann, ‡c Robert L. Moritz c and
Donald Geman*ad

Label-free shotgun mass spectrometry enables the detection of significant changes in protein abundance

between different conditions. Due to often limited cohort sizes or replication, large ratios of potential

protein markers to number of samples, as well as multiple null measurements pose important technical

challenges to conventional parametric models. From a statistical perspective, a scenario similar to that of

unlabeled proteomics is encountered in genomics when looking for differentially expressed genes. Still, the

difficulty of detecting a large fraction of the true positives without a high false discovery rate is arguably

greater in proteomics due to even smaller sample sizes and peptide-to-peptide variability in detectability.

These constraints argue for nonparametric (or distribution-free) tests on normalized peptide values, thus

minimizing the number of free parameters, as well as for measuring significance with permutation testing.

We propose such a procedure with a class-based statistic, no parametric assumptions, and no parameters

to select other than a nominal false discovery rate. Our method was tested on a new dataset which is

available via ProteomeXchange with identifier PXD006447. The dataset was prepared using a standard

proteolytic digest of a human protein mixture at 1.5-fold to 3-fold protein concentration changes and

diluted into a constant background of yeast proteins. We demonstrate its superiority relative to other

approaches in terms of the realized sensitivity and realized false discovery rates determined by ground

truth, and recommend it for detecting differentially abundant proteins from MS data.

Introduction

A primary objective of quantitative proteomics-based analysis is
to identify proteins and protein modifications whose abundances
vary significantly between sets of samples. In proteomics experi-
ments employing data-dependent analysis (DDA) (i.e., shotgun or
bottom-up analysis), protein samples are first subjected to enzy-
matic proteolysis. The resulting peptides are then fractionated
by reversed-phase high-performance liquid chromatography
(RP-HPLC) and analysed by tandem mass spectrometry (MS).1,2

In label-free quantitation methods, protein abundance is inferred
by measuring constituent peptide signal intensity3,4 or by spectral
counting,5–7 which measures the frequency of peptide selection.

Such inferred values are subsequently analyzed in order to
identify those proteins that best differentiate between the classes
of experimental interest, using some statistical methodology.
Our focus here is on the elaboration and statistical analysis of
quantitative values to identify possible protein markers, and on
an exploration of fold changes detectable by proteomic analysis
between phenotypic states.

Multiple statistical methods have been described for the
efficient determination of differentially abundant proteins
from label-free DDA proteomic experiments.6,8–10 A widespread
approach is to directly construct surrogate values at the protein
level from either spectral counts or peptide ion intensities, in a
process coined ‘summarization’, and to compare these values
between classes using a statistical procedure. Summarization-
based methods do not usually account for peptide-to-peptide
differences in detectability and may involve ad hoc parameter
choices. Recent publications suggest superiority of peptide-based
measures with respect to protein-based, summarized measures.10,11

Most of these methods utilize either standard parametric
models or variations developed in applications of high-dimensional
statistics to fields outside biology. Peptide-based stochastic
modeling, such as standard linear regression, is a common
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strategy to test for a significant class effect.12 Still, stochastic
modeling generally makes assumptions on the distribution of
the observed data, such as normality, which are evidently
inappropriate due to a high proportion of zero values, often
as high as 50% or more, in proteomics data.10,12–14 Moreover, it
usually requires estimating many parameters with a very small
number of samples. It is therefore hardly surprising that many
current methods are unable to control both the sensitivity
(or recall) and the false discovery rate at the same time.12,15

Statistical methods for feature selection and performance
evaluation which are better suited to proteomics data have been
developed in other fields, notably computational genomics.
Both fields indeed have many objectives and challenges in
common, as pointed out nearly ten years ago.16 For example,
summarization-based protein quantitation methods employ
the same type of statistical tests as those used in computational
genomics to identify differentially expressed genes.17 Nonetheless,
even recent work in computational proteomics rarely takes this
literature into account, despite nearly twenty years of experience
addressing similar goals (e.g., biomarker discovery) and facing
similar technical barriers (e.g., sample size), with some exceptions
(see ref. 16). More specifically, in both genomics and proteomics,
phenotypes are identified from a small number of samples (n)
with a large number of variables (d). In statistical inference and
learning, this is referred to as the ‘‘small n, large d’’ dilemma.
As a result, model complexity must be tightly controlled in
order to prevent ‘‘over-fitting’’ the data,18 a consequence of
which is the lack of robustness of the FDR (False Discovery
Rate) analysis; in such cases, the realized FDR may differ largely
from the target (or nominal) FDR.15 With nonparametric meth-
ods, such as Wilcoxon and permutation-based tests, no assump-
tions are made about the data distribution, e.g. that of normality.
Thus, distribution-free methods are more reliable, and hence
very widespread in genomics.

With these considerations in mind, we propose to analyze
shotgun proteomics data using statistical tests which have the
following properties:

(i) There are no parameters to choose or estimate; in particular,
there are no menus to select from (as in, e.g., MaxQuant
Perseus19,20), or parameters to estimate from the data (e.g., as
in linear regression models with normal errors3,12).

(ii) No surrogate value is assigned to proteins; instead, the
analysis is peptide-centric.

(iii) No assumptions are made about the probability
distribution of either the data or the test statistics; instead,
all p-value calculations are permutation-based, meaning that all
p-values are relative to a null distribution obtained by randomly
permuting class labels.

The approach we propose satisfies criteria (i)–(iii). Each
peptide value is first re-scaled across samples to a value
comprised between 0 (min across samples) and 1 (max across
samples). For each protein, we combine these normalized
values over all replicates and peptides to produce a statistical
descriptor for each condition. Then, given two conditions,
for each protein, the two corresponding statistical descriptors
are combined into one test statistic whose significance is

determined by permutation testing. Peptide values used in
the initial step of the algorithm can be precursor ion intensity
(PI) as well as spectral count (SC) values; however, the present
analysis primarily focuses on PI, since these values enable one
to better identify differential changes.21

We have applied our approach to finding differentially
abundant proteins on a controlled dataset consisting of variable
amounts of human proteins mixed into a yeast protein back-
ground. Our novel, enlarged dataset resembles one constructed
in a CPTAC (Clinical Proteomic Tumor Analysis Consortium,
cptac-data-portal.georgetown.edu) study,22 with efforts made to
overcome some limitations of that dataset. Indeed, recent
efforts have sought to extend the utility of the original CPTAC
collection by expanding the quantitation standard using more
dilutions levels and more modern instrumentation.9 Anticipating
the permutation testing procedure and corresponding effect of
sample size on statistical resolution, we collected data for
twelve repetitive injections for each concentration, as opposed
to only three or four in previous studies.9,23 In this manner,
more meaningful comparisons can be made than in previous
methods without relying on severely undersized ‘‘ground truth’’
datasets.9,10 Our method does obtain a better tradeoff between
sensitivity and FDR than previously published, parametric
methods; for instance, we reach higher sensitivity levels at
FDR values equivalent to other studies. This method should
thus prove useful for unbiased, robust proteomics-based dis-
covery of differential protein abundance.

