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Abstract—Protein signaling networks play a central role in transcriptional regulation and the etiology of many diseases. Statistical

methods, particularly Bayesian networks, have been widely used to model cell signaling, mostly for model organisms and with focus on

uncovering connectivity rather than inferring aberrations. Extensions to mammalian systems have not yielded compelling results, due

likely to greatly increased complexity and limited proteomic measurements in vivo. In this study, we propose a comprehensive

statistical model that is anchored to a predefined core topology, has a limited complexity due to parameter sharing and uses micorarray

data of mRNA transcripts as the only observable components of signaling. Specifically, we account for cell heterogeneity and a

multilevel process, representing signaling as a Bayesian network at the cell level, modeling measurements as ensemble averages at

the tissue level, and incorporating patient-to-patient differences at the population level. Motivated by the goal of identifying individual

protein abnormalities as potential therapeutical targets, we applied our method to the RAS-RAF network using a breast cancer study

with 118 patients. We demonstrated rigorous statistical inference, established reproducibility through simulations and the ability to

recover receptor status from available microarray data.

Index Terms—Cell signaling networks, signaling protein, microarray, statistical learning, Bayesian networks, stochastic approximation

expectation maximization, Gibbs sampling, Mann-Whitney-Wilcoxon test.

Ç

1 INTRODUCTION

CELLS are complex molecular machines contained within
phospholipid membranes that isolate a unique chemi-

cal environment. A key component of the cellular machin-
ery is the set of protein signaling networks, which permit a
cell to sense the internal and external environments and
respond by altering metabolism and gene expression.
Signaling networks comprise interacting signaling path-
ways, with each pathway containing a number of indivi-
dual signaling proteins.

Signaling proteins can modify their behavior based on
conformational changes induced by other signaling pro-
teins. In the typical case, a kinase (a protein capable of
adding a phosphate group to a protein) modifies its target
protein by adding phosphate groups at serine or threonine
amino acid residues. The modified protein undergoes a
conformational change, activating its own kinase activity,
leading to modification of a new target protein. This chain
of phosphorylation causes a signal to be transduced
through the cytosol of the cell, resulting in changes in
enzymatic activity or activation or suppression of a
transcriptional regulator (i.e., a transcription factor or

cofactor). In addition to kinases, there are phosphatases
that remove phosphate groups, thus reversing the signal
from a kinase. Also, for certain signaling proteins, activity is
generated by cleavage of a parent protein or dimerization,
which is especially common for receptor tyrosine kinases
that reside on the cell membrane and respond to external
environmental cues, such as hormones or growth factors.

1.1 Statistical Network Modeling

Biological data are inherently probabilistic and generally
display hierarchical relationships. Statistical analysis is then a
logical approach for modeling large-scale molecular net-
works and for identifying specific nodes within a signaling
network that are optimal therapeutic targets. In particular,
graphical Markov models, such as Bayesian networks, have
gained considerable interest lately in biomedical research
because they naturally accommodate hierarchical network
structure and reduce model identification to estimating low-
dimensional conditional distributions.

However, despite their early promise, few major insights
have emerged from such modeling efforts, at least for
mammalian data. It is likely many of the problems that have
arisen in applying Bayesian networks to these data arise
from the high dimensionality of the data and, in the case of
reverse-engineering regulatory networks, from the necessity
of learning both the underlying topology and estimating the
corresponding statistical parameters. As a result, methods
designed to reduce what needs to be learned from data by
incorporating prior knowledge have come into use. They are
even more required when, like in the present study, small
sample sizes come in combination with a large proportion of
unobservable components in the process of interest.

In particular, in the work described here, in order to
apply graphical Markov models to learning signaling
networks, we utilize existing knowledge about biological
wiring diagrams as well as sharply reduce dimensionality
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by parameter-sharing. In addition, we account for cell
heterogeneity by modeling the observed expression data as
cell averages. Recent evidence on TRAIL-induced cell death
suggests that variability in protein concentrations between
even clonal cells can lead to phenotypic variation that
homogeneous models cannot address [14]. Our approach
yields a stable model which can be identified with current
sample sizes.

1.2 Wiring Diagram

Unlike standard Bayesian network approaches, which
attempt to learn a wiring diagram in addition to statistical
parameter estimates, we begin with a defined core signaling
network, thus eliminating the combined problem of
insufficient sample size and of hidden components for
determining parameters for our statistical models.

A number of the core pathways of protein-protein
interactions have been detailed, especially those affecting
disease, for example in cancer studies [24], [28]. Since these
pathways play critical roles in embryogenesis across many
organisms, there is a substantial knowledge base [11]. For
any given system, the core pathways need to be modified in
terms of specific cell types, which is presently best done
through review of the literature [18]. In this way, a core

signaling network can be created for a system of interest,
with the pathways considered critically linked to transcrip-
tional regulators.

More specifically, studies on mutation in breast cancers
have verified driver mutations of key signaling components
in multiple pathways that lead to breast cancer develop-
ment [17]. Both the RAS-RAF proliferation pathway and the
PI3K cell fate pathways have multiple driver mutations,
suggesting these are excellent targets for studies aimed at
developing a method suitable for identifying targets for
therapeutic intervention. With such applications in mind,
we constructed a network based on the core signaling
processes in breast cancer. The resulting network is shown
in Fig. 1, with a hierarchical layout, where cell receptors
(rounded squares) are on top as initiators of signaling;
signaling proteins (circles) and transcription factors (dia-
monds) are in the middle; and genes (octagons) are at the
bottom as final targets.

We then identified a public domain microarray data set
from a breast cancer study that included phenotypic
information on receptor status [3]. This data set was
collected using the Affymetrix U133A GeneChip and
deposited in ArrayExpress (TABM158) [22]. We annotated
the network in Fig. 1 for the targets of the transcription
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Fig. 1. Graphical representation of the signaling network of interest. Cell receptors (rounded squares) are roots along with cellular conditions
(hexagons) and sit on top of the network as initiators of downstream signaling. Signaling proteins (circles) followed by transcription factors
(diamonds) appear in the middle of the hierarchy. Genes (octagons) are leaves of the network and appear at the bottom as final targets of
transcription. The types of causal interaction between components are depicted with arcs directed from parent to child; arrow and round heads are
used to indicate activation and inhibition, respectively.



factors from TRANSFAC Professional v11.4 [19] using our

annotation pipeline, associating Affymetrix probes with

Unigene clusters for gene identification [12]. These data will

be used to learn the parameters of our Bayesian network

and to validate the learned model by deducing the status of

upstream signaling proteins in the form of probabilities of

activation, comparing the estimated activation levels with

ground-truth obtained from the clinical status measure-

ments provided in [22].

1.3 A Multilevel Model

Applying Bayesian networks directly to the graph in Fig. 1 is

not straightforward for several reasons. First, this ignores an

important component of the data acquisition process, which

is that the measured transcript levels are averaged over large

ensembles of cells. Taking this into account in the model

induces notable differences compared to what would

correspond to a single cell model. In a proper tissue-level

model, each observation arises from a large group of

networks, each representing a cell. Second, the status of the

signaling proteins is not observed. The only observed

variables are tissue-level (hence cell-averaged) gene expres-

sion levels. Despite the averaging and hidden variables, we

are still able to predict the receptor status given the observed
transcript levels.

