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collaboration between mathematicians and biologists, 
is illustrated in several contexts, including learning bio-
markers, metabolism, cell signaling, network inference 
and tumorigenesis.

Introduction

The rationale for computational systems biology (Ideker 
et al. 2001) remains compelling: the traditional approach 
to biomedical research, experiments and analysis, done 
primarily molecule by molecule, is not suited to extract-
ing system-level information at the scale needed to ulti-
mately understand and model complex biological sys-
tems. Studying these systems in detail is now becoming 
possible due to data supplied by high-throughput tech-
nologies for genomics, transcriptomics, protemomics, 
metabolomics and so forth. Understanding the coordi-
nated behavior and functional role of these many inter-
acting components requires a principled and network-
centered quantitative approach. In addition, “systems 
medicine” can reveal the perturbed structure of living 
systems in disease (Hood et al. 2004) as well as improved 
methods for disease diagnosis and treatment (Auffray 
et al. 2009; Hood et al. 2014).

This global view and quantitative research strategy 
has been widely adopted, and “computational” meth-
ods are now abundant in processing genomic signals, 
genome-wide association studies, inferring networks, 
discovering biomarkers, predicting disease phenotypes 
and analyzing disease progression. As promoted in Ide-
ker et al. (2001), biomedical applications frequently 
involve “computer-based” models and simulation, and 
the development of bioinformatics tools and algorithms. 
Accordingly, survey articles about “translational bioin-
formatics” typically recount exemplary studies using 

Abstract Cancer is perhaps the prototypical systems 
disease, and as such has been the focus of extensive 
study in quantitative systems biology. However, trans-
lating these programs into personalized clinical care 
remains elusive and incomplete. In this perspective, 
we argue that realizing this agenda—in particular, pre-
dicting disease phenotypes, progression and treatment 
response for individuals—requires going well beyond 
standard computational and bioinformatics tools and 
algorithms. It entails designing global mathematical 
models over network-scale configurations of genomic 
states and molecular concentrations, and learning the 
model parameters from limited available samples of 
high-dimensional and integrative omics data. As such, 
any plausible design should accommodate: biological 
mechanism, necessary for both feasible learning and 
interpretable decision making; stochasticity, to deal 
with uncertainty and observed variation at many scales; 
and a capacity for statistical inference at the patient 
level. This program, which requires a close, sustained 
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techniques from machine learning and statistics applied 
to specific subtasks (Altman 2012; Kreeger and Lauffen-
burger 2010; Butte 2008). Such techniques include new 
methods for stochastic simulation, mass action kinetics, 
data clustering, de-convolving signals, classification, 
testing multiple hypotheses, measuring associations, 
often borrowing powerful tools from computer science, 
biophysics, statistics, signal processing and information 
theory (Anderson et al. 2013).

Fully realizing the quantitative “systems” program in 
molecular medicine entails going beyond computer-based 
and bioinformatics tools. It requires designing mathemati-
cal and statistical models over global configurations of 
genomic states and molecular concentrations, and learning 
the parameters of these models from multi-scale data pro-
vided by omics platforms (Anderson et al. 2013; Auffray 
et al. 2009; Cohen 2004). Also, achieving a realistic bal-
ance between fidelity to fine-scale chemical dynamics and 
consistency with patient-level data necessarily requires a 
level of abstraction and generalization (Pe’er and Hacohen 
2011).

Moreover, to have clinical relevance in complex dis-
eases such as cancer, a mathematical model must pro-
vide for decision making at the individual patient level, 
including, for example, distinguishing among disease 
phenotypes, generating model-based hypotheses, and 
predicting risk and treatment outcomes (Altman 2012). 
Models can then be validated by the observed accuracy 
and reproducibility when ground truth is available, as 
well as more subjective factors such as the interpretabil-
ity of the decision rules in biological terms. As a result, 
we argue here that most useful mathematical models 
for personalized molecular medicine, and cancer in par-
ticular, should accommodate at least three fundamental 
factors:

1. Mechanism The causal implications among biomol-
ecules and phenotypes.

2. Non-determinism The inherent “stochasticity” in 
genetic variation, gene regulation, RNA and protein 
expression, cell signaling and disease progression.

3. Inference Generating predictions which are consistent 
with population statistics and identify individual dis-
ease phenotypes.

This paper is then largely a perspective on research 
strategy rather than a report of new results or even a 
review of existing ones. We argue for developing mech-
anism-based, statistical models and inferential proce-
dures; similar arguments, more biologically oriented, 
are forcefully made in Pe’er and Hacohen (2011). “Sta-
tistical” is interpreted in a wide sense to accommodate 

statistical learning, whereby decision rules are induced 
from omics data using machine learning algorithms, 
and probabilistic modeling, for instance of the states 
of signaling molecules, the accumulation of mutations 
and tumor growth. Most existing statistical methods 
lack systematic hardwiring of biological mechanism 
which is necessary to improve accuracy and stability 
by limiting model complexity and to develop connec-
tions with existing biology. Conversely, few existing 
probabilistic models of networks or disease progression 
which do embed mechanism simultaneously allow for 
statistical inference. Recent exceptions include Vaske 
et al. (2010), Vandin et al. (2012), and naturally there 
are advantages to purely data-driven approaches when 
mechanistic information is lacking or scarce, for exam-
ple, in generating initial insights and conjectures for 
rare cancers.

To illustrate these objectives, consider the case of net-
work modeling. Understanding the role of specific genetic 
variants, transcripts and other gene products in health and 
disease requires identifying the main physical and causal 
interactions as a wiring diagram, sometimes referred to as 
“network topology”. Yet no wiring diagram, no matter how 
richly annotated, is itself a “mathematical model”, and a 
deep understanding also requires a global statistical char-
acterization as well as an appreciation for network dynam-
ics. Not all combinations of individual molecular states are 
equally likely; some configurations are observed far more 
often than others, and the favored states in health and dis-
ease are markedly different. A statistical model quanti-
fies the likelihoods of molecular concentrations, not just 
individually but collectively as a multivariate probability 
distribution. This can be “translated” to practice by deci-
sion-making based on likelihood ratio tests, comparing the 
likelihoods of the observed data under various phenotype-
specific probability models, or in a Bayesian framework by 
incorporating population statistics.