Experimental
Sample preparation

Yeast strain EDC3 (a gift from Prof. JD Aitchinson, ISB, Seattle)
was grown to mid-log phase and harvested by centrifugation.
The cells were lysed by flash freezing in liquid nitrogen prior to
disruption using a Retsch ball mill grinder and resuspended in
100 mM ammonium bicarbonate buffer, as previously described.24

Protein concentration was determined by micro BCA assay
(Thermo-Fisher Scientific, San Jose, CA). A yeast protein stock
of 100 ng mL�1 in 100 mM ammonium bicarbonate was reduced
in 5 mM DTT for 30 minutes at 60 1C, alkylated with 7.5 mM
iodoacetamide (IAM) for 30 minutes at room temperature in
darkness, and digested with trypsin (Promega, Madison, WI) at a
1 : 200 ratio for 4 hours at 37 1C. Digestion was stopped by heat
inactivation, samples were then acidified with 0.1% formic acid and
stored at �80 1C. The universal proteomics standard set (UPS1,
Sigma-Aldrich, St-Louis, MO) was prepared by resuspending one
6 mg vial with 100 mL of 50% TFE in 100 mM ammonium
bicarbonate. The proteins were reduced with 5 mM DTT for
30 minutes at 60 1C and alkylated with 7.5 mM IAM for 30 minutes
at room temperature and darkness. The TFE was diluted by addition
of 500 mL of 100 mM ammonium bicarbonate, and the proteins were
digested with trypsin (Promega) at a 1 : 100 ratio for 4 hours at 37 1C.
Digestion was stopped by heat inactivation. The peptides were
dried down and reconstituted in 100 mL of 0.1% formic acid
solution to an approximate concentration of 50 fmol mL�1.
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A dilution series of UPS1 in yeast background was prepared
by mixing varying concentrations of each solution in 100 mM
ammonium bicarbonate, to approximate the dilution series
of Paulovich et al.,22 with an additional dilution factor for
increased granularity. The protein concentrations used in this
study are listed in Table 1. For each spiked-in concentration,
12 identical injections were analyzed. This number was chosen
as being sufficiently low to resemble clinical datasets as well as
sufficiently high for providing some statistical power (datasets
with three replicates are not reasonable for statistical analysis
on samples containing hundreds of proteins). To minimize the
batch effects experienced with chromatography column and nano-
ESI detector signal loss, the samples were randomly analyzed in
sets of three injections until twelve injections were collected for
all UPS1 spiked-in concentrations, with blank injections per-
formed between each set. Our acquisition was thus different
from approaches that acquire all sample injections from lowest
to highest concentration to minimize carryover. For example,
UPS1 proteins were observed in the yeast control samples,
despite the use of blank injections between sample sets.

Mass spectrometry analysis

LC-MS/MS analysis of each UPS1/yeast sample was performed
using a 10.5 cm PicoChip (New Objective, USA) capillary (75 mm
ID, ReproSil Pur C18 3 mm). Prior to loading onto the column,
each sample was loaded onto a 2 cm Acclaim PepMap 100 trap
(75 mm ID, C18 3 mm; Thermo Fisher Scientific). For each sample
injection, 2 mL of sample was loaded onto the trap using an Easy
nLC-1000 system (Thermo Fisher Scientific). Mobile phase A
consisted of 0.1% formic acid in Milli-Q water, and mobile phase
B of 0.1% formic acid in acetonitrile. Each sample was separated
using a binary mobile phase gradient to elute the peptides.
The gradient program consisted of three steps at a flow rate of
0.3 mL min�1: (1) a linear gradient from 2% to 40% mobile phase
B over two hours, (2) a 10 minute column wash at 80% mobile
phase B, and (3) column re-equilibration for 10 minutes at 2%
mobile phase B. Mass spectra were acquired on a Q Exactive HF
(Thermo Fisher Scientific) mass spectrometer operated by data
dependent acquisition (DDA) using a top 30 selection count. The
precursor ion scan range was 350–1400 m/z at 60 000 resolution.
An isolation window of 1.2 m/z was used for selection, a
normalized collision energy of 30 was set, and higher energy
collision induced dissociation (HCD) MS/MS spectra were
acquired at 15 000 resolution. An automatic gain control (AGC)
target of 105 and maximum injection time of 50 ms was set.

Charge exclusion was set to 1 and greater than 5, with isotope
exclusion. Dynamic exclusion time was set to 10 seconds.

MS/MS-data processing

Mass spectra (Thermo Fisher.raw files) were converted to mzML
format using MSConvert (version 2.2.0)25 and searched with Comet
(version 2015.02 rev. 2).26 Spectra were searched against the UniProt
S. cerevisiae reviewed proteome (downloaded on December 4, 2015),
supplemented with the 48 UPS1 protein sequences, and reversed
decoy sequences (13 484 total protein sequences). Comet para-
meters included a fixed modification of +57.021464 Da on cysteine
and a variable modification of +15.994915 Da on methionine.
Precursor mass tolerance was set to 25 ppm and a fragment bin
tolerance of 0.2 and fragment bin offset of 0 were used. Semi-tryptic
enzymatic cleavage was set, allowing for up to 2 missed cleavages.
Peptide-spectrum matches (PSM) were analyzed using the Trans-
Proteomic Pipeline (TPP, version 4.8.0 PHILAE),27 to assign
peptide probabilities using PeptideProphet28 and iProphet.29

Spectral counts and precursor ion intensities were exported for
each non-redundant PSM at a 1% false discovery rate (FDR). The
mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository30

with dataset identifier PXD006447.

Experimental design and statistical rationale

The resulting data matrix containing intensity values for all the
identified peptides and corresponding assigned protein names
was used as an input for calculation, including all contaminant
and decoy sequences. Peptides that were assigned to more than
one protein were discarded from the analysis, in order not to
overestimate their importance in the further data analysis with
respect to the other peptides collected. Though methods have
been developed that can incorporate these degenerate peptides,31,32

no consensus currently exists in the literature in this respect.
Overall, the number of multiple assignments was low. These
represented 1312 peptides over a total of 10 406 peptides
(across all conditions). Then, for a comparison between two
experimental conditions, all peptides which had at least one
non-null value over the 2� 12 samples analyzed were considered
in our statistical pipeline. The present work is mainly intended
for the discovery stage of a two-stage discovery-verification
process, in which case the proteins selected here would be
subsequently re-analyzed in a verification stage, presumably with
more replicates and/or higher quality data.