Our model is organized on two levels, the first one
incorporating cell-dependent variables, and the second one
including factors that are common to large cell assemblies
(tissues), but are subject-dependent. An overview is pre-
sented in Fig. 2.

At the cell level, we model signaling pathways as
Bayesian networks in which the information is flowing
from receptors (which constitute the roots of the networks
to which are added certain cellular conditions, such as
hypoxia) to genes. This process is assumed to be working
within each cell, independently of the others. With an
additive noise component, a gene expression measurement
is modeled as the logarithm of a linearly increasing function
of total gene-specific RNA abundance summed over a large
population of cells. Final transcript readouts constitute the
only observable components in our model.

The parameters of the Bayesian network at the cell level
are assumed to be identical within each subject. This
implies that the measurements stem from sums of inde-
pendent and identically distributed random variables. Most
of these parameters are also assumed to be identical across
subjects, with the exception of the cell receptor activation
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Fig. 2. Illustration of a microarray experiment. A tissue sample obtained from a test subject is assumed to contain a large ensemble of cells. Signaling
in each cell is modeled by the same Bayesian network that generates gene-specific mRNA, independently of other cells given the patient’s
phenotypic receptor activation probabilities. The mRNA accumulated from all cells is processed through hybridization, scanning, etc., to yield the
final gene expression readouts, which constitute the only observable variables. Thus, the overall process motivates our multilevel approach and the
assumption that measured gene expression levels are proportional to their single-cell conditional expectations given patient-dependent root
activation probabilities.



probabilities. These probabilities are subject-dependent and
assumed to be randomly generated. Putting things in a
generative order, we model the process leading to a
microarray measurement as the following sequence of
operations, performed independently for each subject:

1. Specify the receptor activation probabilities. These
are shared by all cells in the analyzed tissue.

2. For each cell, let the gene expression be obtained
from the state of the terminal nodes in a Bayesian
network that models the signaling pathway.

3. For each gene, define the total expression to be the
sum of the gene expressions over a large population
of cells.

4. The final expression measurement is modeled as the
logarithm of a linearly increasing function of this total
expression with some additive observation noise.

1.4 Organization of the Paper

Our paper is organized as follows: In Section 2, we review
previous related work on cell signaling networks. In
Section 3, we lay out our statistical model in detail,
elaborating the cell, tissue, population, and measurement
levels. Then, in Section 4, we present the learning algorithm
for model identification, with applications and experiments
discussed in Section 5. Finally, some conclusions are drawn
in Section 6.

2 RELATED WORK

Bayesian network models have been used in a wide variety of
ways. For example, the relationships between nodes do not
need to represent actual physical connections; consequently,
Bayesian networks can model the effects of clinical variables
on outcome, even relying on molecular data as well [18]. This
can be viewed as a phenomenological perspective, where we
abstract away the direct molecular causative agents, but
retain predictive relationships between measured variables
[5], [27]. Bayesian networks have also been used to model
traditional genetic networks, such as with time series data,
where the upregulation of a gene is identified as a causative
agent for expression of other genes [6].

Other approaches to creating robust models might be
attempted. Ordinary differential equation (ODE) models,
such as modeling of ERBB signaling response [1], can
capture great complexity, but they rely on large numbers of
poorly determined parameters. This can limit their prova-
bility, since large ranges of parameter values on many
components must be explored to guarantee uniqueness.
Alternatively, networks can be reconstructed from limited
measurements of protein state and abundance, such as from
flow cytometry [25], or from prior data on beliefs of
connectivity [20]. In these cases, the goal is to construct
the connectivity and flow of the network for a small number
of proteins from proteomic measurements.

For inference on larger cell signaling networks, a number
of alternative methods have been used. Matrix factorization
has been used to determine activity on components of
networks or in biological processes from microarray data,
such as through Network Component Analysis [16] and
other methods reviewed in [13]. Bayesian methods have
been applied to estimate gene regulatory networks from
microarray data [21], from microarray data coupled to other

information such as protein-protein interactions [9], and
from proteomic measurements of signaling species in the
networks [20].

Our work has two substantial differences to this previous
work. First, we introduce the ensemble of cell models
concept that captures biological heterogeneity. Second, we
build a Bayesian network that realizes the molecular
interactions of the biological network as reflected in
transcriptional changes that can be measured routinely
and globally.

3 A COMPREHENSIVE MODEL

3.1 Individual Cell Model

Interacting signaling pathways of an individual cell are
modeled as a Bayesian network over a predetermined
directed acyclic graph GG ¼ ðV ;EÞ, where V is the set of
nodes (or vertices) and E is the set of oriented edges. The
graph used in this paper is depicted in Fig. 1. Some nodes
v 2 V represent a protein which participates in signal
transduction, namely a cell receptor, intermediate signaling
protein or transcription factor (TF). Other nodes stand for a
cellular condition, such as DNA damage and Hypoxia, and
the terminal nodes (those with no children) represent genes,
the final targets of signal transduction.

A directed edge ðu; vÞ 2 E, from u toward v (u; v 2 V ),
represents a potential functional interaction between u and v.
Each such edge is labeled with the type of regulation, either
activating (upregulating) or inhibitory (downregulating).
Let paðvÞ ¼ fu : ðu; vÞ 2 Eg denote the set of v’s parents, i.e.,
nodes that have an edge toward v. Accordingly, letAv and Iv
denote the disjoint subsets of paðvÞ consisting of the parents
that activate and inhibit v, respectively.

We denote by R � V the set of roots of the network, i.e.,
the nodes with no parents, which can be either cell
receptors or certain cellular conditions which initiate
downstream signaling. Also, let G � V stand for the
terminal nodes of GG; clearly G \R ¼ ; (since there are no
isolated nodes). While v will usually denote a generic node,
we will use whenever possible r to denote a receptor node
and g to represent a gene.

Each node v 2 V carries a random variable Xv, which
quantifies the signaling activity of node v in network. We
will use smallcase letters (e.g., xv) for realizations of random
variables, and we will write XB to indicate the set of
random variables fXv; v 2 Bg. For example, XG is the set of
variables associated with genes. These random variables are
interpreted as follows: For each gene g 2 G, Xg stands for
the expression level of gene g in the cell, i.e., the amount of
transcribed mRNA. All other variables Xv; v 2 V nG are
binary, and represent the state of signaling at node v, where
Xv ¼ 0 means “off” and Xv ¼ 1 means “on,” interpreted as
the presence of signal at site v, ready to propagate down.
The stochastic process XV ¼ fXv : v 2 V g is our representation

of signaling activity in a single cell, and we encode the joint

distribution in a Bayesian network. Therefore, the probability
that the whole system is in state xV ¼ fxv; v 2 V g is

P ðXV ¼ xV Þ ¼
Y
r2R

prðxrÞ
Y

v2V nR
pv
�
xvjxpaðvÞ

�
:
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Turning to the parameterization of the model, consider
first the root nodes r 2 R; since Xr is binary, there is one
parameter per node, denoted �r ¼ prð1Þ ¼ P ðXr ¼ 1Þ. For
transitions, for each v 2 V , we attribute a function �v :

f0; 1gjpaðvÞj ! ½0; 1� which quantifies the net effect of the
collection of signals xpaðvÞ from the parents of v. The extreme
values, 0 and 1, correspond to pure inhibition and pure
activation, respectively. More precisely,

. If v is neither a root nor a terminal node,

�vðxpaðvÞÞ ¼ E
�
XvjXpaðvÞ ¼ xpaðvÞ

�
¼ P

�
Xv ¼ 1jXpaðvÞ ¼ xpaðvÞ

�
which completely specifies the transition probability
at v. They are “hard wired” in our model.