In summary, in our view, there is not enough global 
mathematical modeling in bioinformatics and compu-
tational systems biology, nor is there enough biology or 
statistics in existing mathematical representations. Get-
ting mathematics, mechanism and inference simultane-
ously into the story requires persistent collaboration 
between mathematicians and biologists to select appro-
priate mathematical representations and inferential tools 
for a given medical context as well as identify the under-
lying context-specific biological mechanisms (Auffray 
et al. 2009; Butte 2008; Rejniak and Anderson 2012). 
Adding clinicians to these interdisciplinay teams can add 
tremendous value as well because focusing analyses on 
the pressing clinical questions is a major driver of even-
tual impact.
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Predicting disease phenotypes

For 15 years now, machine learning methods applied to 
omics datasets have yielded signatures and prediction rules 
that potentially discriminate among cellular and clinical 
phenotypes, facilitating enhanced detection and decod-
ing disease processes, and prediction of clinical outcomes 
and response to therapy (Schadt and Björkegren 2012). 
Moreover, due to the considerable variability in the expres-
sion of individual genes or proteins among samples from 
the same phenotype, statistical learning (Hastie et al. 2009) 
is currently the core methodology for identifying predic-
tors from high-throughput data. The standard procedure 
is illustrated in the blue boxes of Fig. 1: a prediction rule, 
which is a function that maps an observation vector (e.g., a 
gene expression profile) to one of the several classes (e.g., 
disease phenotypes), is learned or “induced” more or less 
directly from correctly labeled sample observations (e.g., 
a patient cohort) using a particular learning algorithm, 
often available as an R package which can be applied to 
data from any problem domain. Any biological analysis 
is usually post-learning, for instance, exploring associa-
tions between the features (e.g., genes) selected and the 
phenotypes.

For personalized medicine, the ultimate goal is to imple-
ment such procedures into assays to predict patient out-
comes in the clinic. However, with the exception of a few 
FDA cleared assays for clinical use in cancer (Li et al. 
2013; Cronin et al. 2007; Bender et al. 2009), the molecu-
lar-based predictors and signatures derived from statistical 

learning have largely not yet translated well to clinical use 
(Paik 2011; Marchionni et al. 2008a; Altman et al. 2011; 
Evans et al. 2011; Winslow et al. 2013), a situation that 
was recently evaluated by the U.S. Institute of Medicine 
(Omenn et al. 2012). Attributed reasons include insufficient 
accuracy, robustness and transparency; the difficulty of 
validating the “added value” beyond conventional clinical 
predictors (Boulesteix and Sauerbrei 2011); and perhaps a 
lack of incentive to engage in the complex and expensive 
process of obtaining clearance. These sobering observa-
tions suggest revisiting current strategies for learning with 
omics data.

The challenge of statistical learning in high dimensions

Many factors contribute to the limitations and under-per-
formance of omics-based tests (Sung et al. 2012). Some 
concern inadequate study design (Simon 2006) and some 
concern data quality since high-throughput data are often 
strongly impacted by batch effects (Leek et al. 2010), 
reducing biomarker reproducibility. Moreover, significant 
biological variation is encountered from study to study for 
data collected for the same phenotype due to the underlying 
population heterogeneity. Although these issues are una-
voidable, more stable and reproducible classification rates 
can be obtained by replacing ordinary randomized cross-
validation by cross-study validation (Sung et al. 2012). 
In the case of human cancers, these challenges are being 
increasingly mitigated by large consortium efforts to cata-
log genomic states of human cancers, such as The Cancer 
Genome Atlas (TCGA) (Cancer-Genome-Atlas-Research-
Network 2013).

In our view, the core challenge for translation-oriented 
statistical learning lies elsewhere, in two fundamental and 
related issues: instability and abstraction.

1. Instability The primary cause of the lack of reproduci-
bility commonly observed with predictors learned from 
omics data is overfitting. This is manifested in practice 
by study-to-study differences in lists of discriminat-
ing biomarkers and highly variable accuracy on inde-
pendent test data despite high reported accuracy in the 
samples used for discovery (“training”), contributing to 
the failure of clinical biomarkers (Simon et al. 2003; 
Kern 2012). The technical reasons for this instability 
can be analyzed mathematically and are attributed to 
the so-called curse of dimensionality and bias-variance 
dilemma (Geman et al. 1992), and the closely related 
small n large d problem. For omics data, the latter 
means that the number of samples n, e.g., expression 
profiles, available for learning predictors is often small 
relative to the number of potential biomarkers d, e.g., 
number of transcripts per profile. The most effective 

Medical 
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Training  
Data

Learning 
Algorithm

Predic	on 
Rule

Mechanis	c 
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Systems 
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Previous Learning Paradigm
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Fig. 1  The standard machine learning paradigm is depicted by the 
four blue boxes: depending on the classes or phenotypes under study 
(“medical context”), the input to a learning algorithm is training data 
consisting of samples from each class and the output is a prediction 
rule (classifier) for assigning a class to a new sample. Learning is 
then purely data-driven and often a “black box.” The proposed modi-
fication adds the two green boxes: the learning algorithm restricts 
selection of the classifier to rules derived from context-dependent 
biological motifs; this constrains data-driven search by embedding 
mechanism and elucidates decision-making
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way to enhance stability is to restrict the complexity of 
decision rules by hardwiring severe constraints into the 
discovery process.

2. Abstraction Most statistical learning algorithms are 
fundamentally data-driven rather than hypothesis-
driven, having been developed in other domains and 
imported into computational biology. These learning 
algorithms, such as neural networks (Khan et al. 2001), 
random forests (Boulesteix et al. 2003), support vec-
tor machines (Yeang et al. 2001), boosting (Dettling 
and Buhlmann 2003), and linear discriminant analy-
sis (Tibshirani et al. 2002) yield complex and abstract 
decision rules involving a great many components and 
non-linear relationships, and the search for discriminat-
ing structure is usually not informed by a priori domain 
knowledge (Varadan et al. 2012). Rather, biological 
context and interpretation only enter through post-hoc 
analyses of parameters and genes assigned in the deci-
sion rules. Consequently, these rules generally lack the 
mechanistic underpinnings necessary to carry meaning 
for biologists and clinicians, for example, to generate 
testable hypotheses or implicate therapeutic alterna-
tives.

The “small n, large d” problem seems here to stay 
due to a variety of factors, including the prohibitive cost 
of dramatically increasing the number of patient pro-
files, patient stratification into smaller subgroups for 
personalized medicine, and the likely increase in d as 
measurement technologies improve and new classes of 
biomolecules are added to high-throughput experimen-
tal platforms. Reducing the number of candidate omics 
features by statistical filtering for phenotype associations 
can mitigate overfitting, but such methods have been of 
limited success (Porzelius et al. 2011). Statistical learning 
from even the largest datasets, like those used for Genome 
Wide Association Studies, can exhibit overfitting, espe-
cially when looking for combinations of rare variants in 
relation with phenotypes.

Here we argue that the absence of a clear-cut biologi-
cal interpretation for the decision rules produced from 
using standard algorithms in statistical learning with omics 
data is a significant impediment to medical applications. 
Despite a large body of work, a solid link with potential 
mechanisms is notably missing, which seems to be a neces-
sary condition for “translational medicine” (Winslow et al. 
2012).

Prior biological knowledge

Instability and abstraction can be simultaneously 
addressed by reducing model complexity informed by a 
priori biological knowledge. Systematically leveraging 

prior information about biological networks will simulta-
neously severely constrain the search for predictive mod-
els to those with a potentially mechanistic justification and 
overcome the technical limitations inherent in tabula rasa 
statistical learning.