The discovery of differentially abundant proteins is a two-
class problem, with two experimental conditions (here, the UPS1
concentrations) and peptide-level measurements available for na

samples from class a and nb samples from class b. Let Npep

denote the number of identified peptides in the LC-MS/MS
experiment and let Nprot be the corresponding number of
proteins (identified for at least one sample) after assignment
using PeptideProphet and iProphet (see above section). For each
protein i, let pep(i) be the set of detected peptides assigned to
protein i, with Ni = |pep(i)| the size of this set, for i = 1,. . .,Nprot.
Recall that each peptide is uniquely assigned to a protein and
consequently there is no overlap among the sets pep(i).

Table 1 UPS1 dilution series. Conditions are numbered following increasing
UPS1 standard concentrations

Condition Standard conc. (fmol mL�1) Yeast conc. (ng mL�1)

C0 0 60
C1 0.25 60
C2 0.74 60
C3 2.2 60
C4 3.3 60
C5 6.6 60
C6 20 60
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We now describe our nonparametric test. We will write yjk

for the measured value for peptide j in sample k, expressed in
original units (i.e., not log-transformed); ‘peptide values’ later
represent either PI or spectral counts. For any given compar-
ison between two classes or conditions, the complete set of
values yjk is organized as a matrix where each row represents
a peptide j = 1,. . .,Npep and each column represents a sample
k ‘= 1,. . .,na + nb. The first na columns are counts for class a and
the next nb columns are the counts for class b. Note that in the
current analysis, na = nb = 12 for all comparisons performed. All
calculations on the peptide values matrix were performed using
MATLAB (The Mathworks, Inc., Natic, MA, USA). The MATLAB
script is provided as ESI.†

Data properties

Our approach is motivated by some general properties of the
peptide quantitation data. Suppose a protein i is fixed. The data
available for designing an algorithm for detecting differential
abundance are then two sets of measurements: the naNi

observed peptide values {yjk, j = 1,. . .,Ni; k = 1,. . .,na} for class
a and the nbNi values {yjk, j = 1,. . .,Ni; k = na + 1,. . .,na + nb}
for class b. Whereas the two sets of values are statistically
independent, the values within each set are generally neither
independent nor identically distributed. They are not indepen-
dent, even within a sample k, due to peptide-to-peptide correla-
tions and they are not identically distributed, again even within
samples, due to possible differences in both digestion and
detection across peptides from a given protein. Finally, recall
that if peptide j was not detected in a sample k, yjk is set to 0.
A notable property of these data is that there can be many zero
values, especially for peptides associated with proteins at
low concentrations. In particular, the assumption of normally-
distributed yjk values is rarely fulfilled (see Discussion).

Test statistics

In short, our algorithm performs a re-scaling of detected
peptide values, then aggregates these values within each class,
and evaluates the significance of the resulting difference using
permutation testing (Fig. 1).

In a first step, for each peptide j, we re-scale the set of values
yjk, k = 1,. . .,na + nb (i.e., one row of the matrix) to [0,1];
this normalizes for peptide-to-peptide variability, or the
different responses observed for peptides of equal abundance
originating from the same protein. Let mj (respectively, Mj)
be the minimum (resp., maximum) value observed over all
samples k = 1,. . .,na + nb for peptide j, and define

ynormj;k ¼ yjk �mj

Mj �mj
: (1)

In most of our experiments mj = 0 due to the widespread
presence of zero values. In that case (or if we use yjk/Mj), this
transformation has the property that, within peptides, the ratios
of original counts from sample to sample are preserved; this is
not the case when using, for example, a log-transformation.
Note that the ynorm values are a surrogate for ranks, with ties
allowed.

The normalized peptide values are then averaged across
peptides in order to assign an overall value to a protein within
a sample, and next averaged across samples for classes a and b
separately:

Sa ¼
1

na

Xna
k¼1

1

Ni

XNi

j¼1
ynormjk ; Sb ¼

1

nb

Xnaþnb
k¼naþ1

1

Ni

XNi

j¼1
ynormjk

The resulting test statistic or ‘‘score’’ for a protein i is the
difference of these two class-wise averages:

Tnorm
i ¼ Sa � Sbj j ¼ 1

naNi

Xna
k¼1

XNi

j¼1
ynormjk � 1

nbNi

Xnaþnb
k¼naþ1

XNi

j¼1
ynormjk

�����
�����:

(2)

We use the term ‘‘score’’ to underline the fact that Tnorm
i no

longer represents a detected amount or other physically
meaningful quantity, but a computed value. We refer to this
method as CSNorm for Class-wise Sum of Normalized peptide
values. Since this score can both be used on PI or SC as peptide
values, we will further denote it as CSNorm-PI in the first case
and CSNorm-SC in the second one. The performance of this
score will be compared with that of related nonparametric
scores, as well as with other approaches. It is worth noting
that many alternative transformations were tried, including
using ranks and more complex approaches, of which none
uniformly outperformed the others. Our solution was to favor
simple methods.

Significance

For each protein i we compute a p-value pi for the test statistic
T norm

i (eqn (2)) by constructing a permutation-based null distribu-
tion. This avoids making any assumptions about the distribution
of the test statistic under the null hypothesis that there is no
difference between classes in the distribution of peptide signals.
We follow the standard approach. We generate K ‘‘null values’’ of
the test statistic T norm

i by randomly permuting the na + nb class
labels (i.e., selecting a permutation of {1,. . .,na + nb} at random)
and computing the test statistic T norm

i for the new, randomized

Fig. 1 Schematic description of our calculation pipeline. Note that class
sizes are written as n = na = nb for readability.
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data. The estimated p-value (two-tailed) is the fraction of these
K null values which exceed the value of T norm

i on the original
data. The choice of K (generally 2 � 104 to 1 � 105) determines
the resolution of the p-values.

Alternative test statistics

There are several natural alternative test statistics to CSNorm
that will be discussed in later sections. One is to use the plain
yj,k values, which we denote as CSPep (-PI or -SC), for Class-wise
Sum of Peptide values. Another is to replace ynorm

jk in eqn (2) by
log( yjk); we denote the resulting score as CSLog and later use it as
a reference method, as most similar to traditional fold-change
based approaches.

The normalized spectral index (NSI), which was originally
defined by Griffin et al. as a homogeneity measure,33 was used
to compare our different experimental conditions. Consistent
with that publication, protein abundances were log-scaled
prior to comparative analysis. An additional approach, the
normalized spectral abundance factor (NSAF)7 was also
compared to our methods, and computed using the protein
quantification tool, StPeter (version 1.2.3).32 For both the NSI
and NSAF analyses, protein values were computed in the two
classes, and the difference of the class sums was used as a
statistic, the significance of which was evaluated by permuta-
tion testing, as described above.

Our method was yet further compared to the popular
MSstats v3.5.3 method,3 which was implemented using Tukey’s
median polish, and normalization set to ‘‘equalizeMedians’’.
Precursor ion intensities were imported for all non-degenerate
peptide sequences, missing measurements from any given
sample being labeled as ‘‘NA’’. The MBImpute parameter was
set to true.