. If g 2 G, the only property of the distribution of
mRNA abundance Xg that will be needed is the
conditional expectation given the parent TFs. We
then introduce a scaling coefficient ag > 0 and take

E
�
XgjXpaðgÞ ¼ xpaðgÞ

�
¼ ag�g

�
xpaðgÞ

�
: ð1Þ

We can interpret this as follows: transcription is
either “on” or “off” with probability �gðxpaðgÞÞ. When
it is “on,” the mean is ag and when it is “off” the
abundance is zero.

A possible choice, if v is not a root, is to take

�vðxpaðvÞÞ ¼
P

u2paðvÞ xu1fu2Avg þ ð1� xuÞ1fu2Ivg
jpaðvÞj : ð2Þ

It is easy to see that �v is linearly increasing in the difference
between the number of active upregulating and down-
regulating parents of v, which is clearly an oversimplified
model of “transcriptional synergy,” at least in the case of
“competing” parents. More complex forms could be
considered which are more faithful to the chemical
interactions, perhaps even accounting for TF binding
energies. However, in our particular network, only a
relatively small portion of nodes have competing parents
and our choice like (2) has the major advantage of being
parameter-free, allowing one to precompute certain quan-
tities which appear repeatedly during parameter identifica-
tion. Moreover, simulating the Bayesian network is
significantly more efficient under the assumption of
linearity in (2) (see Section 3.5).

3.2 Tissue Model

At the patient level, the measured abundance of mRNA for
each gene on the microarray originates from a very large
ensemble of cells contained in the sample tissue. Let C
denote this ensemble of cells, with size C ¼ jCj, and let xg;c
be amount of transcribed mRNA for gene g 2 G in cell c 2 C.
The total abundance is denoted by xg;C ¼

P
c xg;c. By the law

of large numbers, assuming the Bayesian networks for the
cells are independent, we have

xg;C � CE½Xgjag; �R�;

where ag and �R ¼ f�r : r 2 Rg are the model parameters
that affect Xg. In addition, due to the Markov property of
the network,

E½Xgjag; �R� ¼ E
�
E½Xgjag;XpaðgÞ

�
j�R�

¼ E
�
ag�g

�
XpaðgÞ

�
j�R
�
:

Writing

�gð�RÞ ¼ E
�
�g
�
XpaðgÞ

�
j�R
�
; ð3Þ

for the expected transcription rate of gene g given the root
activation probabilities �R, and dropping the approxima-
tion above, the transcript abundance in the tissue is

xg;C ¼ agC�gð�RÞ: ð4Þ

3.3 Population Level

It is not realistic to assume that the activation rates of the
receptors and cellular conditions at the roots of the network
are the same for every subject. Consequently, the final
component of the model is to consider these rates to be
subject-dependent, in fact random variables at the popula-
tion level. That is, there is a random variable �

ðnÞ
R ¼

f�ðnÞr ; r 2 Rg for each patient n ¼ 1; . . . ; N . These variables
are assumed independent and identically distributed across
patients, for a given tissue type. Each component �r; r 2 R,
independently follows a Beta prior

�r � �ðar; brÞ:

with parameters ar and br.

3.4 Measurement Model

It is well known that the actual measurement process, i.e.,
the steps leading up to what is actually recorded for each
gene and patient, is complex, and should take into account
the various stages of a microarray experiment including
hybridization, scanning, background correction, and nor-
malization. As reported by numerous authors [7], [8], [10],
we assume a linear relationship between scanned intensi-
ties of expression and actual RNA abundances. In parti-
cular, after undergoing all these steps, we consider the final
log-expression reading yðnÞg , obtained for gene g 2 G and
subject n ¼ 1; . . . ; N , to be the logarithm of a linearly
increasing function of the corresponding tissue mRNA
abundance x

ðnÞ
g;C , say

yðnÞg ¼ log
�
bðnÞg þ cðnÞg x

ðnÞ
g;C
�
: ð5Þ

The gain parameter cðnÞg represents the net factor, that comes
between patient n’s actual molecule count for gene g and its
processed probe intensity, before being transformed to log-
scale. It involves the multiplicative measurement noise and
accounts for experimental effects like hybridization effi-
ciency, scanner gain, and normalization. On the other hand,
the additive term bðnÞg stands for the part of the intensity, that
does not stem from the experimented mRNA, but rather
effects like unspecific hybridization, detector offset, etc.

Analyzing this representation in further detail with
individual roles of the aforementioned steps and taking noise
into account (see Appendix A), (5) can be approximated by

yðnÞg ¼ �g þ log �g
�
�
ðnÞ
R

�
þ �ðg;nÞ; ð6Þ

where �g is an offset parameter-specific to gene g; and �ðg;nÞ

is an i.i.d. realization of the measurement noise which, in
log-scale is assumed to be an additive and zero mean
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Gaussian random variable with subject and gene-indepen-
dent variance �2.

In summary, our overall model, as illustrated in Fig. 2,
incorporates the entire process from the Bayesian network

modeling of individual cell signaling, to patient-to-patient

differences in receptor activation, to log-expression readouts
at the population level. As a result, the final observation

made for gene g for a given patient is modeled as a Gaussian

random variable Yg with conditional mean �g þ log �gð�RÞ,
parameterized by the gene-dependent offset �g and subject-

dependent root activation rates �R ¼ f�r : r 2 Rg, and each

�r has a Beta distribution with node-specific parameters ar
and br. The level of transcriptional regulation �gð�RÞ for

target g is evaluated using the single-cell Bayesian network

model. Finally, the variance �2 accounts for the variation in
measurement error, which is the same for all genes.

3.5 Expected Transcription Rate Function

Recall from (3) that for each gene g 2 G, �gð�RÞ represents the

cell-level average transcription rate of g, where we interpret

this equation as a conditional expectation given the root

activation rates are fixed to be �R. Let Rg denote the set of

roots which are ancestors of g, so that �gð�RÞ only depends on

�Rg
. Since these root variables are binary and independent,

P ðXRg
¼ xRg

Þ ¼
Y
r2Rg

�xrr ð1� �rÞ
1�xr :

Consequently,

�gð�RÞ ¼
X

xRg2f0;1g
jRg j

�
E
�
�gðXpaðgÞÞjXRg

¼ xRg

�
�
Y
r2Rg

�xrr ð1� �rÞ
1�xr

�
:

ð7Þ

It will be important in the following to have a quick

access to the value of �gð�RÞ for any given choice of the root

activation rates. One possibility is to precompute all the

coefficients of the above polynomial expression (i.e., all the

E½�gðXpaðgÞÞjXRg
¼ xRg

�), which are parameter-free, and

evaluate the polynomial when needed. This is tractable as

long as 2jRgj remains manageable, which is the case with our

network where jRgj does not exceed five. The precomputa-

tion of the conditional expectations has to be done only

once. It can be done exactly for small networks (including,

again, our case), or for specific topologies. In the general

case, approximate (and often good) values can be computed

using belief propagation methods, or Monte Carlo sam-

pling. When jRgj is too large for this strategy to be tractable,

it is still possible to compute or approximate �gð�RÞ for a

given �R using belief propagation each time its value is

needed (without precomputation).
Finally, we notice that the computation of �g can be done

very efficiently when, for each v 2 V , the function�v depends
linearly on the states xpaðvÞ of the parents. This property is
true, in particular, in the model proposed in (2). In that case,
�g can be evaluated using dynamic programming along the
network’s top-down hierarchy, thanks to the following
proposition, proved in Appendix B.