There have been recent efforts to move away from 
purely data-driven learning. Perhaps the most straightfor-
ward way is to restrict decision rules to signatures com-
posed of genes previously annotated to the disease or 
“significantly differentially expressed” among the phe-
notypes of interest. However, such set-based techniques 
predominately restrict the use of biological knowledge to 
grouping information, frequently ignoring gene and pro-
tein neighborhood relations, and maintain the complex-
ity of the decision rules. Other recent studies move closer 
towards mechanism by incorporating prior knowledge of 
molecular interactions in networks and cellular processes 
into the feature selection and prediction rules (Johannes 
et al. 2010; Zhu et al. 2009; Pan et al. 2010; Binder et al. 
2009; Li and Li 2008) or identify differential expression at 
the level of pathways rather than individual genes (Khatri 
et al. 2012; Eddy et al. 2010; Subramanian et al. 2005). 
Selections are largely based upon curated gene sets and 
literature and these studies have reported improvements in 
cross-study validation (Lottaz and Spang 2005; Wei and Li 
2007; Abraham et al. 2010; Chen et al. 2010). However, 
these networks are usually applied across phenotypes, 
regardless of the context in which they were learned. For 
these reasons it is not surprising that such networks some-
times provide only equivalent predictions to randomized 
networks, such as was observed for breast cancers (Staiger 
et al. 2012).

Embedding context-specific mechanism

We advocate hardwiring phenotype-dependent mechanisms 
specific to cancer pathogenesis and progression directly 
into the mathematical form of the decision rules. One strat-
egy is to tie the decision rules to circuitry involving micro-
RNAs (miR), transcription factors (TF) and their known 
targets that control key cellular processes in cancer (Men-
dell 2005; Hobert 2008; Croce 2009). Regulatory circuits 
of distinct topology include feed-forward loops and feed-
back loops, and one can attempt to identify such network 
motifs in signaling pathways and biochemical reactions 
intimately linked to the cancer phenotypes under study. For 
instance, for metastatic recurrence one could focus on TFs, 
miRs, and pathways involved in epithelial to mesenchymal 
transition and cell plasticity.

Basically, then, we are using “motif” in the sense of a 
small directed subnetwork of a generally much larger regu-
latory, signaling or metabolic network. Two points should 
be emphasized. First, a motif by itself does not determine 
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a decision rule for discrimination; doing so requires learn-
ing a mapping from the possible states of the motif, usually 
mutated genes or molecular concentrations, to the pheno-
types of interest. The final decision rule may involve multi-
ple motifs. Whereas learning this decision rule is data-driven, 
the set of possible signatures has been vastly reduced, which 
is the “hypothesis-driven” aspect. An example with a circuit 
involving two miRNAs and two mRNAs is given below. 
Second, ideally the set of candidate motifs for decision rules 
would be known a priori, before statistical learning. Of course 
such knowledge may not always be available, in which case a 
tabula-rasa, data-driven approach may be necessary to learn 
candidate motifs, hopefully involving different data and/or 
experimental verification to reduce overfitting.

One might combine this strategy with assembling pre-
dictors from elementary and parameter-free building 
blocks. In fact, studies have shown that simplicity does not 
necessarily limit performance (Dudoit et al. 2002) and that 
prediction rules based on fewer genes and parameters can 
be as sensitive and specific as more complex ones.

Consequently, these building blocks could be as sim-
ple as “biological switches” based on two-gene compari-
sons (Geman et al. 2004; Xu et al. 2005; Tan et al. 2005; 
Edelman et al. 2009). For example, in Price et al. (2007), a 
reversal between the two genes Prune2 and Obscurin was 
shown to be an accurate test for separating GIST and LMS, 
two morphologically similar cancers that require very dif-
ferent treatments. The decision rule is sufficiently elemen-
tary to support a possible biological explanation: both 
modulate RhoA activity (which controls many signaling 
events), a splice variant of Prune2 is reported to decrease 
RhoA activity when over-expressed and Obscurin contains 
a Rho-GEF binding domain which helps to activate RhoA. 
Extensions to aggregating multiple switches have been 
used to predict treatment response in breast cancer (Weich-
selbaum et al. 2008) and acute myeloid leukemia (Raponi 
et al. 2008), grade prostate cancers (Zhao et al. 2010), and 
prognosticate lung cancer (Patnaik et al. 2010). Nonethe-
less, these decision rules were learned from data using a 
largely unconstrained search of all possible switches, and 
hence do not illustrate an explicitly motif-driven discovery 
process.

Consider the bi-stable feedback loop depicted in Fig. 2. 
The two “classes” represent two phenotypes. Suppose, 
for example, that molecules A1, A2 (resp. B1, B2) are from 
the same species, for example, two miRNAs (resp., two 
mRNAs), and letters in boldface indicate an “expressed” 
state. Given both miRNA and mRNA data, the decision 
would be based on the number of “on” switches; see Fig. 2. 
Such motif-based predictors could then be aggregated into 
more global and powerful decision rules by arranging the 
corresponding motifs according to an overarching organi-
zational framework recapitulating the “hallmarks of can-
cer” (Hanahan and Weinberg 2000; Hanahan 2011).

Another powerful means to embed context-specific 
mechanism into statistical learning is to leverage known 
biochemistry. Consider the example of cancer metabolism. 
Reprogramming energy metabolism is a fundamental and 
widespread characteristic of cancer cells (Hanahan 2011). 
To grow and metastasize, cancers must undergo a metabolic 
shift to enable these behaviors. This is not just a statistical 
correlation or generally observed pattern—if a cell does not 
alter its metabolism to accommodate it, enhanced growth 
cannot happen because it would violate basic physical laws 
such as mass and energy balance. Thus, we immediately 
have a strong mechanistic foundation to study cancers by 
studying omics data in the context of metabolic networks. 
Alterations in cancer metabolism are also involved in ther-
apeutic response, as altered expression of detoxification 
metabolic pathways is implicated in chemotherapy resist-
ance (Zhang et al. 2005). The use of metabolic networks 
to provide mechanistic context to inference from high-
throughput data will be considered in more detail in the fol-
lowing section.

Metabolism

Metabolism represents one of the best characterized pro-
cesses in biology, and we now have a genome-scale mech-
anistic reconstruction of the underlying biochemistry in 
humans (Thiele et al. 2013). Metabolic networks them-
selves naturally integrate across multiple omics domains, 
including genomics, proteomics, and metabolomics. Many 

On Off
Switch 1 A1 < A2 A1 > A2
Switch 2 B1 > B2 B1 < B2
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Fig. 2  Due to the depicted activation and suppression patterns, we 
might expect that A1 is very likely to be expressed less than A2 in 
class 1 and vice-versa in class 2. The comparison between the expres-
sion levels of B1 and B2 goes in the opposite direction: the event that 

B1 is expressed less than B2 might be far less likely in class 1 than in 
class 2. Hence, this motif generates two “switches”, both likely to be 
“on” in class 1 and “off” in class 2
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decades of careful experimentation have gone into build-
ing these comprehensive biochemical models, providing a 
foundation for computational and mathematical strategies 
that leverage this knowledge to better inform statistical 
models for personalized medicine.

