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Abstract. We study visual selection: Detect and roughly localize all instances of a generic object class, such as

a face, in a greyscale scene, measuring performance in terms of computation and false alarms. Our approach is
sequential testing which is coarse-to-fine in both in the exploration of poses and the representation of objects. All
the tests are binary and indicate the presence or absence of loose spatial arrangements of oriented edge fragments.
Starting from training examples, we recursively find larger and larger arrangements which are “decomposable,”
which implies the probability of an arrangement appearing on an object decays slowly with its size. Detection
means finding a sufficient number of arrangements of each size along a decreasing sequence of pose cells. At the
beginning, the tests are simple and universal, accommodating many poses simultaneously, but the false alarm rate
is relatively high. Eventually, the tests are more discriminating, but also more complex and dedicated to specific
poses. As a result, the spatial distribution of processing is highly skewed and detection is rapid, but at the expense
of (isolated) false alarms which, presumably, could be eliminated with localized, more intensive, processing.
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1. Introduction going to emphasize computation; presumably, suffi-
ciently isolated false alarms could be removed, and
We study face detection in the framework of learning- better localization achieved, with more intensive but
based, visual selection: Starting with a training set of highly localized processing, and therefore with a mod-
examples of a generic object class, in our case a “face,” estincrease in computation. Finally, other performance
detect and roughly localize all instances of this class factors might also be important, such as memory, the
in greyscale scenes. The training examples are subim-size of the training set, and the duration of training.
ages containing a single instance of the objectatvarious The problem of detecting instances from a generic
poses, for example frontal views of faces at a range of object class has of course been studied in the computer
scales, tilts, etc. Whereas the backgrounds in the train-vision literature. We restrict our attention to detecting
ing samples might be very simple, the detection algo- (but not recognizing) faces, and without information
rithm must function in natural, highly cluttered scenes. due to color, depth or motion. The generality of our
Performance is measured by the false alarm rate approach is discussed in the concluding section; any
and the amount of (on-line) computation necessary to potential limitations should then be apparent.
achieve a very small false negative rate, albeit with an A variety of methods have been proposed for face
imprecise determination of the pose. In fact, we are detection, including artificial neural networks (Rowley
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et al., 1998; Sung and Poggio, 1998), support vec- minimizes average computation under a certain statis-
tor machines (Osuna et al., 1997), graph-matching tical model for cost and likelihood.

(Leung et al., 1995; Maurer and von der Malsburg, Invisual processing, the corresponding attributes are
1996), Bayesian inference (Cootes and Taylor, 1996), binary image functionals; in fact, throughout this paper,
deformable templates (Miao et al., 1999; Yuille et al., allfeatures are binary, and referredto as “tests.” The ob-
1992) and those based on color (Haiyuan et al., 1999; ject class is no longer a simple conjunction, but rather,
Sabert and Tekalp, 1998) and motion (Ming and like the background class, an enormalisjunction of
Akastuka, 1998; Wee et al., 1998). The precursor of conjunctionsThe individual conjunctions correspond
this work is (Amit and Geman, 1999): Features are to distinguished object features when the pose and
spatial arrangements of edge fragments, induced fromlighting are known to very high precision. The disjunc-
training faces at a reference pose, and computation istions account for general poses (locations, scales, ori-
minimized via a generalized Hough transform; there entations) as well as finer variations due to lighting and
is no on-line optimization and no segmentation apart local, nonlinear shape deformations. Of course efficient
from visual selection itself. In evaluating our results, detection implies a high degree of invariance—
we are also going to focus on comparisons with the capturing these disjunctions succinctly, without
work in Rowley (1999) and Rowley et al. (1998) since explicit enumeration.

this seems to be among the most comprehensive studies The most elementary tests correspond to local edge
as well as a fair representation of the state-of-the-art. fragments. The fragments have an approximate loca-

This work stems from a broader project on visual tion and an approximate orientation; the definition is
recognition as a “twenty questions game,” in other purposelyloose in ordertoaccommodate geometric in-
words a problem in efficient sequential testing. This variance. The other tests are products (conjunctions) of
theme was pursued in the context of classification elementary ones, and hence correspond to the presence
trees and stepwise entropy reduction in Amit and or absence of a spatial arrangement of edge fragments.
Geman (1997), Geman and Jedynak (1996), JedynakThey have no a priori semantical interpretation; the
and Fleuret (1996) and Wilder (1998). The detection construction is purely statistical and learning-based.
counterpart of classification is sequential testing in or- The key property of the products is “decomposabil-
der to discover which of two classes is true; one is the ity”: each product can be divided into two correlated
target and the other, “background,” is dominant. For subproducts, each of which further splits into two cor-
example, we seek to identify one famous person from related smaller subproducts, and so forth all the way
among all others, a compound alternative which is a down to the elementary tests. The motivation is that the
priori much more likely. The target is represented as probability that a decomposable test of sizappears
a conjunction of elementary attributes (for instance, onan objectinstance decreases graduakyimsreases
Napoleon is simultaneoustieceased, general, Corsi- compared with the decrease in general backgrounds—
can etc.) which can be checked in any order. in fact exponentially with logk instead ok (86).

If the “cost” of checking every attribute is the same, The testing strategy is based on a sequence of nested
then naturally a good procedure is to check them in their partitions of the set of possible poses. The strategy is
order of likelihood relative to the dominant class—from coarse-to-fine in the generality of the pose, and coarse-
rare ones to common ones. In thisway the search is overto-fine in complexity at each level of generality. In or-
quickly on the averaggbut never fails to detect the tar-  der to declare detections, we successively visit cells in
get. However, if there are numerous target variations these partitions and successively check for a minimal
and if common attributes (relative to the background number of decomposable tests of each complexity. The
population) appear in many representations, then it order of visitation is adaptive and chosen to minimize
makes sense to make “testing” for common attributes overall computation. Initially, the conjunctions are sim-
relatively cheaper than for rare ones, in which case it ple and sparse (e.g., involve only a few non-localized,
may be more globally efficient to proceed instead from non-specific edge fragments), and thereby accommo-
common to rare. This is the case, for instance, if the date many poses simultaneously; eventually they are
cost of testing an attribute is its negative log-likelihood more dense (i.e., larger numbers of more specialized
(asin coding). This type of reasoning motivates our se- fragments), and hence more dedicated to specific poses.
quential testing strategy: The backbone of the detection The result is that flat areas and other “non-object-like”
algorithm is a “coarse-to-fine” tree structure which portions ofthe image are rejected very quickly and with



Coarse-to-Fine Face Detection 87

e | \ﬁ “l ARALR . _Ij

Ny o
4] 50 100 150 200 250 300 350 400 450

Figure 1L The coarse-to-fine nature of the algorithm is illustrated by counting, for each pixel, the number of times the detector checks for the
presence of an edge in its vicinity. Left: The grey level is proportional to this count. Right: The scan line corresponding to the arrow; it covers
three faces.

very simple tests. Highly cluttered areas require more
processing and faces the most of all. In Fig. 1 we show
an illustration of the spatial distribution of processing
corresponding to the scene in Fig. 2; it is very highly
concentrated in the area of detections.