Proposition 3.1. Suppose that for all v 2 V ,

E½XvjXpaðvÞ� ¼ cv þ
X

u2paðvÞ
cuvXu

for some coefficients cv and cuv. Then, for all v 2 V ,

E½Xvj�R� ¼ dv þ
X
r2R

drv�r

for the coefficients dv and drv determined by the recursions
dv ¼ cv þ

P
u2paðvÞ cuvdu and drv ¼

P
u2paðvÞ cuvdru.

Thus, in the case of proposition 3.1, it suffices to
precompute coefficients drg for r 2 R and g 2 G to ensure
a computation of �gð�RÞ in a time which is linear in the
number of roots.

4 LEARNING ALGORITHM

Our model has both observed and hidden variables. The
observed ones are the gene expression levels yG ¼ fyðnÞg :
g 2 G;n ¼ 1; . . . ; Ng over N subjects. All other variables are
unobserved. Among these, we are particularly interested in
the root activation rates �R ¼ f�ðnÞr : r 2 R; n ¼ 1; . . . ; Ng,
which constitute the hidden phenotypic information about
the individuals in the population. The joint density of gene
expression values and activation rates is given by

fGRðyG; �Rj�Þ ¼ fGjRðyGj�R; �ÞfRð�Rj�Þ
¼
Y
g2G

fgjRðygj�R; �Þ
Y
r2R

frð�rj�Þ; ð8Þ

where � refers to the parameters of the model. For each gene
g 2 G, the conditional density of corresponding log-expres-
sion Yg is Gaussian

fgjRðygj�R; �Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2	�2
p exp �ðyg � �g � log �gð�RÞÞ2

2�2

( )
;

with an offset �g and noise variance �2. For each root node
r 2 R, the corresponding activation rate �r has a standard
beta prior

frð�rj�Þ ¼
�ar�1
r ð1� �rÞbr�1

Bðar; brÞ
;

with shape parameters ðar; brÞ, where Bða; bÞ ¼
R 1

0 x
ða�1Þð1�

xÞðb�1Þdx is the beta function.
In summary, the parameters to be inferred are � ¼

f�g; ar; br; �2 : g 2 G; r 2 Rg, which includes the shape para-
meters ðar; brÞ of the beta priors on receptor activation rates,
the variance �2 of additive measurement noise, and the
offset parameters �g for gene expressions. The beta
parameters are specific to each individual receptor, but
constant across the patient population. The noise variance is
constant for all genes and patients. Gene offsets are specific
to each individual gene but constant across subjects.

Model identification, i.e., learning � is based on observed
expression data yG, where we assume each Yg to be
conditionally independent of expressions YGnfgg of other
genes, given activation rates �R. Hidden components that
we represent in the cell level, namely the signaling proteins
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and transcription factors, as well as their wiring, appear
implicitly in functions �g (g 2 G).

The standard method for learning such a latent variable
model is the expectation maximization (EM) algorithm.
Briefly, EM provides an improving sequence ð�̂ðtÞÞt�1 of
parameter estimates by iteratively maximizing the condi-
tional expectation of the complete data log-likelihood, given
i.i.d. incomplete observations. In particular, each iteration t
of EM involves 1) an E-step which requires computing of
the missing data posterior, fRjGð�RjyG; �̂ðtÞÞ, in order to
evaluate the current objective function

Q
�
�j�̂ðtÞ

�
¼ E

�
log fGR

�
YG;�Rj�

�		yG; �̂ðtÞ
�
; ð9Þ

and 2) an M-step, in which one solves for the new
parameter estimates

�̂ðtþ1Þ ¼ arg max
�
Q
�
�j�̂ðtÞ

�
;

by maximizing the objective function. This procedure is
repeated until convergence is evident.

Evaluating (9) is usually simplified when the likelihood
of the complete model (including both hidden and observed
variables) belongs to an exponential family, which is the
case here, since we can write

log fGRðyG;�Rj�Þ ¼ ��ð�Þ þ h�ð�Þ;SðyG;�RÞi;

where h	; 	i denotes the vector scalar product; � and � are
scalar and vector valued functions of �; and SðyG;�RÞ is a
vector-valued complete data-sufficient statistic. Explicit
formulas for �, �, and S are provided in Appendix D.
The maximum likelihood estimator can be expressed as a
function of the sufficient statistic, in the form

S 7! �̂MLðSÞ:

The computation of �̂MLðSÞ with our model is described in
Appendix E. Since (9) can be rewritten as

Q
�
�j�̂ðtÞ

�
¼ ��ð�Þ þ



�ð�Þ; E

�
SjyG; �̂ðtÞ

��
;

it follows that the E-step can be reduced to computing the
conditional expectation of the sufficient statistic, namely

Sðtþ1Þ ¼ E
�
SjyG; �̂ðtÞ

�
; ð10Þ

while the M-step is simply given by

�̂ðtþ1Þ ¼ �̂ML

�
Sðtþ1Þ�: ð11Þ

However, due to the marginal beta distribution of �R,
there is no simple closed form for the computation of (10) in
the E-step and straightforward EM is intractable here.
Instead, we will consider a stochastic variant, the Stochastic
Approximation EM (SAEM) algorithm, wherein the E-step
is approximated with Monte Carlo integration. Under mild
conditions [4], [15], SAEM converges to (local) maxima of
the objective function if the complete data log-likelihood
belongs to a curved exponential family, which is the case in
our model. Basically, SAEM replaces the E-step of conven-
tional EM with a stochastic approximation running in
parallel, involving the simulation of missing data �R. In its
simple form, the SAEM algorithm makes an iterative
approximation of Sðtþ1Þ by defining

Ŝðtþ1Þ ¼ ŜðtÞ þ 
ðtÞ
�
S
�
�
ðtÞ
R ;yG

�
� ŜðtÞ

�
; ð12Þ

where ð
ðtÞÞt�1 2 ½0; 1� is a decreasing sequence of positive

step sizes starting with
ð1Þ ¼ 1, and �
ðtÞ
R is a simulated sample

of �R, drawn conditionally to yG for the current parameter

�ðtÞ. The M-step is then given by

�̂ðtþ1Þ ¼ �̂ML

�
Ŝðtþ1Þ�: ð13Þ

In principle, in order to ensure the convergence of the

SAEM algorithm, one should take
P1

t¼1 

ðtÞ ¼ 1 andP1

t¼1ð
ðtÞÞ
2 <1.