Output and performance metrics

As an input, our algorithm requires a matrix for peptide values,
each row being a peptide and each column a sample, the
samples being grouped by condition or class. In addition, the
algorithm requires the input of a two-column matrix: the first
column corresponds to an index for the peptides present in the
data matrix and the second column corresponds to an index for
the protein to which each peptide was assigned.

The output of the algorithm is a list of p-values
{ pi, i = 1,. . .,Nprot}, one for each protein, as well as the sign of
the difference Sb � Sa, which indicates whether the corres-
ponding protein concentration increases or decreases from one
class to the other. For simplicity, the proteins are ordered by
increasing p-value, so that p1 r p2 r. . .pNprot

. Detection is
performed by specifying a threshold, and the resulting set of
proteins are then those whose variations across the two condi-
tions are declared significant at the chosen threshold.

In our approach we focus on two criteria for determining which
proteins are selected as significantly differentially abundant.

The first criterion is to specify the number ND of detected
proteins (or discoveries). We thus propose distinct values for
ND, the smallest (30) for verification of detected candidates
using for example affinity-based assays (e.g., ELISA) and the

largest ones (120–150) for using, for example, selected-reaction
monitoring (SRM) verification, for which it is feasible to survey
much larger numbers of proteins through specific peptide
surrogates.34 Since the p-values are ordered, the corresponding
set of proteins is simply {1,. . .,ND}.

The second criterion, of broad use in computational biology,
is based on the false discovery rate (FDR). (Note that this FDR
applies to the detection of differential abundance across
classes, and is hence different from that used to assign peptide
identities to MS data.) A target or nominal FDR is selected, e.g.,
0.05, and this cut-off is transformed into a p-value threshold
(and vice versa), for example using the Benjamini and Hochberg
procedure.35 In order to allow for proper comparisons among
the results of different methods, it will be useful to make these
terms more precise. Let TD be the number of true positives, or
true detections, among the ND detections determined by the
p-value threshold. The false discovery rate for the given data is

then Q ¼ ND � TD

ND
, which is the fraction of detected proteins

which are false positives. We will refer to Q as the realized or
empirical FDR. Some authors use an equivalent metric, precision,
which corresponds to 1 � Q. In statistics, the FDR itself is
defined as E(Q), where the expectation is over all possible
datasets generated under the same conditions.

Another important performance metric is the sensitivity, or
recall, of the method, namely the fraction TD/NP, where NP

is the total number of true positives. In general cases, one
does not know which protein detections are true positives and
which are false positives. However, in the series of experiments
presented here, these sets of proteins are known in advance:
every human UPS1 protein is a true positive and every yeast
protein is a false positive. This allows us to precisely quantify
the performance of our method and of competing algorithms,
for instance by comparing the target FDR with the realized FDR
Q, which is the fraction of detected proteins which are yeast
proteins. Similarly, for any given threshold, whether based on a
target FDR or on the total number of detections, we can compute
the (realized) sensitivity.

Although it is common to consider the realized FDR Q as an
estimate of the true FDR E(Q), the realized FDR may be quite
different for various reasons (including high variance and viola-
tion of assumptions for the BH procedure to yield an unbiased
estimate). From a practical perspective, a far more important
difference is the one between the target FDR and the realized
FDR. Only the latter is a valid performance metric.

Results
Data

MS/MS data were acquired in 12 separate replicate runs for
each of the different concentrations of the UPS1 standard set of
human proteins, which were mixed with a constant background
of yeast (S. cerevisiae) proteins. Peptide identity and corresponding
quantities were next derived from these data, as described in the
Methods. Six different concentrations were used for the spiked-in
protein set (see Table 1), additional runs being performed for
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the sole yeast protein background (equivalent to a null concen-
tration for the standard). Each sample replicate was acquired in
batches of three injections to minimize batch effects, as
described in the Methods. Our acquisition was thus different
than previous approaches that acquire all sample injections
from lowest to highest concentration to minimize carryover
when running samples sequentially.9,22,23 For example, UPS1
proteins were detected in the yeast control samples run in
between each batch as a result of sample carryover despite
blank injections between sample sets. In the original CPTAC
protocol, UPS1 concentrations followed a linear three-fold
stepwise increase;22 we included an additional UPS1 concentration
in the middle of the range (condition C4, see Table 1), so as to
obtain a real life concentration and more difficult comparison,
allowing for a finer resolution among methods, with one pair of
conditions at a 1.5-fold concentration change (C3 vs. C4) and one
at a 2-fold change (C4 vs. C5; see Table 1 and Methods).

There were between 2841 and 4826 peptides identified per
sample, with the average number of observed peptides per condi-
tion and total number of UPS1 peptides observed in one condition
described in Table S1 (ESI†). Peptides that were assigned to
more than one protein were discarded from the analysis; these
represented 1312 peptides from a total of 10 406 peptides, with
e.g. 1151 peptides assigned to 2 proteins and 25 peptides
assigned to more than five proteins. Overall, 9094 peptides
were considered for analysis.

Performance of CSNorm-PI

We applied our score (CSNorm, eqn (2)) to PI data in order to
detect proteins with differential abundance across samples. We
also used a reference score, CSLog (see Methods), to represent
direct class-based aggregation of the log-transformed data, which
resembles the classical fold-change analysis. Summing peptide
values within class, as in these two scores, produces a score with
more resolution than fold-change based scores, since a difference
between class is always defined, unlike a ratio.

The performance of our method was first evaluated on three
‘hard’ comparisons, C0 (no spike-in) vs. C2, C1 vs. C2 and C3 vs.
C4 (1.5�-fold change; see Table 1), as well as an easier detec-
tion, C4 vs. C5 (higher concentrations). For each comparison,
all identified proteins were ordered by increasing p-value
according to the permutation-based procedure, and we consid-
ered the first ND proteins for their UPS1 or yeast origin. When
considering the 60 first discoveries (ND = 60) produced by our
methods, CSNorm-PI detected 31 UPS1 proteins when comparison
condition C0 to condition C2, 30 when comparing C1 to C2, 40
when comparing C3 to C4 (1.5�-fold change) and 46 when
comparing C4 to C5 (2�-fold change) (Fig. 2). The CSLog-PI
score yielded 28, 29, 36 and 43 correct detections for the same
four pairs of conditions, respectively (Fig. 2). In particular,
when considering higher amounts of spiked-in UPS1 proteins,
both methods detected nearly all proteins (46 out of 48) at
ND = 100 for comparison C3 vs. C4. For C5 vs. C6, CSNorm-PI
detected all 48 UPS1 proteins at ND = 60 (Table 2), whereas
CSLog-PI missed 4 UPS1 proteins among its 60 most signifi-
cant ones and only 1 among its 100 most significant ones.