The experiments involve scenes with frontal views of
faces. We train with a portion of the Olivetti database—
300 faces representing 10 pictures of each of 30 in- ©
dividuals. The learning algorithm is a procedure for
building larger and larger decomposable tests in a re- |
cursive, bottom-up fashion, and dedicated to specific
pose cells. The algorithm for each cell is identical; only
the training set changes. A relatively small training set |
is sufficient since we only use it to estimate correla-
tions. In particular, we do not estimate a large system

Figure 3 The detections in Fig. 2.

of coupled parameters as in other statistical learning
methods.

One result is displayed in Fig. 3. There are defi-
nitely false alarms, ranging from several to several tens
depending on the scene, but the processing time and
the number of missed faces are small relative to other
algorithms; see 88. Hopefully, the confusions can be
eliminated (without losing faces) with various amelio-
rations or with highly selective but relatively intensive
processing, perhaps involving greyscale normalization
and on-line optimization.

2. Organization of the Paper

Since the algorithm is structured around nested par-
Figure 2 Example of a scene. titions of “pose”, we begin with that in 83. Given a
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“reference set” of poses, the mathematical set-up and The invariant filters rely on common properties of
performance criteria can made precise (84). A sum- faces over a range of poses. But faces at very different
mary of the detection and learning algorithms is given scales have very little shared structure, even if they are
in 85; the constituents are then fleshed out in the re- roughly superimposed. The same is true for two faces
maining sections, except for a few technical arguments at approximately the same scale but far apart relative
which appear in Appendices. Section 6 is devoted to to that scale. Consequently, the coarsest pose cell we
the features we use, especially the notion of “decom- analyze invariantly accommodates all tilts but restricts
posability” and a corresponding likelihood bound, and the scale to theeference rangef 10-20 pixels and
87 explains how the decomposable arrangements—theconfines the location to tireference blockf size 16x
main ingredients of the detector—are induced from 16.Let® denote thisreference subsetof poses. One can
training data. The sequential testing strategy for eval- argue that the real detection problem does begin here;
uating the detector is then described in 88 and experi- there is certainly enormous variability due to lighting,
ments follow in 89. Finally, there is a critical evaluation scale, tilt, local deformations, and of course different
of our approach in §10. faces.
All the learning is dedicated t®. Faces in the scale
- range 20-160 are detected by downsampling and rerun-
3. Pose Decomposition ning the algorithm dedicated 1©; faces at locations
_ _ _ ~outside the reference block are detected by partitioning
The coarsg.—to—fme search is ba;ed on a hierarchicalipo image lattice into non-overlapping 616 blocks.
decomposition of the set of possible “poses” or “pre- \iore details about these two “outer loops” are given
sentations” of an object. There is an invariant filter j, g5
for each “cell” of the decomposition. In this paper The set of pose® is partitionedM times by suc-
the notion of pose is purely geometric, characterized ¢agsive refinements. Let.| = 1,..., Ly, be the
by position, scale and orientation. However, even for |y cell of them'th partition’, m=0,1..... M. Here,
a semi-rigid object such as a face, there are other Ag1=© and for eachm=1,..., M, the collec-
aspects of an instantiation which carry valuable in- tioh {Ami.l=1,..., L} is a partition of® and a
formation for selection and discrimination, such as refinementof Am_11,1 =1, ..., Lm_1}. The complete

photometric parameters, more refined linear geomet- tamjly of cells is denoted by. In our experiments,
ric properties and the existence of sub-components \j _5 There are three guaternary splits on location
(e.g., glasses and beards). For some objects—including(16 x16 — 8x 8 — 4x 4 — 2x 2), and then
faces—it could be more efficient to recursively par- gne pinary split on scale and one binary split on tilt.
tition the presentations in a less dedicated way than \joqulo translation, this yields ten different cells, as

is d_o?e here, thereby accommodating other important yenjicted in Table 1. The finest cells localize the face
variations.

Itis natural to define the pose of an object in terms Table 1 Modulo translation, there are ten different “pose
of distinguished points. No corresponding features are  cells” in the hierarchy. Location, tilt and scale are defined in
defined; the points merely serve to define the pose. For  the textin terms of the positions of the two eyes. The finest
faces, we use the positions of the eyes. Equivalently, cells are not very fine with respect to tilt and scale.
the pose of a face has, by definition, alocation (the mid- Location (in pixels)  Tilt (in degrees)  Scale (in pixels)
point between the eyes), a scale (the distance between

the eyes) and a tilt (relative to the axis perpendicular 16> 16 -10-10 10-20
to the segment joining the eyes). The position of the 8x8 —10-10 10-20
mouth is then roughly determined by the basic mor- 4x4 —10-10 10-20
phology of the face (although residual variations in the 2x2 —10-10 10-20
eye-to-mouth distance can be significant and could en- 2x2 —-10-0 10-20
ter a finer decomposition). We do not attempt to detect 2x2 0-10 10-20
frontal views of faces at all possible poses. Rather, the 2% 2 ~10-0 10-14
tilt (orientation) is restricted tof20°, 4+-20°] and the 2% 2 ~10-0 15-20
scale to 10-160 pixels. Consequently, we do not at- 252 0-10 10-14
tempt to detect faces which are very tilted, very small 2% 2 0-10 15-20

or very large.




Coarse-to-Fine Face Detection 89

Figure 4 Random samples of training faces for each of three pose cells; they are synthetically generated from the original Olivetti database.
Top: Location restricted to & 8, all tilts and all (reference) scales; Middle: Location ixx 2, right tilts, all scales; Bottom: Location in2 2,
right tilts, large scales (15-20).

within a 2 x 2 block and correspond to either “small 4. Performance Constraints
scale” (10-14) or “big scale” (15-20), and to either “left
tilt” ([ —20°, 0°]) or “right tilt” ([0 °, 20°]). Hence there  As indicated earlier, the scenario we envision (“visual
are 256 fine cells. They are not really very “fine” but selection”) is that the algorithm should be constructed
suffice to detect faces with a relatively small number to find all faces with very little computation, cer-
of false alarms. tainly well under one second for average-sized scenes.
In Fig. 4 we show a random sample of faces from Weeding out the false positives is to be accomplished
the training set for each of three pose cells: The top with more intensive but localized processing (or per-
group of faces have poses with location restricted to haps manually in some medical, military and other
an 8x 8 block, but no restrictions on tilt or scale; the applications).
middle group all have location in 2 2 block, right We can now be more precise about this formulation.
tilt, and scale in the full range 10-20; and the bottom LetZ denote asetof(sub)images-{I (u, v), (U, v) €
group the same except that the scale is restricted to G}, say all “natural images,” wheré is a reference
15-20. grid andlI (u, v) is quantized in a standard way, say to
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256 grey levels. The images are partitioned into two
subsets, “face” and “background,” denofBdandZg.
The face images contain a frontal view of a face with
pose in®, where the corresponding 2616 block is
centered inG. All other images are background, even
if there is a face at a pose outsi@e Due to limiting

One part of the outer loops is over resolutions. We
downsample once (by averaging two-by-two blocks)
in order to detect faces at scales 20-40, twice to detect
scales 40-80, and thrice to detect scales 80-160. The
other part of the outer loop is over blocks. We parti-
tion the lattice intonon-overlappingl6 x 16 blocks,

the distance between the eyes to 10-20 pixels, takingand visit each one to determine if the image data in

G of dimension 64x 64 then accommodates all faces
at reference poses.