So the SAEM algorithm replaces computing conditional

expectations by sampling from the conditional distribution

which is most of the time much more feasible. Moreover,

variants of this algorithm allow for coupling the iterations

with Markov chain Monte Carlo sampling, when direct

sampling is not feasible or not efficient (which is the case for

our model). One can also use more than one sample �
ðtÞ
R at

each step, using a sample average in (12). The explicit

implementation of the variant we have used is described in

the next sections, for a single iteration t.

4.1 Simulation

Given the current parameter values �̂ðtÞ and observed

expression data yG, we generate MðtÞ � 1 realizations

�
ðt;mÞ
R ¼ f�ðn;t;mÞr : r 2 R; n ¼ 1; . . . ; Ng, (m ¼ 1; . . . ;MðtÞ) of

missing data under their joint posterior fRjGð	jyG; �̂ðtÞÞ. For

this, we use Gibbs sampling algorithm, which sequentially

produces an instance for each �r, from its univariate

conditional given the observations and already sampled

current states of other root variables �Rnfrg. The resulting

sequence ð�ðn;t;mÞR Þm�1 of realizations will then constitute a

Markov chain, whose stationary distribution is the sought-

after posterior fRjG.
For each r 2 R, let Gr be the set of genes which are

descendants of r and letRr be the set of root nodes other than

r which have a descendant in Gr. It is not hard to show (see

Appendix C) that the conditional density of �r given the rest

of the variables ðYG; �RnfrgÞ only involves quantities indexed

from Gr [Rr. Hence, letting frjGrRr
denote this univariate

conditional, the mth realization �
ðn;t;mÞ
R of missing root

variables for subject n and iteration t of SAEM, is produced

by Gibbs sampling as follows:

1. Set

�
ðn;t;mÞ
R  

�0R � U
�
½0; 1�jRj

�
; if t ¼ 1 and m ¼ 1;

�
ðn;t�1;mÞ
R ; if t > 1 and m ¼ 1;

�
ðn;t;m�1Þ
R ; otherwise:

8>><>>:
2. Visit the root nodes in some fixed order and, for each

r 2 R, set

�ðn;t;mÞr  �0r � frjGrRr

�
	 jyðnÞGr

; �
ðn;t;mÞ
Rr

; �̂ðtÞ
�
:

This step is made explicit in Appendix C.
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4.2 Stochastic Approximation

We update the sufficient statistic according to

Ŝðtþ1Þ ¼ ŜðtÞ þ 
ðtÞ
PMðtÞ

m¼1 Sð�ðt;mÞR ;yGÞ
MðtÞ � ŜðtÞ

 !
: ð14Þ

4.3 Maximization

We compute �̂ðtþ1Þ ¼ �̂MLðŜðtþ1ÞÞ, the latter function being
described in Appendix E. In summary, the model para-
meters are efficiently learned by keeping track of complete
data sufficient statistics, which are improved with new
realizations of missing data.

4.4 Root Activation Probabilities

The sequences ð�ðt;mÞR Þt�1;m�1 that are generated by the
SAEM algorithm can also be used to estimate, subject-
dependent, expected root activation probabilities given
corresponding gene expression levels. That is, the condi-
tional expectation E½�RjyðnÞG ; �̂ðtÞ� can be recursively approxi-
mated by

�̂
ðn;tÞ
R ¼ �̂ðn;t�1Þ

R þ 
ðtÞ
PMðtÞ

m¼1 �
ðn;t;mÞ
R

MðtÞ � �̂ðn;t�1Þ
R

 !
ð15Þ

which, at SAEM’s convergence is returned as patient
n’s phenotype estimate �̂

ðnÞ
R .

5 EXPERIMENTS WITH THE RAS-RAF NETWORK

In this section, we present experiments in learning the
network, measuring the stability of model identification,
and estimating the states of the hidden variables, especially
the activation states of the receptors. Our data consist gene
expression levels measured for 38 genes and collected from
118 breast cancer patients. The observed genes, i.e., the
targets of the signaling network of Fig. 1, are again listed in
Table 1, together with their known transcription factors and
associated type of regulation. The data set also contains
complete measurements for the ER� status of patients.

5.1 Validating Identifiability of Model

Before discussing experiments with real patient data, we
first verify that the model can be accurately identified from
artificial gene expressions simulated with known para-
meters. Given the parameter vector �, we generate subject-
dependent receptor activation rates �R ¼ f�ðnÞr : r 2 R; n ¼
1; . . . ; Ng according to their beta priors fRð	j�Þ; and,
conditioned on these rates, we sample gene expressions
yG ¼ fyðnÞg : g 2 G; n ¼ 1; . . . ; Ng from fGjRð	j�R; �Þ. We then
evaluate the fit between true parameter vector � and the
estimate �̂ that is learned by applying the algorithm to the
simulated observations yG. In particular, since the SAEM
algorithm also returns predictions �̂R of receptor activation
rates, we can compare those subject-specific estimates with
their simulated true counterparts �R that are kept hidden
during learning.

We can also conduct the above procedure at different
noise levels. Note that, with simulated phenotypes �R, our
model assumes that the log of expected transcription rates
log �gð�RÞ ¼ flog �gð�ðnÞR Þ : n ¼ 1; . . . ; Ng is the noise-free
signal that determines the subject-dependent variation for

each gene g 2 G. Letting log �g ¼
P

n log �gð�ðnÞR Þ=N denote
the corresponding sample average, and given the variance
�2 of the measurement noise, the signal-to-noise ratio
(SNR), measured in dB, is found by

SNR ¼ 10 log10

P
g

P
n

�
log �gð�ðnÞR Þ � log �g

�2

jGjN�2
:

Table 2 provides a summary of how accurately the
activation rates are estimated at different SNR levels. For
each r 2 R, the correlation coefficients between the simu-
lated true vector ½�ðnÞr �

N
n¼1 and its learned estimate ½�̂ðnÞr �

N
n¼1

are given as an average score over 10 independent
experiments per choice of SNR, where the experiments
differ in the random selections of the true parameters used
to simulate data of sample size N ¼ 100. Clearly, the model
is accurately identified with moderately sized learning
samples and even with SNR ¼ 0, where the standard
deviation in log �gð�RÞ averaged across all genes g 2 G,
i.e., the root-mean squared amplitude of the subject-
dependent signal is the same as that of noise. In particular,
the estimates of the receptors ER� and EGFR inferred from
simulated data are more precise since they affect the
majority of the genes observed.
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TABLE 1
List of Observed Genes and Their Parent Transcription Factors

(also shown in Fig. 1 bottom); the type of regulation (activating or
inhibiting) is indicated by the arrows.



5.2 Estimating Receptor Activity from Real Data

One important way to measure the utility of the model is to
estimate the states of the receptor proteins from the gene
expression data. In our model, these states are binary
variables, each sampled independently from a patient-
dependent activation rate. Consequently, it is these rates
which are the more natural targets of estimation. For each of
the 118 patients, we are provided with a binary label for the
measured phenotypes, either “ER�-positive” or “ER�-
negative.” Our activation rate estimates f�̂ðnÞER�g

N
n¼1 are

scalars. The rank-sum test, also known as Mann-Whitney-
Wilcoxon test, offers a natural and robust way to compare
predictions, especially by averaging over different para-
meter initializations. It is a nonparametric procedure for
testing the hypothesis that two independent samples are
identically distributed.