Consequently, CSNorm-PI reaches its peak performance with
substantially fewer total discoveries, and therefore with a much
smaller real FDR. In the remaining comparisons both scores
produced exactly the same number of true discoveries when
setting ND = 60 (Fig. S1, ESI†).

When examining the protein list obtained using CSNorm-PI
in more detail, it was observed that the missed proteins at ND =
60 in comparison C4 vs. C5, UPS1 human proteins interleukin-8
(8.4 kDa) and thioredoxin (12.4 kDa), were both observed with
only one peptide across these conditions. In comparison C5 vs.
C6, these two proteins were detected as differentially abundant by
CSNorm-PI at ND = 60 (protein p-value o 10�5), with 2 peptides
observed for each of them. As expected, differential detection was
thus easier when additional peptides were identified.

Checking for the direction of variation

In multiple recent biomarker discovery studies (see e.g. ref. 23),
the relative direction of variation of a detected protein does not
appear explicitly in the descriptions and it is not clear whether
this direction is taken into account. Nevertheless, the knowl-
edge of whether a protein concentration increases or decreases
across two phenotypes is usually critical to understanding the
underlying biological rationale for the observed variation.

Fig. 2 Number of true discoveries for methods CSLog-PI (dark bars) and
CSNorm-PI (white bars) for the hardest detections. The number of
discoveries is fixed at ND = 60 across all pairs of conditions.

Table 2 Summary of results at fixed numbers of discoveries ND = 60 and
ND = 100 for two pairs of conditions with highest UPS1 standard con-
centrations. No differences in the detections were observed for ND 4 100
discoveries

Sample pair Score ND = 60 ND = 100

C4 vs. C5 CSLog-PI 43 46
CSNorm-PI 46 46

C5 vs. C6 CSLog-PI 44 47
CSNorm-PI 48 48
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In the present dataset, all protein concentrations evolve in the
same direction from one condition to another, e.g. [prot]C1 o
[prot]C2 o [prot]C3. . . due to our experimental design. In clinical
experiments, the concentrations of the desired markers can be
either increasing or decreasing across two phenotypes or clinical
conditions. Hence there is no a priori knowledge about the
direction of variation of a putative marker protein.

Here, the direction of variation was assumed unknown and
taken into account when measuring performance. The lists of
proteins detected as significantly changing across two conditions
was split into two disjoint subsets, depending on whether the
class score for the protein was going up or down from one
condition to the other. Any detection of a UPS1 protein for
which the direction of variation was opposite to the spiked-in
amounts (Table 1) was declared a false positive. Overall, none of
the UPS1 proteins detected were assigned the wrong sense of
variation (Table 3). The symmetry of the equation defining our
statistics (eqn (2)) ensures that the same be true when con-
sidering proteins whose concentrations decrease from the first
to the second condition, which was e.g. verified on comparison
C4 vs. C3 (Table 3, lower half).

Detection results as a function of target FDR

A common way of determining a list of differentially abundant
proteins is to specify a target FDR.3,12,14,15,36 For example, in
ref. 12, the ‘‘nominal’’ FDR is set at 0.05, and the BH method for
correcting for multiple testing is used to determine a corres-
ponding p-value threshold or, equivalently, the number of proteins
detected as significantly differentially abundant at this target FDR.

Requiring a small realized FDR is useful in assigning peptide
sequences to spectra, in which a large proportion of a spectra set
are expected to have correct sequence assigned. However, such
constraints are unrealistic in the context of finding differentially
abundant proteins, in which the small n, large d scenario has
pronounced effect, particularly because most candidates are true
negatives. Sensitivity cannot be adequately evaluated under the
constraint of a small realized FDR threshold.

To illustrate this point, we show the results of selecting a range
of target FDR levels for score CSNorm-PI (Fig. 3). On the left panel is
plotted the total number of discoveries ND and the number of
true discoveries TD as a function of target FDR values, over the
interval 0 o FDRtarget r 0.25, for comparison C3 vs. C4. The
realized FDR is (ND� TD)/ND, which is plotted in the right panel for
0 o FDRtarget r 0.65. For target FDR values inferior to 2.3 � 10�2,
the number of discoveries remains low (o3); this is most likely due
to the difficulty of this comparison, with a 1.5-fold increase in UPS1
proteins concentrations from C3 to C4. The number of discoveries
then jumps to 19, with 18 true discoveries, the number of false
discoveries remaining low (realized FDR o 0.1) until a target FDR
of about 0.09. The number of false discoveries then increases
abruptly, with a second bump in the curve of the total number of
discoveries at a target FDR of about 0.18.

Table 4 shows similar comparisons between target FDR and
realized FDR for other comparisons, at the most commonly
used target FDR thresholds. At a fixed target FDR of 5%,
realized FDR values undergo a regular increase with the
concentration of the samples that are being compared; it thus
increases from 0.111 for comparison C0 vs. C1 to 0.455 for
comparison C5 vs. C6. Note that for all 3-fold comparisons,
discoveries were also obtained at a target FDR of 0.001, with
realized FDR ranging from 0.083 for comparison C1 vs. C2 to
0.213 for comparison C5 vs. C6. In addition, for comparison C5
vs. C6, a 3-fold increase between the highest concentrations
of UPS1, perfect recall was achieved at a target FDR of 0.001
(0.213 realized FDR); at increasing target FDR values, it becomes
increasingly difficult to have both high sensitivity and low
realized FDR (equivalently, high precision).

Table 3 Number of UPS1 proteins detected as differentially abundant for
two choices of the total number of discoveries (ND = 30, ND = 120) and for
comparing conditions C3 to C4 and C4 to C3

Comparison ND TD up TD down

C3 vs. C4 30 27 0
C3 vs. C4 120 44 0
C4 vs. C3 30 0 27
C4 vs. C3 120 0 44

Fig. 3 Detection using CSNorm-PI on C3 vs. C4 as a function of target FDR. Left, discoveries (ND, gray circles) and true discoveries (TD, black squares);
right, realized FDR as a function of target FDR.
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Overall, the realized FDR values are thus controlled for all the
comparisons considered (1.5�-fold change to 3�-fold change),
with an increasing difference between target FDR and realized
FDR at increasing concentrations of UPS1 proteins.

Comparison with other methods

The results above are consistent with previous findings, using
similar ground-truth data sets, that showed realized FDR to be
higher than target FDR, and that better recall was achieved by
accepting a higher FDR, particularly among proteins at low
concentrations.9,12

More specifically, the difficulty in maintaining high sensi-
tivity at high precision is demonstrated in a comprehensive
series of simulated experiments in ref. 15, with target FDRs set
at 0.01 and 0.05: none of the seven methods tested achieves
high sensitivity together with high precision on most experi-
ments, including two corresponding to C0 vs. C1 and C0 vs.
C2, albeit with only three samples per class. Indeed, several
methods return no protein with differential detection on these
comparisons, and even the best-performing method, the SAM
nonparametric test inherited from genomics, can only reach
high sensitivity at the expense of a very high realized FDR;
compare our Table 4 with Table 3 in ref. 15.