Metabolism lends itself well to building mechanistic 
models that can serve as a basis on which to build the types 
of mechanism-driven statistical models for which we are 
arguing herein. One approach that has proven very useful 
for modeling microbes (Price et al. 2004) and more recently 
human systems (Shlomi et al. 2008) is known as constraint-
based modeling. Briefly, this approach is a means to evalu-
ate the range of possible states a biochemical network can 
have subject to governing constraints (e.g., steady-state 
mass balance) and available data (e.g., uptake/secretion 
rates, what metabolites are available in the microenviron-
ment, etc.). These types of models have very few parame-
ters, or are parameter-free given the network structure, and 
thus can be applied in scenarios where fully parameterized 
models are not possible (as is usually the case). The key 
then is to link such models with high-throughput data and 
statistical learning to drive forward personalized medicine 
grounded in biological mechanism.

As was mentioned above, there is now a genome-scale 
metabolic reconstruction for humans (Thiele et al. 2013) 
encompassing over 7,500 metabolic reactions in a uni-
fied framework. Leveraging the mechanistic information 
in the global human metabolic network reconstruction, it 
is then possible to use data-driven approaches that utilize 
omics data to contextualize the most likely tissue and cell-
specific metabolic networks, for which initial versions have 
now been done for most tissues and many human cell types 
(Agren et al. 2012; Wang et al. 2012; Shlomi et al. 2008), 
and to use these as the basis for simulation of capabili-
ties using constraint-based modeling. These genome-scale 
models of metabolic biochemistry also exist for a number 
of human pathogens (Jamshidi and Palsson 2007; Chavali 
et al. 2008) and other members of the human microbiome 
(Levy 2013), enabling context-driven statistical learning 
for host pathogen interactions based on similar methods 
(Bordbar et al. 2010).

Genome-scale metabolic network models have already 
been used to guide interpretation of high-throughput data 
successfully in a number of different contexts (Hanahan 
2011; Milne et al. 2009; Oberhardt 2009). In cancer, these 
models have been used to evaluate the hypothesis that the 
Warburg effect, one of the hallmarks of cancer (Hanahan 
2011), trades off efficiency of ATP production as a primary 
means to drive cell growth (Shlomi et al. 2011). Tumors 
exhibit heterogeneous metabolic profiles, as demonstrated 
by the differential uptake and secretion of metabolites such 
as glucose, glutamine, lactate and glycine (Barrett et al. 
2006; Folger et al. 2011). This heterogeneity has been 

demonstrated in breast cancer, as ER-negative breast cancer 
cells are more dependent on the serine synthesis pathway 
than ER-positive breast cancer cells (Frezza et al. 2011). 
Building genome-scale metabolic models for cancer has 
been the subject of intensive study recently, and initial vali-
dation screens have shown their ability to predict essential 
genes across a number of cancer cell lines (Folger et al. 
2011). Genome scale metabolic networks have also been 
successfully used to identify potential selective drug targets 
(Jerby 2012). One of the most successful demonstrations 
to date used a metabolic model of renal cancer to discover 
that a disruption of heme biosynthesis was synthetically 
lethal with the loss of the metabolic enzyme, fumarate 
hydratase. This identified synthetic lethal pair provided 
an ideal opportunity to design an approach to kill cancers 
in patients selectively with a targeted therapy, and indeed 
this calculated interaction was then experimentally demon-
strated (Frezza et al. 2011), an important demonstration of 
the capability to design a targeted therapy from a model-
driven approach.

In model organisms, combining gene regulatory and 
metabolic networks has proven to be a powerful means 
to integrate statistical and mechanistic networks (Chan-
drasekaran and Price 2010; Covert 2004; Price et al. 2007). 
Most recently, it was shown that conditioning putative 
gene regulatory associations on a framework of biochemi-
cal mechanism represented in metabolism could signifi-
cantly enrich overlap with gold-standard gene regulatory 
interactions (Chandrasekaran and Price 2013). While such 
an approach has not yet been applied for human cancer, it 
represents a fascinating avenue for exploration to leverage 
decades of work in elucidating mechanistic understanding 
of cancer metabolism for the purpose of better uncovering 
metabolic regulation through mechanism-guided statistical 
inference.

We can also utilize metabolic networks to provide meta-
bolic context for studying genomic variants. For example, 
it is valuable to constrain searches for multi-genetic driv-
ers of cancer using selected combinations based on known 
biochemical mechanisms of interaction. It is of course true 
that biasing models towards what is already known will 
inevitably miss important targets, which can be identified 
via a complementary and iterative process of data-driven 
discovery and subsequent experimentation. Metabolic 
networks are particularly amenable to constraint-based 
mechanistic modeling approaches because the biochemi-
cal reactions and the genes responsible for catalyzing those 
reactions are well characterized. Thus, we can use a mecha-
nistic biochemical framework for the analysis of selected 
genetic variants. In particular, constraint-based modeling 
can be used to predict variants that cause defects in energy 
metabolism or the production of important molecules of 
interest. Moreover, metabolic networks enable the so-called 
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forward calculation (i.e., based on mechanism and not reli-
ant on statistical inference from training data) (Brenner 
2010) that can link genotype with phenotype and make 
patient-specific risk predictions. These network-based strat-
egies deliver mechanism-rooted networks that provide test-
able predictions of sets of genetic variants.

To make this more concrete, consider the simplest types 
of aberration that we can examine in this context: loss-of-
function mutations in metabolic enzymes. By blocking 
flux through the corresponding reactions in the metabolic 
model, we can simulate the effect of these mutations on the 
entire network. Alternatively, we can perform sensitivity 
analysis on the catalyzed reactions to determine the effects 
of impairing any particular enzyme on the functioning of 
the network as a whole, and relate this to identified variants 
and their effects towards cancer metabolism. Importantly, 
reconstructed metabolic networks can be studied to define 
correlated sets of reactions, or co-sets. These co-sets rep-
resent groups of reactions that must function together in 
metabolic networks under the constraints of mass conser-
vation, charge conservation, and thermodynamic considera-
tions (Jamshidi and Palsson 2006). More precisely, co-sets 
represent reactions that have steady-state fluxes that are 
perfectly correlated. Co-sets are often non-obvious, as the 
reactions within a set may often not be adjacent on a net-
work map. Notably, co-sets are precisely mathematically 
defined functional modules of a network and identify genes 
whose products are collectively required to achieve physi-
ological states. As such, perturbations affecting any gene 
belonging to the same co-set would be expected to lead to 
similar functional consequences. This provides a basis for 
linking different mutations in genomes to common “buck-
ets” to reduce dimensionality and then we can use the net-
works to rationally link up these buckets to drive combina-
tions in the smaller search space with mechanistic links.

Signaling networks

Networks of signaling proteins in cancer

An example of the importance of networks in biological 
systems is the role of signaling in cancer. The discovery 
of key cell signaling proteins, such as p53 and RAS, and 
their interactions radically altered our understanding of 
how cancer cells overcome internal and external restraints 
on growth and metastasis (Hanahan and Weinberg 2000; 
Hanahan 2011). These proteins form pathways, on the 
order of six or seven, so that there are many potential points 
of deregulation (i.e. proteins), and, in any individual patient 
and tumor, a different protein in the pathway may be 
affected and driving pathway deregulation (Parsons et al. 
2008; Li et al. 2013). In addition, while the early focus was 

on mutation of tumor suppressors and oncogenes, the activ-
ity of proteins in the pathway may be driven by promoter 
methylation, amplification, miRNA targeting, and other 
potential changes targeting the gene or mRNA.