Let P denote a probability measure @n We can
think of P as the empirical measure on &464 subim-
ages of all larger, natural images. Thernnduces two
conditional measures @n Py(-) = P(-|Zg), the distri-
bution on the background class, aBd-) = P(:|Zg),
the distribution on the object class. Similarly, for any
subsetA c ©, we defineP, to be the induced proba-
bility measure on faces with a posein

A detectoris a mappingf: Z — {0, 1} where
f(I) = O indicates “background” and(l) = 1 in-
dicates “face.” The false negative error bfrelative
to A isa(f) = Po(f = 0); the overall false nega-
tive error isP;(f = 0) and the false positive error is
Po(f = 1). Aninvariant detectothasa(f) = 0.

In 88 we will define a random variable which is the
cost of a procedure used to evaludteThe mean cost
with respect toP, represents the average amount of
computation necessary to classify a background im-
age. The motivation for the expectation relativéas
thatP(Zr) « P(Zg); hence computational efficiency
is driven by the rate at which background images are
rejected as face candidates.

5. Summary of the Algorithm
There are really two algorithms—one for detection and

one for learning. What follows is a summary of each
one.

5.1. Detection

The detection algorithm has four nested loops. The

the surrounding 64 64 region supports the hypoth-
esis of a face located there. Thus, at every resolution
and in every block, we are only looking for faces at
a reference pose. Surely there is some redundancy in
separately analyzing the image data in each such re-
gion. For example, the basic local features are detected
first throughout the image and other elements of the
processing could be implemented more globally.

The two parts of the outer loop are depicted in
Fig. 5. The original image is on the left; it is downsam-
pled once in the middle and twice on the right. In each
case, the partition into non-overlapping2@6 blocks
is indicated by the overlaid grid. From left to right, the
third (middle) face is too small to be detected; the first,
fourth and fifth faces are in the scale range 10-20 and
therefore we expect to detect them in the left image;
the second face is in the range 20—-40 and we expect to
detect it in the middle image.

The heart of the detection algorithm, the inner loops,
is the search for a face in an imaged Z with pose in
®. Foreachcell € C,thelearning routine (see below)
yields an invariant detectdf, . The final detector, call
it F:Z — {0, 1}, depends only on the binary values
{fa, A € C}: F(l) = 1if and only if there is a “chain
of ones”—a complete sequence of positive responses
among the f5, A € C} ranging from the coarsest cell
Ao1 = © down to one of the finest cells. In other
words, thereisa sequenn,,m=0, ..., M} with
Amtilng € Amy, such thatf, (1) = 1 for each such
A = Amy,-

However, we do not evaluatg F) by first computing
every fi(1) and then checking for a chain of ones.
This would be highly inefficient. Instead, among all
sequential procedures for evaluatifgwe take the one
which minimizes the average amount of computation

two outer loops focus attention on a subset of scales underacertain modelforthe computational costand the

and locations, namely a copy @i determined by a
particular 64x 64 subimage at a particular resolution.

The two inner loops are the important ones and repre-

joint probability distribution (undePy) of the random
variables{ f,, A € C}.
Finally, each detectof, embodies a coarse-to-fine

sent the coarse-to-fine search over refinements of theprogressioninfeature complexity. The features are con-
pose and over the complexity of the features. The outer junctions of disjunctions of edge fragments; the com-
loops are inherently parallel and the inner ones are plexity is the size of the conjunction. “Tests” of every

serial.

complexityk = 1,..., K must be verified in order
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Figure 5 The two parts of the outer loop are depicted above. The original image, on the left, is downsampled once (middle image) and twice
(rightimage). The scale of the smallest face is less than ten and hence this face is not detected. The next three in size are in the scale range 10-20
and should be detected in the left image and the biggest face should be detected in the middle image.

7z, > t(l) each cellA in the decomposition a®. In other words,

if one cell can be shifted or reflected to another then
/\ obviously we simply shift or reflect the tests. Thus,

with our decomposition (three times quaternary in lo-

0 Zy > 1(2) cation and one time binary in scale and tilt), there are
. seven separate learning problems; these are the cells in
N Table 1 modulo reflection around the vertical axis.

The learning might be simplified by “scaling” the
tests dedicated to one cell in order to construct tests for

/\ another cell with a different range of scales but other-
wise equivalent. We have not done this. In the limit, one
0 1 could train only at a reference pose and then attempt to

transform the tests to accommodate any given subset
) : of poses. Despite the reduction in the amount of train-
k found in the imagd . Instances of clutter and faces are separated . .
by progressively checking for at leask) conjunctions of sizé. ing, there are dlsadvantgges. How qoes one tra_‘nSf_orm
Many subimages can be immediately dismissed as object candi- the tests so as to maintain both efficiency and discrim-
dates based on edge counts algZs); more global confusions  ination power? We have not explored the tradeoffs.
require further examination involving increasingly structured edge We induce features and estimate thresholds based on
arrangements. the empirical measur®, generated by a training set
L. By and large, training amounts to estimating the
to continue processing. Thus, ea¢h has the form probability distribution undeP, of image events, i.e.,
of a right vine (Fig. 6) proceeding frokh=1 down calculating relative frequencies iy ; these estimates
tok =K, justas in checking for Napoleon. Verifyinga determine the components 6f. The training sei
test of complexitk means finding at leastk) conjunc- is assumed to be a random sample frorander P, .
tions (decomposable arrangements) of &izeee 8§6. An important constraint is that the size 6f would
not be sufficiently large to reliably estimate a number
of inter-dependenparameters of the same order as the
5.2. Learning number we estimate.

Figure 6 The functionZ (1) is the number of conjunctions of size

Whereasf, is defined explicitly (in §6) in terms of

a P, -dependent family of random variables Bnthe 6. Features

actual construction is inductive, based on a sample of

training images of faces with a poseAn Up to trans- Throughout this section, we fix apose ckle C. A test
lation and reflection, there is one learning problem for is a binary function ofT. We will define a hierarchy of
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tests, from simple and localized to more complex and is the variation in the appearance of faces due to the
more spatially extended, whose statistics in the two vagaries of lighting; see for example the discussion
populationsZr andZg become increasingly disparate. in Ullman (1996). In order to diminish the variation,

In 86.1 we define “elementary testX;, which repre- methods such as those based on neural networks usu-
sent localized edge fragments and involve comparisonsally require preprocessing (Rowley, 1999), for instance
of intensity differences; then, in 86.2, we consider con- subtracting a linear component from the grey level map

junctions followed by histogram equalization (Sung and Poggio,
1998), which can be costly. Instead, the information
Xa= H Xi we extract from the greylevels are comparisons of in-

ieA

tensity differences, which are invariant to linear trans-
of elementary tests, which represent spatial arrange-formations of the greyscale. In Fig. 7 we show three

ments of edge fragments. versions of a training face together with the detected
Definedi(u) = 0if u < t andsi(u) = 1if u > t. edges.
The detectorf, dedicated toA is then: There is an one elementary teét= X (1) for each
K(A) location(u, v), each filter typ@_ and ea_ch “tolerance”
fo = l_[ ‘St(Z XA) 1) n=12..,10. T_henX:l if t_here is an edge of
-1 e type & at any location along a line of length cen-

tered at(u, v) and orthogonal to the filter direction;
otherwiseX = 0. Thus, for example, in the case of a
positive, horizontal type at locatiogu, v) and toler-
ancen = 3, the tesX = 1 if there is an horizontal edge
with positive contrast at at least one of the locations
{(u,v—1), (u,v), (U, v + 1)}; see Fleuret (2000) for

wheret =t (A, k) is a threshold andl = A(A, k) rep-
resents a distinguished family of conjunctions of size
k dedicated to poses ift. The particular conjunctions