Methods based on peptide spectral counts (SC) have been
proposed in multiple studies,37,38 and were used here for the
sake of comparison. Since SC values are not on a log scale, the
scores that were tested are CSPep and CSNorm. The application
of these scores to SC values produced very similar results on the
four pairs of conditions tested, hence only the results obtained
using CSNorm-SC are shown (Fig. S2, ESI†). When compared to

CSNorm-PI, the SC-based scores returned between 1 (C1 vs. C2
and C4 vs. C5) and 5 (C3 vs. C4) fewer true detections than
CSNorm-PI.

The performance of the CSNorm-PI score in detecting differ-
ential abundance was further compared with a protein-based
method, NSI,33 and the peptide-based linear regression model
MSstats.3 Performance was assessed on comparisons C0 vs. C1,
C0 vs. C2 and C3 vs. C4, which best discriminated among the
methods; these are among the most difficult comparisons,
the first two due to the low concentrations in UPS1 proteins,
the third due to the low fold change (1.5�).

NSI was initially proposed as a plain quantification measure,
which performed well across technical replicates.33 Here, we
implemented it as described in the Methods section. On
comparison C0 vs. C1, method NSI detected 7 and 9 UPS1
proteins respectively at ND = 30 and ND = 90, while method
CSNorm detected, respectively, 9 and 12 UPS1 proteins at these
ND values (Fig. 4). On comparison C0 vs. C2, NSI performed
well at ND = 30 discoveries, with 24 UPS1 proteins detected.
However, between 60 and 150 discoveries, the number of
discovered UPS1 proteins remained constant at 27. In compar-
ison, CSNorm-PI was constant at 31 UPS1 discoveries over the
same range. Method CSLog-PI also performed better than NSI
over the whole range of number of discoveries Fig. 4.

By considering all the proteins to which a p-value was
assigned by MSstats, this method could detect one UPS1
protein for comparison C0 vs. C1 at ND = 30, three UPS1
proteins for comparison C0 vs. C2 at ND = 30 and four among
its 120 best discoveries for the latter comparison. This is much
below the NSI-based detection as well as both our scores (Fig. 4,
top and middle). On comparison C3 vs. C4, MSstats detected 27
UPS1 proteins for ND = 30, sitting between our reference method
(26) and CSNorm-PI (28 true discoveries), and it detected 45 UPS1
proteins for ND = 60, while CSNorm-PI needed 120 discoveries
(110, exactly) to detect 44 UPS1 proteins. MSstats also performed
better than NSI in this setting (Fig. 4, bottom). It should be noted
that MSstats only assigns a p-value to proteins with observed
values in both conditions, hence its poorer performance on
comparisons involving C0.

Score CSNorm was further compared to method NSAF.7 Again,
CSNorm performed much better than this score on comparison
C0 vs. C1, better than it on C1 vs. C2, and similarly on comparison
C3 vs. C4, with NSAF largely outperformed at ND = 30, but
performing better by one to two true discoveries at higher ND

values (Fig. S3, ESI†).
Overall, CSNorm is the only score that performs well over all

the range of concentrations used, thus making this method
a good candidate algorithm for biomarker detection over the
dynamic range observed in clinical samples.

Discussion

We propose a new, nonparametric method for detecting
differentially abundant proteins in biological samples using
unlabeled mass spectrometry. Our results show that this method

Table 4 Number of discoveries ND and true discoveries TD at target FDR
values of 0.001, 0.01 and 0.05 using score CSNorm-PI

Comparison Target FDR ND TD Realized FDR Recall

C0 vs. C1 10�3 6 5 0.167 0.125
0.01 8 7 0.125 0.146
0.05 9 8 0.111 0.167

C0 vs. C2 10�3 29 26 0.103 0.542
0.01 31 26 0.161 0.542
0.05 40 28 0.300 0.583

C1 vs. C2 10�3 24 22 0.083 0.458
0.01 30 27 0.100 0.563
0.05 32 28 0.125 0.583

C2 vs. C3 10�3 48 41 0.146 0.854
0.01 50 41 0.220 0.854
0.05 52 42 0.192 0.875

C3 vs. C4 10�3 0 0 n.d. 0
0.01 2 2 0 0.042
0.05 28 26 0.071 0.583

C4 vs. C5 10�3 49 44 0.102 0.917
0.01 54 45 0.167 0.938
0.05 68 46 0.324 0.958

C5 vs. C6 10�3 61 48 0.213 1
0.01 73 48 0.342 1
0.05 88 48 0.455 1
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allows for the accurate detection and abundance determination
of proteins based on peptide MS1 signals. This remained true
even in the presence of multiple null values, making the
current method superior to other statistical methods for the
determination of differential abundance of proteins.

Specificity of the algorithm

Quantitative proteomics seeks to distinguish between biological
phenotypes by finding differentially expressed variables, namely
peptides or proteins, and using such ‘‘signatures’’ to identify
cellular phenotypes from individual samples. Genomics, where
variables such as mRNA concentrations are used to make
phenotype inferences, has a similar goal. From the perspective
of statistical inference and learning, both fields encounter the
‘‘small n, large d dilemma’’, where n refers to the number of

samples (independent, biological replicates) and d refers to the
number of measured variables. In genomics, d typically ranges
from thousands to millions, and n typically ranges from tens to
hundreds. In proteomics d is often in the thousands, while n is
commonly below ten. Such an extremely unfavorable ratio is
almost never seen in applications of statistical learning outside
biology. The consequences of working under such constraints
when analyzing differential abundance are profound, and
severely limit what can be learned in a purely data-driven
manner; see for example the discussion in ref. 39 and 40. As
a result, model complexity must be tightly controlled in order to
prevent ‘‘over-fitting’’ and improve consistency from study to
study. One of the consequences of over-fitting is the lack of
robustness in the analysis of FDR, in which there is a large gap
between the target FDR and the realized FDR. Indeed, there
are multiple studies in genomics concluding that ‘‘simpler is
better’’ in this scenario.39,41

In particular, the use of parametric models, such as para-
metric linear regression, can be dubious, at least with the
sample sizes used in proteomics today. In addition, parameters
present in parametric models are rarely known in advance, and
must hence be estimated from the data. This leads to further
instability in the small-sample regime encountered in most
proteomics studies. Other approaches that require estimating
multiple parameters, such as those based on least-squares,
which do not require the Gaussian assumption, are also of
limited relevance with very small sample sizes. Interestingly,
despite these large bodies of research from the genomics field,
nonparametric approaches are rarely (with few exceptions,
e.g. ref. 4) applied to proteomics analyses.