Given a goal of tailoring treatment to the individual 
tumor, we face a need to integrate diverse molecular meas-
urements and interpret these in terms of pathway changes 
driving tumor growth and gene or protein aberrations that 
drive these pathways. We must then integrate gene-level 
molecular measurements to both identify aberrant pathway 
activity and deduce causality among the interactions among 
the proteins in the pathway.

Initial approaches relied heavily on expression data 
(technically transcription data as translation was not 
included), as microarrays provided the first widely obtained 
genome-wide measurements. Efforts focused on gene set 
analysis using the sets defined by the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) or BioCarta databases 
(Kanehisa et al. 2002). But such analyses do not incor-
porate known biology, where gene expression is a down-
stream effect of cell signaling processes, which themselves 
are typically not driven by expression changes but by 
post-translational modification of low expression proteins. 
Therefore an appropriate causal model must instead ask 
how is expression driven by signaling and what is driving 
the observed expression changes.

Placing this within the context of a graphical model, we 
obtain something like Fig. 3. This is clearly a highly sim-
plified view of signaling, and real networks will be signifi-
cantly more complex, but it raises two immediate issues. 
Given even this simplified form, what can be learned 
based on measurements we can make and are there limits 

Fig. 3  A simplified model of a cell signaling process highlighting 
the flow from signals generated externally by epidermal growth fac-
tor (EGF) to the activation or repression of transcription. In addition, 
potential feedback in the form of expression of signaling repressor 
proteins is shown. Drivers that would make useful targets for inter-
vention could lie anywhere within a pathway and be themselves 
the result of different molecular events (e.g., promoter methylation, 
mutation, gene amplification)
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to non-quantitative approaches, such as interpreting Fig. 3 
visually as is typically done today?

The first issue on learnability has an immediate result 
given to us by epistasis. If all the information we have is 
downstream of a single protein that itself is downstream 
of another single protein, such as ERK and MEK, respec-
tively, then activation of MEK by mutation cannot be dis-
tinguished from activation of ERK by mutation without 
additional data besides expression. Essentially, to identify 
drivers we will need to model the network mechanistically.

The second issue is much more complex. The fact that 
any measurements we actually make are inherently noisy 
both biologically and technically requires that the system 
must be viewed as containing a significant random com-
ponent in each measurement, and therefore it is stochastic. 
This leads naturally to a result well known in medicine, 
that it is the overall systemic state of a patient that must be 
considered when viewing any individual laboratory value 
or test result.

An excellent example of the need to build a mathemat-
ical model is in the ability of signals to follow a parallel 
path when the primary path is blocked. In this case, though 
there is no “feedback” provided by protein interactions, the 
blocking of a signal in one of two branches downstream 
from a node leads to increased signal in the other branch 
through retroactivity (Wynn et al. 2011). Many biologists 
feel that when the expected response does not occur, that 
there is a component of the system that has not yet been 
discovered. While this is certainly possible, it cannot be 
stated coherently without a model of the existing state of 
knowledge capable of making quantitative predictions 
across multiple linked signaling pathways.

How then should one approach the issue of identify-
ing drivers of aberrant signaling at the level of an indi-
vidual tumor given the large number of different molecu-
lar measurements? One approach is to use a more realistic 
and cancer-type-specific graphical model similar to Fig. 3 
as a prior for interpretation of the data. This substantially 
reduces the space of potential interactions and introduces a 
prior belief on the causal effects of molecular interactions 
(e.g., if RAS is active then RAF will be active). With this 
prior, inference takes the form of forming a tumor-specific 
posterior distribution that integrates the data relative to 
normal variation to infer points where upstream changes 
impact downstream readouts. For example, in one pathway 
methylation of PTEN could lead to loss of repression of 
FOXO, while elsewhere a mutation in RAF could activate 
MYC and ELK1.

Some work has begun to follow this integrated approach. 
The methods most limited in data integration incorporate 
interactome or curated pathway information into gene 
expression analysis (Liu et al. 2012a, b; Kim et al. 2011; 
Ochs et al. 2009). Other efforts have focused on identifying 

potential specific points of deregulation either by identify-
ing deregulated subnetworks in the signaling pathways or 
using diverse molecular measurements to determine the 
specific potential drivers (Ulitsky et al. 2010; Ochs et al. 
2014).

Overall, the most promising path to introduce mecha-
nism into statistical models is through the capture of bio-
logical relationships within graphical models. For signal-
ing, some progress has been made with the use of limited 
biological knowledge (Tuncbag et al. 2013; Ng et al. 2013; 
Wilson et al. 2013), but better collaborations between biol-
ogists and mathematicians are needed to adequately cap-
ture biology in the models.

Data-driven inference of network models

The general goal of elucidating the relationships among 
molecular species emerged quickly following the develop-
ment high-throughput measurements (Eisen 1998; Butte 
2000, 2003; Friedman 2004; Margolin et al. 2006). The 
analysis of correlation or mutual information between vari-
ables associated to gene expression data has led to multiple 
methods, like relevance networks, Gaussian graphical mod-
els and Bayesian networks to estimate an interaction graph 
among variables.

These methods are data-driven. They explore, at differ-
ent levels of mathematical complexity, statistical relation-
ships among variables. Basic approaches like relevance 
networks are limited to estimating graphs, placing an edge 
between variables that are considered to be directly related. 
Model-based methods pursue a more ambitious goal. They 
attempt to estimate a joint probability distribution among 
all the variables in the system that, within a class of sta-
tistical models, provides the closest approximation to the 
distribution of the observed data. The model class is gen-
erally associated to graphical models (Bayesian networks, 
Markov random fields), in which the pattern of conditional 
dependency among variables is represented by a directed or 
undirected graph, while the graph induces, in turn, a para-
metric representation of the distribution (Hartemink et al. 
2005).

The task of learning both the graph and the associ-
ated parameters is referred to as structure learning in the 
graphical model literature (Neapolitan et al. 2004; Koller 
2009). The difficulty of such an enterprise is, however, for-
midable. Disregarding computational challenges, which are 
serious, since the problem is NP-Complete, the paramet-
ric and combinatorial complexity of the underlying model 
class of graphical models makes any attempt at data-driven 
learning of network interactions with some reasonable 
accuracy simply impossible. Already with five or six vari-
ables, estimating networks based on typical sample sizes 
cannot be achieved without additional constraints on the 
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structure. Changing the data size by an order of magnitude 
would at best allow for the addition of a few more varia-
bles to the maximal size of networks that can be reliably 
estimated. One of the reasons for this is that there typically 
exist multiple network topologies, with similar complexity, 
that provide good approximations of the observable data. 
Even small variations in the data will make the optimal 
solution oscillate. This may not be a problem if the goal is 
limited to finding a good approximation of the joint prob-
ability distribution of the observed variables, but this is a 
serious impediment if one wants the observed structure to 
be mechanistically interpretable, allowing, for example, to 
predict the effect of network perturbations on the overall 
behavior of the system.