A € A are the “decomposable” ones mentioned ear-
lier. As we shall see, the difference in likelihood of the
events{Xa = 1} on faces and general backgrounds more details.

grow; q_u'Ckl%’ withk=|A|. This prslper'ty IS pSIOtalloo The tolerance parameteiis crucial for achieving a
in reducing the sums to manageable size (order )'degree of invariance to small geometric deformations

t_hereby “summarizing” a large disjunction of conjunc- of the intensity surfacdt allows the elementary tests to
tions. be adapted to the generality of the poBke larger isA,

the more the edges need to “float” in order to capture a
reasonable percentage of object presentations. Specif-

] o . . ically, for each cellA, we only consider elementary
An elementary tess a local disjunction of local filters.  tasts for which

In our experiments the local filters detect edge frag-

ments; other, more sophisticated, filters might be more P,(X=1) > 0.5. )
effective. The edge filter we use is described in Amit

and Geman (1999) and additional details may be found These probabilities are estimated frafy in other

in Fleuret (2000). Briefly, the filter is applied at each \ords we requireX (1) =1 for at least fifty percent
location inG, and has an direction (horizontal, verti-  of the training faced with a pose inA. In addition,

cal, and two diagonals) and a contrast (positive or neg- ye then suppress other elementary tests of the same
ative), yielding eight “types” denoted By= 1, ..., 8. type and location with a tolerance larger thgmvhich

For example, in the case of a horizontal edge “at” npecessarily also satisfy the constraint, thereby keeping

(u, v), the absolute differendé (u, v) — 1 (U, v + 1| only the minimal tolerance achieving a fifty percent
is compared with a threshold, with the differences jncigence. Le{Xy, X, ..., Xn} denote the surviving

[l (u, v)—1 (U, v')| forthe nearest neighbogs’, v") of elementary tests, wheié = N(A).
(u, v) and with the differenced (u, v+ 1) — | (U, v")|
for the nearest neighbors’, v) of (u, v + 1); it has

6.1. Elementary Tests

positive contrast ifl (u, v) > | (u, v + 1). The defini- 6.2. Decomposable Tests
tions of the other filters are analogous.
The principal motivation for using comparisons of We refer to a subseA C {1, ..., N} as anarrange-

intensity differences is to gain a measure of photomet- mentsince it determines a set of approximate locations
ric invariance. One major difficulty in detecting faces (and orientations) in the grié corresponding to the
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Figure 7. Detected edges on a training face under three illuminations.

elementary test¥,i € A. Then Xap=1 if and only Consider arrangemeni§ X; of size two. We could

if Xi =1 for eachi € A, a spatial conjunction of el- filter all such pairs by requiring that (X;, X;) > p
ementary tests. Lesupp X C G be the set of; edge for some threshold G< p < 1. This yields pairs of
locations which appear in the definition Xf. In order elementary tests which tend to occur (or not occur)
to limit the family of arrangements we shall assume that together on objects. Similarly; X; X, might be agood
supp X () supp X% = @ whenevei, j € Aandi # j. candidate for a discriminating arrangement of size three
We write |A| for the size of A. The family {Xa} is if, in addition, p(X; Xj, Xx) = p. Continuing in this
our pool of features; the classifier will be constructed way, we can single out arrangements of size four by
from a subset of these—the decomposable ones—ascombining two “good” pairsX; X; and Xy X, and fur-

indicated in (1). ther requiring thap (X; X;, Xk X)) > p. And so forth.
We want to find arrangemen#sfor which the statis- Define adecompositiorof A to be any nested set
tics of X 5 are as different as possible und&grandP, . of binary partitions (i.e., successive binary refine-
Since estimation undeR, is problematic (see 810), ments) all the way down to individual elements of
we will attempt to obtain the desired disparity by con- {1,2,..., N}. We shall also assume that a partition

structing arrangements which are large but still likely element splits evenly if its size is even and splits into
underP, . Size alone renders them rare unégr The two child elements whose sizes differ by exactly one
construction is based on correlation. LetJ, V) de- if its size is odd. Call it ap-decompositionif the
note the correlation coefficient of random variables  correlation inequality holds at every split. In Fig. 8
andV with respect toP,. For binary variables with  we show one decomposition oA={1, 2, 4, 5, 9}.
0< Py,(U=1),PA(V =1 <1we have It is a p-decomposition ifp(X1 X4, X2X5Xg) > p,
(X1, Xg) = p, p(XsXg, X2) > pandp(Xs, Xg) >
pU, V) p. Finally, an arrangemem, or the corresponding test
__PAU=1LV=D-P.U=DP (V=1 Xa, will be called p-decomposablé there isat least
(PA(U=1Py(U=0Ps(V=1P,y(V=0)¥2 onep- decomposition ofA. Summarizing,
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{1,2,4,5,9}

{2}
N

{5} {9}

Figure 8 A testisp-decomposable if it can be broken down in at
least one way into positively correlated subarrangements.

Definition. A test X, is p-decomposable if it is an
elementary test or if there exist twadecomposable
testsXg and Xc with

e A=BUC, BNC=¢

o [IB[-|C|I=1
e p(Xp, Xc) = p

6.3. A Likelihood Bound

In generalPy(Xa = 1) andP, (XA = 1) depend oA

e UZk+1 =p - JUK-A-U®K)- -Uk+D-
JA-Uk+1D)+UK - -Uk+1D

There is no analytic expression for.

A closed-form bound which is larger (and hence
better) than the exponential bound is given below.
We will assume thatP,(Xa=1)<0.5 for every
A e A(A,K, p). Thisis implied byP, (X; =1) < 0.5,
which is the case in practice if we replace the valie 0
in (2) by one slightly smaller because, due to the toler-
ance parameter, the probabilities in (2) cluster tightly
just above the threshold.

Theorem 1. Forany k > 1, p > Oand A ¢
A(AK, p),
PA(Xa=1) = min Py(Xi =1)-p%%. (4)
=<I=
In Fig. 9 we display the shape of these bounds as
well as the empirical behavior of tests. For edgh
there are ten estimated valuesRf(X = 1) for ten
tests X randomly sampled from thousands learned
from training data; see §7. The estimates are relative

frequencies in training data. As can be seen, the bound
in (4) captures the actual rate of decrease fairly well.

and decrease 48| increases. Areasonable assumption g 4. progression in Feature Complexity

for Py is some type of exponential decrease, and indeed

this is what we observe empirically. On the other hand,
if Xa is p-decomposable, we should expect a slower
rate of decrease undé&t,. This is certainly what we

As indicated earlier, we implemertt, as the series
of filters defined in (1) and depicted in Fig. 6. Each
filter is applied only when all simpler ones have re-

observe experimentally; see Fig. 9. In fact, the rate of jected background. Since the overwhelming majority

decrease i'°%K. As a result, for “reasonable” values
of p, PA(Xa = 1) >» Py(Xa = 1) for “large” A. We
cannot say anything precise about the likelihood ratio
since we do not propose a model fBs. But we can
give lower bounds o, (Xa = 1). Let A(A, k, p) de-
note the set of alb-decomposable arrangements with
|Al =k.