Nonparametric tests are by definition distribution-free, and
are therefore usually more robust than tests based on specific
parametric distributions (e.g., normality) with respect to
departures from that distribution. In fact, even for data which
are normally distributed, nonparametric tests are basically as
efficient as t-tests when testing for a shift in values from one
class to another,42 which is the standard characterization of
‘‘differential abundance’’. Here each class has twelve samples,
which is still quite small from a statistical perspective. However,
this level of collected data must be taken into context when
developing data for a differentially abundance measurement
with respect to overall experimental design. Availability of
sample amounts, time constraints, cost of mass spectrometry
use, and data quality in terms of richness and variation are
considerations for statistical analysis. Moreover, in proteomic
measurements there is an extensive presence of null values in
most studies, such as ours, which correspond either to peptides
actually present but not detected due to signals below the
threshold of noise, or to peptides actually not present in the
samples. Overall, these data are clearly not normally distributed
(see Fig. 5 and Fig. S4, ESI†). Such observations extend to the
distributions of the peptides that we analyze in our peptide-
centric method (see Fig. S5, ESI†). Nonetheless, the assumption of
normality is made in approaches based on linear regression.3,12

Our approach enjoys the advantage of making no assumptions
on the distribution of the data. Whereas we have focused on a

Fig. 4 Detection of UPS1 proteins when comparing condition C0 to C1
(top), C0 to C2 (middle) and C3 to C4 (bottom) at different numbers of
discoveries ND.
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permutation-based method, other approaches may be appro-
priate for intensity data, such as the Wilcoxon test.

A further important feature of our approach is that robust
estimates of all p-values are obtained by permutation analysis.
This has become the default procedure in modern statistics,
since it does not rely on any assumptions about the probability
distribution of the score (test statistic). In permutation-
based analyses, null data matrices are generated by randomly
exchanging the class labels, thereby decoupling the class label
and the observed peptide values within each sample. For each
reshuffling of the labels, the test statistic is computed using the
null data; the final p-value is the fraction of null matrices which
result in a score at least as extreme as the score obtained on the
real, unpermuted, data. In these null matrices, the overall sets
of values obtained for each peptide across samples are pre-
served, as well as the peptide-to-peptide dependency structure.
It is thus only the class label of a measured value which is
modified, while existing peptide-to-peptide correlations are
maintained. A permutation-based procedure such as ours thus
overall provides more discriminating results than methods based
on simulated data. The twelve repetitive injections we performed

for each concentration allows for a resolution in significance
analysis of order 3.7 � 10�7. In contrast, permutation testing is
far too coarse with even six replicates (0.001 resolution), let alone
three (0.05 resolution). The higher resolution obtainable with larger
numbers of replicates is necessary to distinguish between condi-
tions with small fold changes in the spiked-in concentrations.

Zero peptide values

As observed in multiple datasets, including ours, there may be
many peptide values which are zero in the peptide data, even a
majority within a class, depending on the concentration of
the analyte. In the extreme case when all the peptide values
are zero in one class, performance can be severely affected for
some methods. This was the case, for example, with MSstats,
which we used for comparison to our approach. Methods based
on realistic proxies for relative protein abundance, such
as MaxLFQ,4 where protein concentrations are reconstructed
starting from ratios of peptide values from sample to sample
(i.e., ratios yjk/yjk0) are also compromised in the presence of
many zero values. In contrast, the scores proposed here do no
present such a limitation, since working with differences of
summed (raw or transformed) peptide values across conditions
(see eqn (2)). Detection on C0 vs. C1 and C0 vs. C2 using
CSNorm-PI even yielded satisfactory realized FDR values when
using a target FDR of 1%, as seen in Table 4.

Imputation of null values can sometimes be advantageous.
Due to the high prevalence of zero peptide values in proteomics
data, efforts have been made to evaluate the use of imputation
in proteomic analyses.43,44 Still, due to limited success, we have
chosen to avoid it, as recommended in ref. 43.

Some authors have proposed directly accounting for these
zero values either by mixture modeling or by designing com-
pound test statistics with separate terms for the zero and non-
zero values; see ref. 13 and references therein. The CSNorm score
implicitly accounts for zero values in the following sense. Recall
that for comparing two classes a and b, the score for protein i is
T norm

i = |Sa � Sb|, where Sa (respectively, Sb) is the average of the
normalized peptide values ynorm

jk over all peptides from protein i
and all na samples from class a (respectively, nb from class b). Let
n+

a (respectively, n+
b) denote the number of non-zero values in

class a (resp., class b); note that normalizing does not change the
set of zero values (see eqn (1)), so that the n values are the same
with (score CSNorm) and without (score CSLog) normalization.
The fraction of non-zero values in class a is n+

a/naNi, and we have:

Sa ¼
naþ

naNi

� �
1

naþ
Xna
k¼1

XNi

j¼1
ynormjk

 !

and the same for class b with na replaced by nb. Since class-wise
summing over all values is obviously the same as class-wise
summing over only the non-zero values, we have

Sa = (fraction of non-zero values in class a)
� (average of non-zero values in class a).

In comparing classes a and b, especially for low concentrations,
the fraction of non-zero values may be as informative as their

Fig. 5 Distribution of observed PI values in sample 1 for class C3 (top) and
class C5 (bottom). Values are in log scale.
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average, whereas for high concentrations, the fractions may be
near one and the decision is therefore mainly driven by the
average of non-zero values.

Appropriate performance metrics

We have not used ROC (Receiver Operating Characteristic)
curves to measure performance, as is commonly done in
proteomics.9 The ROC curve plots the sensitivity (or recall) as
a function of the false positive rate. However, whereas the
ROC curve can be a discriminating metric for sample-based
prediction, we must emphasize that it is usually not a useful
performance measure for studies such as population-based
biomarker discovery and the initial selection of candidates.
From the perspective of statistical learning, searching for putative
protein biomarkers from a large list of possible candidates is a
prototypical feature selection problem: there are many candidates,
with a majority of true negatives (non-discriminating features).

Moreover, feature selection, as studied here, is encountered
throughout computational genetics (e.g., finding DNA variants
in GWAS), computational genomics (e.g., finding differentially
expressed genes) as well as, more recently, proteomics. In the
former cases, the metrics of choice are the sensitivity (the
fraction of true positives detected) and the false discovery rate,
which expresses the ratio of the number of false detections to the
total number of detections; in contrast, the false positive rate is a
ratio to the total number of true negatives (non-markers), which
is far larger. For example, in our current experimental settings,
roughly 1000 proteins are involved in each pairwise comparison,
while there are actually 48 true positives.

Suppose we have TD = 24 true detections among the ND = 30
smallest p-values in a first case, whereas in the second case we
detect the same number TD = 24 of true detections, but report
ND = 60 discoveries. In both cases the sensitivity is 0.5 (24/48).