Indeed, one of the main appeals of probabilistic graphi-
cal models is that they can be used to analyze the effects of 
small perturbations on their overall behavior. For example, 
one may decide to knock out a variable (clamp it to 0) and 
measure the induced changes in the model. Here, we are not 
primarily interested in the statistical effect of clamping the 
variable, but on its mechanistic, or causal, impact, which, 
in general, cannot be inferred from population statistics. To 
take a simple example, imagine a system with two variables 
A and B such that A corresponds to a given mutation and 
B is associated to some viral disease, both variables taking 
values 0 or 1. Assume that A = 1 with probability p and 
that, conditionally to A, B = 1 with probability (A + 1)q 
(so that the sensitivity to the disease is twice as likely when 
the mutation is present). Given that an individual has the 
disease (B = 1), the probability of mutation (A = 1) can be 
computed using Bayes rule and is equal to 2p/(p + 1). This 
comes from elementary statistical inference, and this rate 
can be estimated using samples of the population, simply 
dividing the number of occurrences of diseased mutants, 
divided by the total number of individuals with the dis-
ease. Now, imagine an experiment in which the disease is 
inoculated to the whole population, which corresponds to 
constraining B = 1 artificially. Then, the rate of individu-
als with mutation will not change, and remains equal to p

. This mechanistically obvious statement cannot be inferred 
from statistical observations of the original population. In 
the absence of a mechanistic interpretation, one would have 
to actually perform the “experiment” (something referred 
to as an intervention in the causal inference literature) to be 
able to draw the conclusion.

More generally, a given stochastic phenomenon can be 
explained by a possibly large number of causal interpre-
tations (Pearl 1988, 2000; Maathuis et al. 2009, 2010). 
Deciding between these interpretations must be based 
either on prior knowledge (Lee et al. 2002; Yoruk et al. 
2011; Simcha et al. 2013) or on additional evidence (inter-
vention) (Sachs et al. 2005). Since designing interven-
tions, if even possible, can be extremely costly, the priority 

should be placed on the first option, that is, relying on as 
much biological expertise and evidence as possible in the 
design of a causal network, reducing the structure learning 
part to small perturbations, at most, of an initial hard-wired 
network.

Another issue that limits the usefulness of purely data-
driven methods is the fact that statistical association does 
not necessarily correspond, even indirectly, to functional 
relationships. More precisely, while assuming that “molec-
ular influences generate statistical relations in data” (Pe’er 
and Hacohen 2011) is reasonable, the converse is certainly 
not true. In other words, one may hope that data-driven 
methods may reach some good sensitivity level for the dis-
covery of non-causal interactions (even if this has not been 
achieved yet), but expecting good specificity would be illu-
sory. The most important source of non-functionally related 
relationships may be unmodeled common causes (co-regu-
lators) affecting two variables, inducing a common behav-
ior among these variables that does not correspond to one 
of them directly or indirectly influencing the other.

Mechanism-driven network inference

What could be the driving principles for the design of 
mechanistically driven models for interactions among 
molecular species within a cell? Since unaccounted-for 
common causes may be seen as the main source of spuri-
ous discoveries of relationships, one natural requirement 
should be to include these causes in the model whenever 
they are biologically identified. This comes with a price, 
certainly, creating more complex networks that involve 
hidden (unobserved) variables. Such networks can then 
only be identified with drastic constraints on their struc-
tures and topology, which is the approach we are recom-
mending, leveraging prior mechanistic knowledge. To be 
specific, revisit the case of a signaling network, but now 
include the sequence of intermediate reactions. The sign-
aling proteins are created through biochemical processes 
captured in the Central Dogma and elucidated over many 
decades of molecular biology research. The genes encoding 
the proteins reside in DNA, which are transcribed to RNA, 
and translated into protein. Transcription is controlled by 
the transcription factors (TFs) that are downstream effec-
tors of signaling. The TFs transcribe their targets when acti-
vated, unless the targets are blocked through methylation 
of the DNA at promoters of the genes. The genes can also 
be silenced by compaction of the DNA into chromatin in 
the region containing the gene. The amount of mRNA pro-
duced can also be affected by the copy number, and mRNA 
may be destroyed if targeted by a micro-RNA (miRNA). 
The miRNAs are transcribed by TFs as well, with pro-
cessing through their own cellular machinery to become 
active. The mRNA for a gene is exported from the nucleus 
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and translated into protein by ribosomes. As noted above, 
a signaling protein is inactive until either ligand binding 
(receptors), post-translation modification such as phospho-
rylation (signaling proteins), or unless mutated to a consti-
tutively active form.

In a full probabilistic model of signaling, a number of 
variables must therefore be considered to properly rep-
resent all the interactions among genes. Note that some 
of these variables, like mRNA concentration, would be 
cell dependent, while others, like copy numbers of genes, 
are shared among cells, and are essentially constant in a 
homogeneous tissue. A causal network illustrating this is 
represented in Fig. 4. In this figure, X

(∗)
i  or Y (∗)

i  represent 
variables attached to the gene or protein i, X being used 
for cell-dependent variables, and Y  for tissue-dependent 
variables that are shared among cells. This graphical model 
would then need to be nested within the model of Fig. 3. 
Most recent acquisition tools allow for the observation 
of an increasing number of these variables, but some still 
are, and will probably remain in the foreseeable future, 
unobservable. Moreover, the coexistence of cell-level and 
tissue-level variables requires that the model be defined 
at multiple scales, and this is reinforced by the fact that 
observed data are most of the time aggregated over large 
numbers of cells within assays (single cell observation 
being, for the time being, unachievable). The distinction 
between the statistical model, which is designed at the cell 
level, with possible tissue-level variables interacting, and 
the observation, which are tissue-level concentrations, is an 
important one. The fine analysis of the interactions among 
molecular species only makes sense at the cell level, and 
the model of Fig. 4 applied to tissue concentrations would 
have a very different, and probably inaccurate, interpreta-
tion. This, however, comes at a cost, which is that the unob-
served variables have a richer structure than the observed 

one (thousands of cells vs. one aggregate observation), so 
that the analysis of the model requires using statistical tech-
niques designed for partial observations, combined with 
strong model assumptions to ensure statistical identifiabil-
ity. While there has been great progress in single cell meas-
urements, it is likely that data acquisition in many cases 
will be limited to tissue level measurements comprising 
collections of cells. Note that the causal structure in Fig. 4 
is determined a priori. It is not, and generally cannot be, 
learned from data.

Mutations and tumorigenesis

Theodor Boveri is credited with formulating the hypoth-
esis that cancer is a genetic disease (Boveri 2008). We now 
know that cancer is caused by genetic alterations disrupt-
ing the function of certain pathways and that the accumu-
lation of these mutational events, known as drivers, is the 
cause behind the clonal evolution of tumors (Vogelstein 
et al. 2013). In fact, modern sequencing technologies have 
permitted the discovery of many of these drivers. Statistical 
analysis based on probabilistic modeling of somatic muta-
tions’ accumulation, cancer initiation and progression are 
among the most successful examples of the fruitful interac-
tion of probabilistic modeling and statistical analysis with 
biology. We will briefly mention two examples.