Two bounds are easy to obtain. One is

k
PAXa =D = ([ min PA(Xi =) (3)
which results directly by iterating the basic inequal-
ity that defines decomposability. AnotherRg (Xa =

1) > U (k), obtained numerically and recursively from

° U(O) = minlfifN PA(Xi = 1)
e UK =p-UK) - (1—-UK)+Uk)?

of subimages examined are in fact background, very
few are investigated in detail. As seen in (1), the filter
of complexityk is

AcA(A K, p)

ZA,k(I)Z XA(I)v

the number ofo-decomposable tests of sikewhich
are positive orl .

For simplicity, we fix o and suppress it from the
notation. In theory, the optimal value is the one which
minimizes the false positive rate ¢f but we have not
performed any systematic exploration of the possible
values, or even considered allowipdo depend om\.

In all experiments we take = 0.1 for every pose cell.

The maximum size K and the thresholds
t(1),...,t(K) are determined as follows. LKt be the
largestk which “covers” the object class in the sense
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Figure 9. The empirical behavior of randomly selected decomposable tests. The vertical axis is log-probability and the horizontal axis is
complexity (k). Left: Estimated probabilities on face and background subimages. Right: Three lower bounds: nuhétieal), analytical
(4) (dashed line), exponential (3) (solid line).

thatP, (Z4 k> 1) = 1. (In our experience it never hap- decomposable tests to “spread out” by restricting
pensthatarrangements of skagover but arrangements the number of time seach original edge appears in
of sizej < kdo not.) Given thresholdgl), ..., t(K), an arrangement.

and according to (1), we classifyas object if it con-
tains more thar (k) po- decomposable tests of sike 7 Feature Learning
foreachk=1, ..., K. The threshold$(1), ..., t(K)

are defined by AssumeA is still fixed and letC , be the set of training
] ) images with pose im\. Most of the images i, are
t(k) =maxj : Pa(Zak > j) = 1}. (5) obtained synthetically by transforming images in the

) original training setC. Bearing this in mind, in order
In other words, the thresholds are the maximum tq simplify the notation we shall simply writé for £
values which preserve the hard constraint that gng4(k)for A(A, k, p), the set of alp-decomposable

a(fa)=0. _ _ arrangements of size, as defined in §6.3. One goal
There are several practical obstacles to implement- 4y learning is to estimate a subfamilft; (k) ¢ A(K)
ing the detectord, exactly as defined. of sizen for eachk < K. The other learning task is to
' ) . estimate the thresholdsl), . .., t(K).
o We don't haveA(A. k, p). This would require far Whereas the definition of a decomposable product

more precise information abou?, than can be s top-down, the production of examples is bottom-

gleaned from any training set. Also, the family istoo . Correlations are estimated und@y, the empir-

large to enumerate. Instead we will estimate a fixed jc3| measure derived fron (L4). The construction

number_ of dec_omposable tests of each size, basingjs recursive: First build a familyX; X;}, then a fam-

correlation estimates of. _ . ily {X; Xj Xk}, etc. In order to construct decomposable
e The thresholds are difficult to estimate directly from products of size Rwe only need those of size and

L without overfitting. In the following section we g construct those of size&2- 1 we only need those of
shall indicate how this can be accomplished by syn- gjzesk andk + 1.

thetically enlarging the training set. This also solves  Eyentually, we want test§Xa, Ac Az(K)), k =
the problem of having enough data to estimate cor- 1 K with various properties.
relations for fine pose cells.

o If a subset of decomposable tests is selected based First, they should “cover the population” in the sense
on likelihood alone, the test locations will concen- that, for every face image, at least one test of each
trate on certain regions of the object and be highly =~ complexity is positive. In other words(k) > 1 for
redundant, as well as provide no protection against eachk =1, ..., K, wheret (k) is defined in (5). (Of
occlusion. Consequently, for ea&h we force the course the probability in (5) is estimated frdf’ﬁ.)
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e Second, they should be “spatially non-redundant,”

Finally, by construction, the tests i, are p-

in the sense of having supports spread out over the decomposable with respect t®,. Are they p-

image plane. This does not occur naturally; indeed,
without some constraint, the locations of the tests
tend to accumulate on certain areas of the face.

e Third, there should be relatively few tests. Specif-
ically, the sums appearing in (1) should be of or-
der 100; otherwise, we lose computational efficiency.
Indeed, having a “small” number of decomposable
tests with the two properties above implies a large
degree of invariance.

For eactk we first generate a very large famify(k)
of decomposable tests and then select a subgé) C
F(K) of sizeN by random sampling subject to the first
two constraints mentioned above. The final get(k),
is a small subset gf° (k). This multi-step procedure is
how we generate a family which is sufficiently rich to
contain a smaller subfamily which has all the desired
properties.

Consider the even case. The large fanfilk) is the
set of all arrangementd; |_J A, where

o AL Ay e FP(K);
o 0(Xa, Xp,) = p;
® SUPPX, [ SUPPXy, = 4.

Here,suppXa = Ujca SUppX. The process is initial-
ized with 7°(1), the family of distinguished elemen-
tary tests described in §6.1. If the covering condition

decomposable with respectia ? It appears that some
are not and some are at even a larger valug.dfet

o = 0.1; this is the value used in our experiments. Re-
call that each constructed € A(A, k) has gproposed
po-decomposition. One can then use additional data to
verify this decomposition by re-estimating the correla-
tions. Further, one can determingax(A), the maximal
value ofp for which the given decomposition @is a
p-decomposition. This value may be smaller or larger
than pg. Some results are reported in (Fleuret, 2000).
For example, in one typical experiment, the proposed
decompositions for about 95% of the arrangements are
valid at p > 0, 80% atp > 0.1 (the target value) and
45% atp > 0.2. These estimates are conservative be-
cause the arrangements could decompose differently.

8. Sequential Testing

Recall that the exploration of poses is based on a se-
guence of nested partitions 6f corresponding to di-
visions on location, scale and tilt. We declare a face
with pose in® if and only if we confirm at least one
decreasing sequence of pose cells arriving at a fine cell.
We use atree-structured strategy for checking this con-
dition. Roughly speaking, the test$,, A € C} are
performed adaptively in the order which would mini-
mize the mean amount of computation (under the back-

for the elementary tests fails, then we do not attempt ground hypothesis) necessary to deternfinender a

to build a classifier at the level of generality af For
instance, the covering condition fails if the location
of the face is allowed to roam over a 3232 block
(and scale and tilt are unrestricted). This is why we be-
gin at thel6x 16 level. The process terminates when
it is impossible to satisfy the constraints. Generally,
N « |F(k)| « NZ2. The exact sampling procedure for
choosing#° (k) ¢ F(k) and thenAd, (k) c F°(k) is
described in (Fleuret, 2000).

The natural estimators of the threshotd$), .. .,
t(K) are

f(k):maX{t:lsA< Z XAZt)zl},
Ac A (k)
k=1 ...,K.

Due to the synthetic deformations of the original train-

ing faces, these thresholds are actually very conserva-

tive and can be used in practice as defined.

certain statistical model described in Appendix C. That
particular adaptive procedure, “the coarse-to-fine tree,”
is the topic of this section.