The false positive rate will vary from
30� 24

1000
¼ 0:006 (first case)

to
60� 24

1000
¼ 0:036 (second case), both quite small. Since the

sensitivity is the same, the difference in performance will barely
be noticeable on an ROC curve. However, the realized FDR will

increase from
30� 24

30
¼ 0:2 to

60� 24

60
¼ 0:6, a huge difference,

especially if follow-up experiments are costly. For these reasons,
plotting sensitivity as a function of realized FDR (so-called
‘‘precision–recall’’ curves) is more relevant and informative
than using ROC curves in feature selection problems such as
those addressed in proteomics-based biomarker discovery.
Additionally, limitations to the utility of ROC curves were observed
in the assessment of other protein quantification methods,10

in which some tests initially appeared to perform poorly until
considering fewer discoveries.

Peptide-based detection

Since the first descriptions of abundance difference measurements
in proteomics-based biomarker discovery, nearly all proposed
algorithms were based on reconstructing protein-level measures,
such as aggregated spectral count (SC) values6,38,45 or peptide

ion current ratios.46 A major issue among proteomic label-free
quantitation methods is how to aggregate peptide measure-
ments associated with a given protein in order to most effi-
ciently test the hypothesis that the underlying (but unobserved)
concentration of this protein differs significantly from one
class to the other. In particular, it is by no means evident,
given the number of factors affecting peptide signal variability,
how to combine the MS signals at the peptide level to obtain a
physically meaningful value for each protein which is well
correlated with the amount of protein originally present in the
sample.37 These factors include chromatographic separation,2

the stochastic nature of DDA-MS, and the diverse range of
physicochemical properties (e.g., hydrophobicity, length, charge
state etc.) for the different peptides from the same protein. Still, the
actual outcomes of a proteomics experiment are observed values
(mainly, PI or SC) associated with a peptide sequence within a
sample. In recent years, a variety of peptide-centered methods have
appeared in the literature; see e.g. ref. 4, 10, 11, 47 and 48.

In our approach we do not aggregate the raw peptide values
to generate a score at the protein level. Instead, we first
consider the distribution of the values across samples within
each peptide separately. Our normalization step (eqn (1)) brings
all peptides from a given protein into a common reference
frame before summing these transformed values within each
condition. This adjusts for possible heterogeneities in the
generation of the samples or in the detection of peptides. This
has been likewise shown in other methods to improve precision
when quantifying proteins.10 In other existing methods,4 it is
the ratio of two sample values within a fixed peptide which is
assumed to best reflect the actual variations at the protein level.
Our normalization step preserves those ratios whenever there is
at least one zero value across the samples of the two conditions,
which is the case in our experiments (hence mj = 0 in eqn (1)

and ynormj;k

.
ynormj;k0 ¼ yj;k

�
yj;k0 ). Indeed, there are usually many

zero values, which may occur in actuality when comparing
clinical phenotypes rather than being a limitation of the
technology.

For clarity in our evaluation, we limited our analyses to
peptide sequences assigned to a single protein. Peptides
assigned to more than one protein produce a protein inference
conundrum, in which the percent contribution of the peptide
to each of the constituent proteins is unknown and likely
to confound the quantification results for those particular
proteins. Some quantification methods attempt to reconcile
the contribution of degenerate peptide signals to each of the
proteins using a variety of approaches.31,32 Alternatively, the
effect of degeneracy is avoided simply by using the other
peptides specific to each of those proteins for quantification,
as each individual peptide is a distinct measurement of the
protein abundance. For example, the removal of degenerate
peptides from the analysis in favor of a ‘proteotypic’ approach
was proposed more than a decade ago by several groups,49,50

and has gained further momentum over the past years with the
growing popularity of SRM approaches. The effect of choosing
to include or omit degenerate peptides on protein quantity
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when nondegenerate peptides are available is difficult to assess,
and may be influenced by the number of peptides observed for
the protein, or simply the quality of those peptides for quantifica-
tion, which is not assessed in shotgun MS. On a proteome-wide
analysis typical in clinical settings, the proteins quantifiable solely
based on shared peptides is typically minimal compared to the
remainder of the observed proteins and can be evaluated as a
group. These degenerate peptide analyses are rather extensive
for the purposes of evaluating our approach and best suited for
future developments of our method.

Dataset

The use of a two-species mixture with controlled quantities is
not novel when testing analytical methods where ground truth
should be known. Indeed, our dataset borrows heavily in design
from a previously published method,20,22,23 with two distinc-
tions. First, the additional dilution factor created smaller fold
changes (as low as 1.5-fold) within the dilution series. These
smaller fold changes allowed for more rigorous evaluation of
method performance. Though large-interval fold changes are a
necessity to adequately span the dynamic range of most mass
spectrometers, they do not necessarily reflect true biological
differences that may be observed in clinical samples. Even
though our method performed as well as or better than alter-
native methods for all comparisons, we focused on the compar-
isons with the smallest fold changes. Second, we acquired
twelve batch-developed replicates for each sample, as opposed
to a minimal three replicates frequently found among testing
datasets.9,20,23 As in other studies, such sampling can be seen
as surrogates for biological replicates; with twelve replicates
our method does obtain a better tradeoff between power and
FDR. In a clinical context, three replicates are insufficient to
provide the statistical power required for analysis of hundreds
to thousands of proteins. Consequently, methods that perform
well under minimal testing frameworks often struggle to per-
form in more complex, biologically relevant contexts.51 It is also
worth mentioning that although we perform only two class
comparisons, the data consist of six classes. Even though our
two-classes approach corresponds to most clinical discovery
experiments, this design provides the potential to extend this
method, and others, to comparisons between more than two
classes. Finally, we carefully inspected each chromatogram for
consistency across runs to avoid the types of data acquisition
artifacts, such as compressed chromatography and spray drop-
out, which are present in the dataset from Paulovich et al.22 As a
result, the performance of the algorithms can be evaluated
without the confounding effects arising from poor quality data.

Conclusions

The present study describes our nonparametric algorithm for the
detection of potentially important protein and peptide markers
from shotgun proteomics data. Rather than directly assigning a
physical parameter to proteins by aggregating peptide spectral
counts or precursor intensities, we first analyze the data using a

peptide-centric statistical approach. An overall score for the
protein is then derived and its significance level is finally
obtained using permutation testing. Our peptide-centric based
statistical method was applied to a newly generated human UPS1
spike-in over a yeast background dataset, which is of common
use for evaluating abundance detection performance. Across all
comparisons used, even those involving the lowest concentration
and even in the no-spike-in condition, our nonparametric
algorithm showed sensitivity comparable to or better than
existing parametric methods. The present, peptide-oriented,
nonparametric method can have a high impact on the field of
quantitative proteomics, where no consensus exists at present
with respect to the statistical procedure, and where clinically-
relevant markers are still scarce.
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