Let ERþ; ER� � f1; 2; . . . ; Ng be the subpopulations of
patients who are ER�-positive and ER�-negative, respec-
tively. In our case, the null hypothesisH0 is that the activation
rates from these two subpopulations are identically dis-
tributed. Our data are the estimated rates �̂þER� ¼ f�̂

ðnÞ
ER� :

n 2 ERþg and �̂�ER� ¼ f�̂
ðnÞ
ER� : n 2 ER�g, where jERþj ¼

Nþ ¼ 75 and jER�j ¼ N� ¼ 43.
Fig. 3 compares the histograms of estimates �̂þER� and

�̂�ER� (superposed with their nonparametric density fits for
better visualization) obtained with 20 repeated experiments
where each run of the algorithm differs in random
parameter initializations. The rank-sum test p-value (see
Appendix F for a description of rank-sum test) averaged
over these 20 experiments is found 0.0018 with standard
deviation 0.00045. As can be seen in the separation of
histogram modes, the estimates are reproducible and
consistent with phenotypes.

The data set also reproduces the EGFR status for 79 of the
118 patients, again recorded as EGFR-positive or EGFR-
negative, but with only eight positives. The same rank-sum
test approach to correlate this information and the EGFR
rate predicted by the model, failed to provide a significant
p-value, but this would have been very hard to achieve due
to limited power of rank-sum test with such a small number
of available EGFR-positive patients.

5.3 Estimating the States of Other Signaling
Proteins

Given predictions for receptor activation rates, we can also
deduce the subject-dependent states of the nonreceptor
components, i.e., signaling proteins and transcription
factors that are not explicitly involved in (8). Having

estimated �̂
ðnÞ
R for each patient n, the subject-specific

expected status �̂xðnÞv ¼ E½Xvj�̂ðnÞR � of each network compo-
nent v 2 V nG can be directly evaluated similar to the way
in which we computed the �gs in (7). Letting Rv denote the
root ancestors of v, we get

�̂xðnÞv ¼
X

xRv2f0;1g
jRv j

 
E½XvjXRv

¼ xRv
�

�
Y
r2Rv

�
�̂ðnÞr

�xr�1� �̂ðnÞr �1�xr
!
;

ð16Þ

where, again, the expectations involved in the sum are
parameter-free and can be precomputed using Proposi-
tion 3.1. Note that, with that notation, subject n’s expected
status �̂xðnÞr at a root r 2 R is the same as the prediction of the
corresponding activation rate �̂ðnÞr .

For a node v with only one parent, say u, the above
computation simplifies to �̂xv ¼ �̂xu (resp. 1� �̂xu), since in
evaluating the expectation E½XvjXRv

¼ xRv
�, (2) will give

�vðxuÞ ¼ P ðXv ¼ 1jXu ¼ xuÞ ¼ E½XvjXu ¼ xu� ¼ xu ( r e s p .
1� xu) if u activates (resp. inhibits) v. In other words, along
linear sequences, signaling is assumed to propagate
deterministically, where each node either copies or reverses
the status of its single parent. Thus, our model is invariant
to adding/removing components at such pathways. That is,
topologies that reduce to the same collapsed structure yield
the same data likelihood as well as the same predictions for
common nodes.

Fig. 4 shows a gray-scale heat map (black: low, white:
high) of estimates for hidden components appended to the
observed gene expressions, where, to avoid redundancy,
hidden nodes with only one parent are excluded. As
mentioned above, these can be directly deduced from the
ones already shown. Spot ðv; nÞ gives the estimated or
observed status of signaling component v, for patient n.
Each row is scaled to a common dynamic range by
subtracting the mean and normalizing with standard
deviation. Columns (i.e., patients) are arranged according
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Fig. 3. Normalized histograms and nonparametric density fits of patient-
dependent predictions for ER� activation rates corresponding to ERþ

and ER� subpopulations. Histograms are generated and rank-sum test
p-values are averaged over 20 independent runs.

TABLE 2
Model Identification from Simulated Data

Correlation coefficients between true (simulated) activation rates

½�ðnÞR �
N
n¼1 and their learned estimates ½�̂ðnÞR �

N
n¼1 at different SNR levels.

Scores averaged over 10 experiments with randomly selected para-

meters for simulation. Sample size N ¼ 100.



to the rank of the projection of the corresponding gene

profile onto the direction of largest variation in gene space,

namely the first eigenvector of the covariance matrix of

observations. Besides demonstrating our ability to estimate

the subject-dependent status of cell signaling, further

analysis of this picture is limited by the absence of ground

truth for hidden nodes. However, it is noteworthy that our

inference of hidden nodes aligns with the first order

variation among genes.

5.4 Validating Reproducibility and Sensitivity to
Sample Size

In order to assess the method’s generalization power and

sensitivity to sample size we used a “repeated random

subsampling validation” procedure, where we repeatedly

partitioned the available gene expression data into two

random halves, and checked the fit between models learned

from these two disjoint subsets.
In order to describe this validation study, let B �

f1; . . . ; Ng be a subpopulation of patients and let �̂ðBÞ

denote the model parameters learned from the correspond-

ing expression data y
ðBÞ
G ¼ fyðnÞg : g 2 G; n 2 Bg. Then, based

on the model with estimated parameters �̂ðBÞ, let �̂
ðkjBÞ
R ¼

E½�RjyðkÞG ; �̂ðBÞ� denote the predicted receptor activation rates

for patient k, who may or may not be in B.

The expectation involved in �̂
ðkjBÞ
R can be evaluated by

Monte Carlo integration as discussed in the simulation step

of SAEM, i.e., by Gibbs sampling the model, with

parameters �̂ðBÞ and conditional to corresponding observa-

tions y
ðkÞ
G . Note that, if k 2 B, in other words if the queried

patient is in the training set, then, as we reported so far,

�̂
ðkjBÞ
R is already an output of our learning algorithm, and it

is found in the same way by (15).

Now, let A and Ac be two disjoint halves of the

experimented population f1; . . . ; Ng. To validate our

method, we want to compare, for each n, the estimations

�̂
ðnjAÞ
R against �̂

ðnjAcÞ
R , that are predicted for the same person,

but with respective model parameters �̂ðAÞ and �̂ðA
cÞ, learned

from two disjoint sets of subjects.

Table 3 shows the reproducibility results, where for each

r 2 R, we give the corresponding scatter plot of �̂ðnjAÞr

versus �̂ðnjA
cÞ

r , for n ¼ 1; . . . ; N , and accumulated over

20 random selections of A. Averaged over these repeated
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Fig. 4. Gray-scale heat map of patient-specific networks. Each row corresponds to a network component and each column to a patient. The rows are
scaled to a common dynamic range. The columns are arranged according to the rank of the projection of the corresponding gene profile in the
direction of largest variation in gene space. The white stripe separates the observed log gene expression levels on top from the estimates of the
hidden components. Hidden nodes that have only one parent (the ones that are intermediate proteins along linear cascades) are excluded to avoid
repetition, since their predictions are either the same or the inverse of their parent, directly deducible from the ones already shown.