Let y(j) denote the set of ancestors of the fine cell
AM,j,j =1 ...,Lwu:

y(D={mD:Am;j C Ami}.

The detectorf, corresponding to celh = An, will
be denoted bym. Then KI) = lifandonlyifl € T,
where

F={leZ:3ja3vm)ey(j)fm)=1. (6)
This characterizes F but does not describe an algo-
rithm for evaluating it. The particular algorithm for
checking the conditioh € T" is what we refer to as the
testing strategy and is described below.

Under very mild assumptions (see Appendix &)y
detectorf based entirely on the filtersf,, A € C}



hasoverall false negative error zero (i.e., with respect
to PL=Pg) if and only if f(1)=1 for everyl eT.

Consequently, among all such detectors, the smallest

false positive error is achieved by=F.

We describe the testing strategy for a binary decom-
position of® (L, = 2™). The general case is the same
but the diagrams are messy. LEtbe the family of
all labeled trees which evaluate. EachT €7 is a
variable-depth binary tree with each internal node la-
beled by atestififm} (the same test may appear more

than once) and each external node (leaf) is labeled ei-

ther “0” or “1". The left (respectively, right) branch
emanating from an internal node labeled fy; indi-
catesfy, = 0 (resp.,fm = 1).

Overloading the symboll, we will also write
T (1) for the corresponding detectoF:(1) =0 (resp.
T(1)=1) if sendingl down the tree leads to a “0”
(resp. “1") leaf.In order to represent FT(l1)=1 if
and only if e I". This means that a ledfis labeled
“1”ifand only if, forsomej = 1, ..., Ly, the history
of tests along the branch frotio the root contains the
event{fm; = 1 V(m,l) € y(j)}. See Fig. 10. Equiv-
alently, a leat is labeled “0” if and only if there is a
covering partition of “0” tests, i.e., the leaf history con-
tains an event of the forify, ), =0,r =1,..., R}
whereU; Ay, |, = O.

Of the many trees irY, the least efficient simply
performs all the tests in some fixed order along ev-
ery branch and therefore has depth uniformly equal
to Zmzo Lm. Another procedure is the “depth-first,
coarse-to-fine” treeT*. It is depicted in Figs. 11
and 12 for the two caselsl =1 andM =2, and can
be defined recursively, as indicated in Fig. 13. It is
unique up to a permutation of the testing order within
each layer, which has no significan@ée tree T is the

: - © AM-H AM-L:"'
S oo oo e o o A

Figure 10 A binary decomposition of pose space and a “chain of
ones” indicated in grey.
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Figure 11 The coarse-to-fine tree* for M = 1.

representation of the detector used by the algorithm.
is efficient because no finer test (along a chain) is ever
performed before all coarser ones have failed to elim-
inate a candidate subimage, and the testing is stopped
whenF is determined. Notice that the visitation of cells
is not strictly coarse-to-fine along every branch of the
tree, i.e., there is “backtracking” up the pose hierarchy.
In Appendix C we present a model for the statistical
distribution of the testsf,, A € C} with respect td,
as well as their cost structure. LEtdenote this set of
hypotheses and I€EoC(T) denote the expected cost
of T € 7 underP, (see Appendix C). Then

Theorem 2. UnderH, the coarse-to-fine tree mini-
mizes computatian

EoC(T*) = _I’I]'IEIQI] EoC(T).

Notes i) In an earlier version of this paper, this result
was stated as a “conjecture.” It has since been proven
in collaboration with Franck Jung. The proof, which is
rather complex, will appear elsewhere.

i) In processing real scenes, the algorithm based on
T* is in fact considerably faster than various alterna-
tives, such going straight to the fine cells, in which case
the processing image corresponding to Fig. 1 is much
flatter (Fleuret, 2000).

9. Experiments in Face Detection

We have extracted 300 images from the Olivetti
database of faces, corresponding to ten different frontal
views of each of 30 individuals; this 8. On each im-
age, we have marked the locations of the eyes. This
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Figure 12 The coarse-to-fine treE* for M = 2.
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Figure 13  Recursive definition of *.

determines our three pose parameters—position, scaleof scales and tilts (we can always translate to any de-
and tilt. The decomposition a® into pose cells was  sired location). To overcome this, we synthesize a set
described in 83. To generai®,, i.e., training faces L, of size 1200: For each € £ we select four poses
with a pose confined t@\, we cannot simply use an  from A at random (uniformly in position, scale, tilt)
appropriate subset d@f since there will not be enough and then scale and rotateto acquire each of these
data for “small” cells. This is due to a limited sample poses.
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7

Tests of layer §

Figure 14 A random sample of learned decomposable arrangements of size eight. The shading indicates the amount of flexibility in the edge
location.

9.1. Learned Arrangements K— Po(Z1>t(D), ..., Zy >t(k), the rate at which
false positive error decreases with test complexity,

Randomly chosen examples of learned arrangementsshown as a solid line. Thet”s refer to the individ-

of size eight are shown in Fig. 14. The grey regions ual statisticy(Zx > t(k)). The estimates are based on

indicate the amount of disjunction in elementary tests. alarge number of non-face images found onthe WWW.

These arrangements are typical of the thousands in-

ferred fromL. Generally, they utilize elementary tests

based on edges in the region of the eyes, the mouth andd.2. Processing Scenes

the contours of the face.

One measure of the discriminating power of the tests The search for a face at a reference pose terminates as
was illustrated in Figs. 9. Whereas we can build ar- soon as a chain of ones is found. Consequently, there
rangements up to size 35, the maximum skzeA) is exactly one fine cell associated with each detection.
in the final detector is closer to 10 due to the cover- However, given a face is present, the fine cell which is
ing criterion. We randomly sampled ten tests for each identified may be due to clutter in the vicinity of the
k=1,...,35and estimated the probability of a posi- face, and hence the precision of the detection is only
tive response given face (based©®nand given back- reliable at the level of the coarsest cell. Still, the in-
ground (based on randomly selected locations in natu- formation in the fine cell is nearly always a very good

ral scenes). guess at the pose. In our experiments, the coarsest cell
Figure 15 shows the estimated distributionsZafy restricts location to a 16& 16 block; there is no re-

underPy andP, for k=5 andk =8. The possible val-  striction on tilt and no restriction on scale within the

ues ofZ,  are{0, 1, ...,100 since|A, k| = 100. reference range, which means detecting scale in one

Finally, Fig. 16 depicts an estimate of the function of the ranges 10-20, 20-40, etc. The number of false
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Figure 15 Estimated distributions o5 (left) and Zg (right) on faces and background samples.
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Figure16 The rate of decrease in false alarms with text complexity.

positives is then the number of these coarse cells which
are detected at some resolution and which do not con-
tain a face.

We have tested the algorithm on several scenes col-
lected from the WWW and from the set “C” of im-
ages collected at Carnegie Mellon University by H.A.
Rowley et al. (Rowley et al., 1998). One result appears
in Fig. 3. The scene is 450380. The three faces which
are about half-visible are missed. In Fig. 17 we indicate
the rate at which the number of alarms decreases dur-
ing the focusing in pose, i.e., with the number of splits
on the coarse cell. The value 714 in the righthand panel
is the total number of 1& 16 blocks in the image at all
resolutions. Other results are shown in Figs. 18 and 19.