A history of collaboration

The collaboration of Salvador Luria, a microbiologist, with 
Max Delbrück, a theoretical physicist, resulted in the devel-
opment of a new statistical analysis (the fluctuation test) to 
be used on experimental data for testing whether certain 
genetic mutations in bacteria were the result of selection 
or rather a random phenomenom occurring in the absence 
of selection (Luria and Delbrück 1943). The test was based 
on comparing a Poisson distribution with a novel probabil-
istic distribution, developed by mathematically modeling 
the mechanism behind the random acquisition of mutations 
in bacteria. Their Nobel prize discovery provided the first 
evidence that bacterial resistance to phages is the result of 
genetic inheritance caused by random mutations rather than 
a directed response to selection. Their Ph.D. advisee James 
Watson, co-discoverer of the double helix structure of DNA 
with Francis Crick (again a biologist and a biophysicist), 
describes the summer 3-week long phage course taught by 
Delbrück as a mathematically oriented approach to biology 
that constituted “the training ground for many key scien-
tists who laid the foundations of molecular genetics”.

About 10 years later, and following some mathemati-
cal modeling work by Charles and Luce-Clausen, Fisher 
and Hollomon (1951), and the statistical analysis of cancer 

Fig. 4  Expanded gene interaction. Arrows indicate the direction of 
causation between different molecular types, with subscripts indexing 
gene names and superscripts indexing molecular type (e.g., mRNA, 
protein, activated protein, etc.). Some effects are activating and some 
inhibiting (e.g., methylation). T(i) is the set of transcription factors 
which regulate gene i, and R(i) is the set of signaling proteins that 
regulate the activated protein for gene i. The CN (copy number), 
Meth (methylation) and Mut (mutation) variables are always roots of 
the network and some mRNA species have an additional hidden vari-
able upstream capturing the expression due to non-modeled compo-
nents
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incidence data on log–log plots by Nordling (1953), the 
multistage theory of cancer progression was fully estab-
lished by Peter Armitage, a statistician, and Richard Doll, 
a physiologist (Armitage and Doll 1954). Armitage and 
Doll’s (1957) main contribution has been to further develop 
previous work both from a statistical perspective, by con-
sidering separately the incidence curves of different types 
of cancer, as well as from a modeling point of view by 
dropping the assumption that mutational events are inde-
pendent, thus considering the exponential growth occur-
ring in subclones possessing fitness advantages. Their work 
allowed the inference of the required number of rate-limit-
ing steps to cancer. Much research followed their founda-
tional work. Another success of the multistage theory came 
in 1971 when Alfred Knudson (1971) compared the differ-
ences in incidence of retinoblastoma between inherited and 
non-inherited forms, showing that cancer incidence data 
provided evidence for two hits required in sporadic retino-
blastoma, while the inherited form possessed already one 
of them. This prediction was later validated experimentally. 
It is then not surprising that cancer epidemiology tends 
to be more mathematically grounded than the modeling 
efforts at the molecular and cellular levels, also due to the 
contributions of statistical genetics to the field.

The current state: mechanisms and models

The works mentioned above created new research direc-
tions in probabilistic modeling of biological systems, espe-
cially with regard to the process of tumorigenesis and the 
development of drug resistance in cancer.

We will start by mentioning the main biological mech-
anisms that have been included in these models. Peter 
Nowell (1976) proposed the clonal evolution model of can-
cer, which was later confirmed by large experimental evi-
dence: cancer typically originates from a single cell, which 
initiates a clonal expansion where mutational events yield 
the sequential selection of subclones with increasing fit-
ness advantages thanks to the tumor genetic instability. The 
occurrence of these mutational events, if not already inher-
ited, may be induced by environmental factors, like carcin-
ogens and viruses, as well as by purely stochastic events, 
random errors in DNA duplication occurring during a cell 
division. Similarly, in single or multi-drug resistance, the 
occurrence of somatic mutations inducing the expansion of 
clones resistant to a drug appears to be a random phenom-
enon often not induced by the selective effects of the drug 
but rather by stochastic events occurred prior to the start of 
the treatment, as we have already seen in the classical work 
of Luria and Delbrück. This is particularly true in the case 
of resistance to the new so-called targeted therapies.

Thus, a large number of stochastic models have been 
developed in an attempt to characterize the dynamics 

of tumorigenesis and cancer drug-resistance develop-
ment, where the mechanisms of random accumulation of 
mutations and the subsequent cell clonal expansions are 
included. The literature is too large to mention here in 
any satisfactory manner, but we will briefly point to a few 
recent representative examples with the goal of shedding 
light on the current state of these modeling approaches.

In Durrett and Moseley (2010) the evolution of drug 
resistance, or alternatively tumor progression, is modeled 
by an exponentially growing population of wild-type tumor 
cells, i.e. tumor cells where mutations conferring drug 
resistance are not present, via a branching process. Sub-
clones of type-i cells, defined as those with i > 0 specific 
mutations, are generated by mutations occurring with rate 
ui in the type-(i − 1) subpopulation. The needed order of 
occurrence of the mutations is given and each further sub-
clone is assumed to have a larger fitness (growth) advantage 
than its immediate predecessor, a possibly limiting element 
of the model since in the development of drug resistance, 
mutations may be neutral and even disadvantageous before 
the start of the drug treatment. Probabilistic techniques via 
martingales, i.e. stochastic processes whose expected value 
at the next step is equal to their present value, are then used 
to derive the distribution for the type-i cell population pre-
sent at time t and the distribution for the first time at which 
k mutations have accumulated in some cell.

Some of the limitations in the applicability of this type 
of mechanism-based probabilistic modeling to experimen-
tal data are that the derived closed-form solutions may not 
be easily tractable statistically and also that the models 
may not include enough of the biological mechanisms or 
include them in a simplistic way, for example, by assum-
ing exponential growth of the clonal populations, a require-
ment probably violated in tumorigenesis given the limited 
resources present in a tissue and the related concept of a 
carrying capacity. These types of results have, however, 
proved to be theoretically useful and, at times, have been 
used in applied work. For example, in Diaz et al. (2012) 
a simpler version of the formulas derived from current 
branching process models is used for the statistical analysis 
of clinical data to estimate the timing of resistance evolu-
tion to targeted EGFR blockade in colorectal cancer, pro-
viding evidence in favor of the hypothesis that mutations 
were already present before the initiation of panitumumab 
treatment. Beerenwinkel et al. (2007) considers instead the 
progression of a benign tumor of the colon to a carcinoma, 
using a Wright–Fisher process with growing population 
size to estimate the expected waiting time for the tumor to 
progress from benign to cancer status. The model is also 
used in conjunction with the statistical analysis of sequenc-
ing data of about 13,000 genes, to infer the average selec-
tive advantage per driver mutation, finding it to be small 
(on the order of 1 %). Similarly, Iacobuzio-Donahue and 



 Hum Genet

1 3

colleagues (2010) use genome-sequencing data in combi-
nation with a Poisson process model to analyze distinct tis-
sue subclones, with the goal of estimating the timescales 
of the genetic evolution of pancreatic cancer, and infer-
ring that it takes at least 15 years for the tumor initiating 
mutation to yield a metastatic cancer therefore showing the 
potential for a useful time-window in detecting cancer at an 
earlier stage.