TABLE 3
Repeated Random Subsampling Validation of the Method: Estimated Receptor Activation Rates

are Compared after Training on Disjoint Subpopulations

Results are superposed/averaged with 20 random selections of subsample A � f1; . . . ; Ng (jAj ¼ N
2 ).



random subsampling experiments, the resulting correlation

coefficient between predicted vectors ½�̂ðnjAÞr �Nn¼1 and

½�̂ðnjAcÞ
r �Nn¼1 is used as a measure of fit between models

learned on disjoint patient populations, showing how well

the method generalizes, with even smaller learning

samples.

5.5 Validating Robustness with Respect to Realistic
Modifications in Network Topology

In Section 5.3, we discussed the invariance of statistical
inference under structural perturbations such as collapsing
or elongating linear pathways. Denoting the original core
topology of Fig. 1 by GG, we now examine the robustness of
our model with respect to biologically realistic revisions eGG
which are similar to GG but not equivalent in the previous
sense of collapsed chains.

As another plausible representation of the signaling
network, consider the modified wiring diagram eGG of Fig. 5.
Note that, compared with GG, eGG lacks a few genes that were
originally observed, as well as several proteins and connec-
tions. Absent components and their discarded pathways are
shown in light gray for a better visualization of the difference.

On the same gene expression data, we ran our algorithm

using the revised topology eGG and compared the new

estimations to their counterparts found with GG. Fig. 5 also

quantifies the resulting agreement of inference for nodes

that are common under both models. Attached to each v

and averaged over 20 independent experiments, we give

the correlation coefficient between the subject-dependent

status estimations ½ �̂xðnjGGÞv �Nn¼1 and ½ �̂xðnjeGGÞv �Nn¼1 based on

respective structures GG and eGG, and evaluated according

to (16). The magnitude of the correlations demonstrates the

robustness of the model with respect to different wiring

assumptions that are biologically reasonable.

6 DISCUSSION AND CONCLUSION

Cell signaling processes play a central role in the etiology of
many diseases, and signaling proteins provide a logical
target for therapeutic intervention with numerous therapeu-
tics under development [24]. The success of imatinib
mesylate (IM, Gleevec) in treating chronic myelogenous
leukemia has greatly increased the hope for targeted therapy,
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Fig. 5. A simpler but plausible interpretation of the original core topology of Fig. 1. Discarded components and edges are shown in light gray for
comparison. Scores at each node indicate the correlation coefficient between the corresponding status estimates under the original and modified
wirings.



however, these new targeted therapeutics are designed to
disrupt a single signaling protein. As studies in glioblastoma
multiforme have demonstrated, each individual tumor has a
different specific set of aberrant signaling proteins [23], [26],
making it essential to identify in each individual which
proteins need to be targeted for treatment.

The logical method to identify an aberrant signaling
protein is to look for changes in protein posttranslational
modifications (PTMs), since most signal propagation takes
the form of phosphorylation changes in proteins or cleavage
events changing protein localization and structure. How-
ever, these measurements are presently very limited in
vivo. An alternative approach is to use the mature
microarray technology targeted at mRNA transcripts, since
transcriptional changes resulting from activation or sup-
pression of transcriptional regulators are primary end
points for many signaling processes. Microarray data
coupled to models of signaling networks provide a
potential avenue for identification of individual signaling
protein abnormalities.

We have designed a statistical model for cell signaling,
which accounts for cell heterogeneity, can be robustly
learned from available microarray data and supports
rigorous statistical inference. Our effort was mainly
invested in laying out a comprehensive framework to
identify and quantify aberrations in signaling. Conse-
quently, we used prior knowledge and considered a
documented core topology (Fig. 1) that is particular to our
breast cancer study and available expression data. We
followed a multilevel approach to elaborate the overall
generative process starting from hidden phenotypes to final
log-expressions with different statistical interpretations in
cell, tissue, population, and measurement levels.

It is worth noting here that, for computational purposes,
we constructed our Bayesian network formulation at the
cell level, with parameter-free, linear, and generic transition
probabilities as given in (2), which, it may be argued,
oversimplify the underlying chemical processes. However,
the overall model allows the user to incorporate his/her
expert knowledge and to explain signaling dynamics with
more complex, nonlinear choices, which in turn may
enhance the predictive accuracy of the method. In fact,
without sacrificing efficiency, one can assume alternative
formulations to (2) that are still linear but favor the known
dominance of one or more competing parents at crossing
pathways; or, for instance, one can differentiate interactions
at the signaling level from those at the level of transcription.
To further enrich the model, one can even introduce extra
parameters that can be validated as more protein data
becomes available.

Note also that, due to lack of measurements on all
hidden variables but ER�, the biological validation of our
model remains currently very limited. On the other hand,
ER� ground truth usually correlates with the majority of
the genes. Thus, if the task were to predict ER� statuses
only, one would argue for simpler Bayesian approaches
with performances comparable to ours. However, this
argument should not lessen the utility of our model which
lays out a comprehensive framework to infer on each
hidden component. In that regard, our ER� predictions
we report here, should not be interpreted as an achieve-
ment, which otherwise could not be made, but rather a
consistency check.

Finally, we have demonstrated model’s identifiability,
reproducibility through simulations and robustness under
biologically meaningful revisions of topology. Using real
patient data, we validated its ability to recover receptor
status in a breast cancer study. As signaling plays a central
role in the etiology of many diseases, identification of the
aberrant proteins driving signaling errors will provide
information for personalized therapeutic intervention. It is
expected that this will improve patient prognosis and
reduce undesirable side effects during treatment.

APPENDIX A

MEASUREMENT PROCESS

As argued in [2], [7], we first assume the additive part bðnÞg of
(5) is negligibly small due to background correction applied
by scanner’s imaging software. Second, again proposed by
the same authors, we consider a multiplicative decomposi-
tion for the gain factor cðnÞg

cðnÞg ¼
dg
DðnÞ

exp
�
�ðg;nÞ


: ð17Þ

We interpret each component as follows: Combined with
the scanner gain, dg represents the background corrected
hybridization efficiency of the probe set assigned to gene g.
The quantity DðnÞ, on the other hand, stands for the
normalization constant applied across all probes of patient
n. We take dg to be gene-specific and fixed for all subjects,
whereas DðnÞ to be subject-dependent and the same for all
genes. We further assume that DðnÞ is proportional to the
number CðnÞ of cells contained in subject n’s experimented
tissue, since it is usually set to the total intensity captured
from the corresponding array. Finally, the remaining
variation in cðnÞg is attributed to a multiplicative error term
given as an exponential, whose argument is modeled i.i.d.
for all genes and subjects, and realized as �ðg;nÞ for gene g
and patient n.

Combining (4), (5), and (17), we obtain (6), i.e., our
measurement model for log expression of gene g and
patient n

yðnÞg ¼ �g þ log �g
�
�
ðnÞ
R

�
þ �ðg;nÞ;

where, probe-specific parameters and the ratio CðnÞ=DðnÞ,

which is constant by assumption, are absorbed by the

final readout offset �g ¼ log
agdgC

ðnÞ

DðnÞ
, that is specific to gene

g and independent of patients. In log scale, measurement

noise � becomes additive and described as a zero mean

Gaussian random variable with variance �2, which is the

same for all genes and subjects.