800 . . . .
700 Depth | Number of alarms
600 714
500 0 227
400 1 159

2 91
300

3 70
200

4 66
100

5 42

o 1 1 [ 1 1
0 1 2 3 4

Figure 17 The number of alarms (detections) as a function of the deptti focusing in pose space. The value corresponding fe the
number of blocks surviving past the theth partition.
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Figure 18 Additional results.

Measuring the amount of computation is notentirely 9.3. Improvements

straightforward. It depends on the scene, the computer,

the source code and perhaps other factors. With a PCOne fundamental limitation is that false detections
Pentium Il (450 MHz), it takes about one-half second often occur in areas of very high edge activity, as in fo-
to process the scene in Fig. 2; this is an average overliage or fine textures. Indeed, nothing changes if edges
100 runs. Most of this time is spent on extracting the are added to the vicinity of a region already labeled as
elementary tests; computing the detedtofat all res- aface. In order to remedy this flaw, we have done some
olutions) requires only about one-tenth of a second. preliminary experiments with “negative tests.” We
Clearly, more efficient preprocessing would help. use exactly the same learning protocol and detection
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Figure 19 Additional results.

algorithm, except that we add elementary tests whose decomposition, for instance splitting more than once
response is positive when the local filter response is on scale or tilt, and with more general notions of pose
negative everywhere in a strip orthogonal to the edge (see §3). Preliminary results are promising and suggest
direction. We have also experimented with a finer pose that many of the false positives can be eliminated.
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9.4. Comparisons arrangements of clutter which “look” like objects in
the eyes of the features. Also, design the search to ac-
It can be hazardous to compare the performance of onecount for the fact that detecting an object at any given
method with that of another. Still, due to the compre- pose, or even localized set of poses, is an extremely rare
hensive analysis in Rowley (1999) of publicly available event. We have illustrated these ideas with experiments
images and to our familiarity with Amit and Geman on detecting frontal views of faces over a limited range
(1999), a few general statements appear evident. First,of tilts and a large range of scales. Although there are
our false negative rate is smaller; a 15% rate is re- certainly false alarms, the algorithm is fast and unlikely
ported in Rowley (1999) for an ensemble of images, to miss a face.
and other authors (e.g., (Miao et al., 1999)) obtain sim-  Thistype of reasoning does not seemto drive the con-
ilar rates. This is consistent with our formulation of struction of very many vision algorithms, at least notin
the visual selection problem. Second, there seem to beacademic research. Instead, computation is usually an
fewer false alarms in Rowley (1999). This statement is afterthought; for example, one seeks ways to speed up
based on processing some of the same scenes as thosen algorithm originally motivated by other principles
analyzed in these references. It should be noted that no(deforming templates, the world is 3D, vision is com-
reported algorithm detects nearly all faces and nothing positional, inference should be Bayesian, etc.). Some
else. Our algorithm is faster than the one in Amit and notable exceptions include work on hashing (Lamdan
Geman (1999) and much faster than the one in Rowley et al., 1988), Hough transforms (Rojer and Schwartz,
(1999), which requires 140to process the scene in  1992; Amit and Geman, 1999; Amit, 1999), and tree-
Fig. 2 (with the PC mentioned earlier) and abost 2 structured search (Grimson, 1990), all of which have
with a two-step, coarse-to-fine process for which the influenced our thinking.
ensemble false negative rate climbs to 26%. Our treatment of features is statistical and inductive.
There are other measures of efficiency. The algo- We build a degree of invariance into elementary, binary
rithm in Amit and Geman (1999) is perhaps the sim- features and then learn those conjunctions which are
plest: The object representation is very compact and likely on object instances rather than having any other
training only occurs at a reference pose, requiring only a priori distinguished property. The idea is to make the
a few minutes as opposed to about an hour here andconjunctions “decomposable” relative to the statistics
much longer in Rowley (1999). Our face training set of the object class. The induction process does not uti-
is the same as in Amit and Geman (1999) and smaller lize a background model (such as the minimax entropy
than in Rowley et al. (1998), Sung and Poggio (1998). model proposed in Zhu et al. (1997)) or samples of
Finally, we often localize with less precision than some backgrounds and confusions (as in Sung and Poggio
other algorithms. We could do better with more compu- (1998) and Rowley et al. (1998)), both of which might
tation, for example by not terminating the search upon improve discrimination.
the first positive chain of responses; obviously there are  We have not appealed to general theories for hypoth-

many tradeoffs of this nature. esis testing (for instance likelihood ratio tests based on
models forPy and Py) or for inductive learning (for
10. Discussion instance structural risk minimization (Vapnik, 1996))

or feedforward classifiers ((Baum and Haussler, 1989;
We have argued that a good start on solving vision Devroye et al., 1995). Instead, the global form of the
problems might be to think about computation, and detector is dedicated to the visual selection problem;
this leads naturally to coarse-to-fine processing in sev- also, each estimated parameter has an explicit interpre-
eral senses, including feature complexity and the searchtation (correlation or quantile) and is decoupled from
over nuisance parameters. Start with the simplest andthe others, which renders training feasible without a
most common properties over presentations, almostlarge database. The generic component of the learning
regardless of discriminating power; rejecting even a is the concept of a decomposable arrangement, which
small percentage of background instances with cheap mightbe ofinterestin other domains; see Fleuret (2000)
and universal tests is efficient. Then proceed to more for some remarks about natural language and cortical
complex and/or more dedicated properties, reserv- function.
ing any computationally intensive search for the very ~ How would this approach extend to detecting a truly
special confusions—those inevitable and diabolical three-dimensional object, or a more complex one (e.g.,
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a cat) or to detecting many objects simultaneously? >£. p#u VA—E - p0) - (1—¢ - ph)
We don’t know. Obviously there are more degrees of o, wtp
freedom in imaging a 3D or highly deformable ob- +tE%p

ject. But divide-and-conquer is a very powerful strat-
egy, and can certainly be pushed a good deal further.
Even in searching for a cat, perhaps enough efficiency

Since > «, we have - £p# > 1—£p® and hence:

can overcome the combinatorics—the sheer number Pa(Xgue = 1)

of presentations and cat-like things—and more gen- >£. p#+l VA=E-p*) - (L—&-p%)
eral pose hierarchies could be generated automatically 2. puth

based on feature counts. Compared with faces, many wsp g N 2 arp
more confusions might be kept around for many more >E-p 2 (1=&-p)+Ep
steps, and eliminating all of them might require on- =£. p#H. (1_5 CpY 4 E- p#—l)
line optimization and contextual analysis. However,

since this would only occur in few places, detection > £ p L. <1+$ : (p#*1 — ,o“))

would remain computationally efficient. As for detect-

ing multiple objects, perhaps the key issue, atleastin  Now i >1, j <i + 1 implies j <4i and hence

our framework, is “reusable parts™—representing dif- log, j < log,i + 2. It follows that 8 <« + 2 and

feren_t objects with the same arrangements wheneverp#_l > o%. As aresult,

possible. For example, one might build a detector for a

“new” object at some subset of poses from the detectors P. (X ) > .t

already built for other objects in various subsets. A(Xeue e
Finally, in defense of limited goals, nobody has yet By the concavity ofi —

demonstrated that objects from even one generic class

under constrained poses can be rapidly detected with- oo + |0g, i+

qul log, <?J)+1 <log,(i+]),

log, u:

out errors in complex, natural scenes; visual selection >
by humans occurs within two hundred milleseconds
and is virtually perfect. and therefore
oo (it
Appendix A: Proof of Theorem 1 Pa(Xguc = 1) = § - p%0*D
Recall that the bound in question Ry (Xa=1)> To conclude the proof, if (4) is true for eveky< n,

Minii-n Pa(Xi =1) - p'°%K. The result is evident ~and if Ac A(n+1), then ifn+1 is even (respec-
for k=1. Let €= minj-n Pr(Xi=1) and let tvely, odnd),EIB € A(%l), C e A("5%) (respectively,
A(K) =A(A, k). Suppose (4) is true for ak <n. IBeA(3), CeA(; + 1), with A=BUC and
Then for anyi, j <nwithi <j<i+1andforany ~(B.C)>p.Hence,PA(Xa=1)=Pr(Xguic=1)=>

B e Ad), C e A(j)with BUC € A + j), we have & - #°%2".