The above probabilistic models all consider tumorigen-
esis at or after the first driver hit, that is, not sooner than 
the first clonal expansion. Tomasetti et al. (2013) instead 
investigated the process of accumulation of somatic muta-
tions in a tissue both before and after tumor initiation and 
progression, estimating the somatic mutation rates in vivo 
for different human tissues and yielding the unexpected 
result that even a majority of the mutations found in cancer 
tissues originates before the process of tumorigenesis ini-
tiated. The probabilistic model developed, partially based 
on Tomasetti and Levy (2010), is an integration of differ-
ent modeling components for the various phases that a tis-
sue undergoes during its lifespan (development, healthy 
self-renewal and tumorigenesis). Importantly, while some 
of the derived formulas are used for statistical inference in 
combination with exome-sequencing data, the model and 
its predictions are also used for simply guiding the statisti-
cal analysis of the sequencing data, finding age correlations 
previously not observed.

Thus, the work by Tomasetti et al. emphasizes some 
of the limits of the current statistical methodologies for 
addressing problems in cancer genomics like drivers versus 
passengers identification, number of drivers required by a 
cancer and so forth. At present, genes are typically called 
drivers in a simplistic statistical way: if their mutation fre-
quency is larger than expected given some average back-
ground rate, which depends on the cancer type (Lawrence 
et al. 2013). An interesting exception is provided by Vogel-
stein et al. (2013), where mechanistically based ratiometric 
scores are used to identify drivers.

Looking forward

Clonal evolution certainly represents a valuable instance of 
the fruitful interaction of probabilistic modeling and statis-
tical analysis with biology, as indicated, for example, by 
the success stories we have mentioned. However, we would 
like to argue for the need of a more extensive use of mod-
eling of biological mechanisms and their temporal dynam-
ics in the analysis of genomics data. This is necessary if 
we want to both deepen our understanding of the processes 
analyzed in cancer genomics as well as increase our ability 
to make risk prediction. Indeed, it is clear from the previ-
ous section that the mechanisms included in current models 
are rather elementary when compared with the complexity 

of tumorigenesis. While complex models with too many 
variables will not be statistically useful, there is a need to 
narrow the gap between models and reality. For example, 
the current assumption of exponential growth induced by 
a selective advantage must be modified to allow for the 
growth rate of those clonal expansions to be a decreasing 
function of the tumor clone size, when approaching some 
carrying capacity. Otherwise, the results on the timing of 
cancer occurrence or on the number of drivers accumulated 
will be heavily biased.

Moreover, often studies report only one out of many 
possible evolutionary models, without relying on formal 
statistical inference methods. Thus, the use of mechanistic-
based models together with parsimony assumptions within 
a more rigorous statistical inference framework is greatly 
needed in this new era of omics data.

Conclusion

The nearly universal absence of mechanistic underpin-
nings for the predictors and signatures generated by current 
statistical learning algorithms represents a crucial barrier 
toward the successful discovery of novel biology and the 
implementation of clinically useful biomarkers. “Hard-
wiring” potential mechanisms into predictive models is a 
“win-win”: on the biological side it enhances the transla-
tional value of the derived classifiers by hypothesizing 
causal explanations for disease phenotypes; on the statisti-
cal side it forcefully addresses the “curse of dimensional-
ity” by limiting the model space, which increases robust-
ness against overfitting and thereby addresses, in part, the 
failure of many biomarkers to validate in novel cohorts. 
Therefore, embedding biological mechanisms into statisti-
cal learning has intrinsic added value for knowledge dis-
covery and disease treatment design, and it will ultimately 
move the field towards a successful transition to personal-
ized health care.

More generally, using prior information to the largest 
possible extent is a basic principle in statistical modeling 
which has been somewhat ignored in applications to com-
putational biology even though a large amount of mecha-
nistic biological information is available. This fact can 
certainly be at least partially explained by the complexity 
of biological interactions, which makes the construction 
and learning of adapted statistical models extremely chal-
lenging. A second reason may be the optimistic expecta-
tion, inspired from striking successes in other areas, like 
text understanding and pattern recognition, that off-the-
shelf data mining methods, independent of prior knowl-
edge, could be applied to high-throughput data and dis-
cover new interactions that would be validated a posteriori. 
In contrast, as we have argued, this approach applied to 
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computational systems medicine has failed to provide 
enough reproducible results, compared to the immense 
effort that has been devoted to it. Finally, another reason, 
of course, is that working out mechanistically driven sta-
tistical models requires a combination of expertise that is 
rarely achieved in a single individual, and even in a single 
research group.

Given our goal of identifying mechanistic drivers of tumor 
growth and metastasis, the use of statistical models that inte-
grate diverse measurements in their biological context is essen-
tial. For example, in cell signaling, non-linear effects, such as 
epistasis, and biological complexity, such as retroactivity, intro-
duce unsuspected mechanisms of response to changes in sign-
aling, whether driven by mutation or targeted therapies. Quanti-
tative models that integrate biological context can address these 
issues by greatly limiting potential models (e.g., not allowing 
all gene interactions) while still capturing complex interactions. 
One example where we have significant mechanistic informa-
tion on which to leverage is for metabolic networks, which 
have been mapped out at the genome scale in humans. The 
potential power of these models has also been demonstrated 
in studies where identification of a weakness in cancer cell 
metabolism through biological-informed modeling permitted 
creation of a targeted therapy. However, the variability of bio-
logical systems has tended to limit the value of single therapy 
approaches, and treatment of this variability (i.e. stochasticity) 
will be essential to make significant progress. Mechanistic net-
works such as those in metabolism can also be used to drive 
‘forward calculations’ where predictions for new scenarios 
can be made from their effects on known mechanisms based 
on physico-chemical laws, and thus require little to no training, 
providing another important link between network models and 
the ability to deal with the enormous complexity and variability 
of biological systems. Finally, we would like to remark that an 
under-appreciated use of mechanism-based probabilistic mod-
els is to guide the statistical analysis of empirical data, as has 
been the case in statistical genetics.

In summary, statistical methods based on probabilistic 
modeling have yielded fundamental contributions to biol-
ogy. It can be claimed that those contributions are the con-
sequence of formulating probabilistic models of specific 
biological mechanisms, that is mechanism-based models, 
which are then used for the statistical analysis of experi-
mental, clinical and epidemiological data. At the same time 
much of the work in mathematical modeling and statistical 
analysis has suffered for the lack of statistical tractability 
in the former case and model naivety in the latter case, fail-
ing to provide clinically relevant inference and risk predic-
tion in cancer biology. The aim is to strike the right balance 
between models, their statistical analysis and the experi-
ments, a fact that highlights the need for true collaborations 
and researchers well versed across those fields. Develop-
ing deeper interactions between cutting-edge statistics and 

biology is one of the challenges of research in computa-
tional biology in the years to come.
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