APPENDIX B

PROOF OF PROPOSITION 3.1

The result follows from the Markov property of the process
and the linearity of the expectation. If v 2 R, the claim holds
by definition, with dv ¼ 0 and drv ¼ �ðr; vÞ. Otherwise,
suppose the claim holds for all parents of v; then by
induction, we have
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E½Xvj�R� ¼ E½E½XvjXpaðvÞ�j�R�

¼ E cv þ
X

u2paðvÞ
cuvXuj�R

24 35
¼ cv þ

X
u2paðvÞ

cuvE½Xuj�R�

¼ cv þ
X

u2paðvÞ
cuv du þ

X
r2R

dru�r

 !

¼ cv þ
X

u2paðvÞ
cuvdu

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dv

þ
X
r2R

X
u2paðvÞ

cuvdru

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

drv

�r

¼ dv þ
X
r2R

drv�r:

APPENDIX C

GIBBS SAMPLING

Gibbs sampling in the simulation step of SAEM, visits each
root node r 2 R, repeatedly in a fixed order, and produces a
realization of the corresponding activation rate �r from its
conditional density, given the current instantiations of other
root variables and already observed gene expression levels.
Then, it can be shown that, the sequence of simulated root
activation rates, that are consecutively drawn from their
univariate conditionals, constitutes a Markov chain, whose
stationary distribution is the joint posterior fRjG of interest.

Using Bayes rule and the Markov property, the condi-
tional density of the activation rate �r of root r 2 R, given
the realizations ðyG; �RnfrgÞ of remaining variables, can be
written as

fGR
�
yG; �r; �Rnfrgj�

�R 1
0 fGR

�
yG; ~�r; �Rnfrgj�

�
d ~�r

¼
fR
�
�r; �Rnfrgj�

�
fGjR

�
yGj�r; �Rnfrg; �

�R 1
0 fR

�
~�r; �Rnfrgj�

�
fGjR

�
yGj ~�r; �Rnfrg; �

�
d ~�r

¼
frð�rj�Þ

Q
g2Gr

fgjR
�
ygj�r; �Rr

; �
�R 1

0 frð ~�rj�Þ
Q

g2Gr
fgjR

�
ygj ~�r; �Rr

; �
�
d ~�r

;

where Gr is the set of gene descendants of r, and Rr

contains the roots other than r that have descendants in Gr.
Terms

Q
r02Rnfrg fr0 ð�r0 j�Þ

Q
g2GnGr

fgjRðygj�Rnfrg; �Þ that do not
involve anything indexed with r, cancel each other in the
second line, yielding the final expression, which only
depends on realizations at nodes Gr [Rr, i.e., the “Markov
blanket” of r in G [R (see Fig. 6). Thus, we denote �r’s
univariate conditional by frjGrRr

ð	jyGr
; �Rr

; �Þ.

Sampling from frjGrRr
is still not straightforward. Among

different ways of doing this, we used factored sampling due
to its simple formulation in our case. Since

frjGrRr

�
	 jyGr

; �Rr
; �
�
/ frð	j�Þ

Y
g2Gr

fgjR
�
ygj	; �Rr

; �
�
;

generatingK samples fzð1Þ; . . . ; zðKÞg from prior beta density
frð	j�Þ and choosing zðiÞ (i ¼ 1; . . . ; K), with probability

	ðiÞ ¼
Q

g2Gr
fgjR

�
ygjzðiÞ; �Rr

; �
�PK

j¼1

Q
g2Gr

fgjR
�
ygjzðjÞ; �Rr

; �
� ;

as the new realization for �r, will approximate a variate
from frjGrRr

, as K tends to be large.
Notice that drawing samples from standard beta priors is

straightforward with available statistical packages, and so is
evaluating weights 	ðiÞ. Also, with a reasonable K, one does
not have to wait for Gibbs sampling to mix within every
single execution of the simulation step, since last samples
returned from a given iteration of SAEM, are already used
to initialize the chain for the next iteration.

APPENDIX D

COMPLETE DATA LOG-LIKELIHOOD

The complete data log-likelihood is

log fGRðyG;�Rj�Þ ¼ ��ð�Þ þ h�ð�Þ;SðyG;�RÞi:

In our case, functions � and � are given by

�ð�Þ ¼ N
X
r2R

logBðar; brÞ þ jGj log
ffiffiffiffiffiffi
2	
p

�þ 1

2�2

X
g2G

�2
g

 !
;

�ð�Þ ¼ N

ar � 1

br � 1

� �
r2R

1
2�2

2�g

�1

�2�g

�1

2

0BBBBBB@

1CCCCCCA
g2G

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
with sufficient statistic

S
�
yG;�R

�
¼ 1

N

XN
n¼1

log�ðnÞr
log
�
1� �ðnÞr

� !
r2R

yðnÞg�
yðnÞg
�2

log �g
�
�
ðnÞ
R

��
log �g

�
�
ðnÞ
R

��2
yðnÞg log �g

�
�
ðnÞ
R

�

0BBBBBBBB@

1CCCCCCCCA
g2G

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
: ð18Þ

APPENDIX E

COMPLETE DATA MAXIMUM LIKELIHOOD

We here give the expression of the maximum likelihood
estimator �̂ML in function of the sufficient statistic S
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Fig. 6. A simple DAG with five roots and five leaves. Markov Blanket of
the white node is the set of black nodes.



described in (18). First, let sr ¼ ½sðiÞr �
2
i¼1 and sg ¼ ½sðiÞg �

5
i¼1

denote the two- and five-dimensional subvectors of the
sufficient statistic in (18), corresponding to root r 2 R and
gene g 2 G, respectively. The corresponding maximum
likelihood estimator �̂ML is given as follows:

. For each root r 2 R, âr and b̂r of the beta prior fr will
satisfy

 
�
âr
�
�  

�
âr þ b̂r

�
¼ sð1Þr ;

 
�
b̂r
�
�  

�
âr þ b̂r

�
¼ sð2Þr ;

where  ðxÞ ¼ �0ðxÞ=�ðxÞ is the digamma function.

A closed-form solution to that system does not

exist, but, similar to standard maximum likelihood

parameter estimation of a beta density, âr and b̂r
are found numerically.

. For each gene g 2 G, the corresponding updated
offset parameter is given by

�̂g ¼ sð1Þg � sð3Þg :

. Finally, the noise variance is obtained by

�̂2 ¼ 1

jGj
X
g2G

sð2Þg � 2sð5Þg þ sð4Þg � �̂2
g:

APPENDIX F

THE RANK-SUM TEST FOR ESTIMATING RECEPTOR

STATUS

The rank-sum test is performed by first ranking each
sample �̂

ðnÞ
ER� in ascending order within the union of both

populations. The test statistic U is the sum of the ranks
coming from the “negative” population ��ER�. (The choice of
which rank-sum is immaterial and leads to the same p-
value.) Since both Nþ and N� are sufficiently large, U is
approximately normal under H0, with mean

U ¼
N�ðNþ þN� þ 1Þ

2
;

and standard deviation

�U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NþN�ðNþ þN� þ 1Þ

12

r
:

We expect that the population �̂�ER� to generate smaller

activation rates than the population �̂þER�. Consequently, the

alternative hypothesis H1 states that U has a smaller mean

than U and the corresponding p-value is the left tail area of

normal density NðU; �2
UÞ determined by the observation

U ¼ u; that is, the probability PH0
ðU 
 uÞ of observing a test

statistic U as small or smaller than the actual rank-sum u

found for �̂�ER� under the null hypothesis.
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