Pa(Xsuc =1) Appendix B: Error Rates
>p-yPAXg=1)-Pa(Xg =0)- PA(Xc =1) - PA(Xc =0)

We justify the statement that our detecEominimizes

the false positive error rate among all false negative
zero detectors. To simplify matters, let us suppose that
P (1) > O for everyl €Z; it follows that P, (1) > O for
every | € Z,, the set of images containing an object
with pose inA. Let f : Z — {0, 1} be any detector
and recall that( ) is the false negative errét, (f =

+PA(Xg =1 -Pa(Xc =1

Definea = log,i andB = log, j. SinceP, (Xg =
1) < 3andPy(Xc = 1) < 1, andx > x(1 —X) is
increasing on [0 3]:

Py (Xgue = 1) 0). Thena(f)=0ifand only if Zr c {f=1}. In
a - 5 5 particular, the conditior C {f = 1} impliesa(f) =
=p-VE P L—§-p)-§-pP(L—E - pF) 0 becausd € A’ C A implies thatf, (1) = 1 (since

+E-p*-E-pf f is an invariant test fon) and henc&€g C T'.
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Supposef depends orl only through the family are independent und&, with
of tests{ fm, (1)}. Suppose further that every possible

set of test valuegfy, (1)} € {0, 1}t consistent with Po(fn=0)=Bm, m=0,...,M.
| eTisrealized by some objectimayye Zr. Thenthe
conditionI" C {f = 1}isalsonecessary far( f) = O. Thus 1— Bn, the incidence in the background popu-

In other words,f has zero false negative error if and lation. We can suppose (by relabeling the attributes)
only if f(I)=1VI e I'. Consequently, the smallest that
false positive error is achieved by settiigl ) = 1 if

and only ifl €T, i.e., choosingf =F. O<pospr=--=Bmu <1l (7)
Letcy, ..., cy denote the costs. The cost\wfdenoted
. _ C(V), is the sum of the costs of the tests performed
Appendix C: Mean Computation before reaching a terminal node, and hence a random

variable. The mean cost can be computed by summing,
Consider first detecting atarget, representeddiggle  over all internal nodes of V, the cost of the test at
conjunction of attributesversus a background hypoth-  times the probability of reachirtg yielding:
esis which is a priori far more likely. For example, we

must separate Napoleon from all other prominent his- Mo md

torical figures. Letfy, ..., fy be the binary random Eo(C(V)) = ¢, + Z:lcim H(l = Bi)-

variables corresponding to the attributes; thus the tar- m= B

getisrepresented iy, { fm = 1}. We test sequentially. If cm =1, the mean cost is simply the average num-

Background is declared upon the first negative test ber of tests performed. The best procedure is then
and hence all the tests are eventually performed whenim =M —m, which proceeds from rare to common.
the target is present. This procedure is representedin this case the false positive error is cledly,_o(1—

by the labeled vine/ in Fig. 20 wherei, is the in- Bm). Notice that under the independence assumption, a
dex of the test performed at step+ 1. background instance can land in the all “1” leaf of the

Clearly all such procedures have no false nega- vine.

tive error and the minimum possible false positive = However, equal costs is not realistic. General tests
error based on the given attributes. We therefore seek(common attributes) should be inexpensive to test
the least expensivé in terms of mean computation. whereas dedicated tests (rare attributes) should be
Since the background hypothesis is assumed dominant,costly. For instance, if the cost behaves like an (ap-
the mean is computed relative Ry. Suppose the tests ~ proximate) code length, them, ~ —I10g,(1 — Bm).

fio fzo
V / . \ \ V/ / . \ |
0 /fzn\ 0 fin+1
0 fin+1 0 fzn
0 1 0 1

Figure 20 The vineV’ is a rearrangement & which has lower cost ifn+1 < in.
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Suppose, in fact, we assume that= ®(8n), where

®:[0,1] — [0,1], ®©0) =0

and® is strictly increasing and convex.

Proposition. Under the above cost structyrde best
strategy for detecting a single conjunction of attributes
is im = m, which is coarse-to-fine in likelihood.

Example. The best procedure to check for Napoleon
is thendeceased?> general?— Corsican?

Proof: LetV denote the vine in Fig. 20. Suppo¥e
is optimal but that,, 2 m for somem. Thenip 1 < iy
for somen. The mean cost o¥ is

n-1 m—-1
&@ND—%+Z}WH1 Bir)

+a,((1— ﬂi;' (1= Ais))
(1-8))

+ Cinﬂ((l ﬁ,l)
1 IBH)

—1

Let V' be the same vine as, but with the positions of
fi, and f;

Ins1

terms, but with the middle terms replaced by

Cra(1=81) - (1= Bi))
+6, (1= Bi) - (1= Bina) (1= Binn))-

Therefore

Eo(C(V)) — Eo(C(V))

=6, (1 B) - (1- Bi)
+Gpi (L= i) -+ (1= Bi))
=G (1= p) -+ (1= i)

- 'n((l - ,3i1) T (1 — Bi,. 1)(1 - lBin+l))

= (CiHIBirH.l - Cin+1ﬂ|n 1_[ 1 '3“
1=1
> 0.

The last inequality results from convexity and contra-
dicts optimality. Hencé,, = m for all m. m]

Finally, consider a corresponding model fodis-
junction of conjunctionsand the corresponding opti-
mality of T* among all binary trees ii™ which rep-
resentf. As for the cost structure, fof € 7, let B;
denote the event of reaching nad@ he costC(T) of
TeTis

cm

=> 18Ci
t

where the sum is over all leavesDfandC; is the sum
of the costs along the branch from the roott tahe
mean cost is

Eo(C(T)) =Y Po(B)Ct =) Po(Bs)Cm,
t S

where the second sum is over miternal nodes ofT
and the test at nodeis (m, |s).

The hypothesesl in Theorem 2 refer to the follow-
ing three assumptions:

e The tests are conditionally independent unBgr

e The distribution of f,,; depends only omm, with
Bm = Po(fmy = 0) and the ordering in (7).

e The cost of f,; depends only omm, with ¢, =
®(Bm) and® as above.

reversed, as in Fig. 20. The mean cost of Notice that (7) is now a genuine assumption.
V'’ has a similar expression, with the same first and last

Acknowledgments

We are grateful to Yali Amit for many suggestions dur-
ing a running discussion of learning and invariance.
The second author would also like to acknowledge the
influence of unpublished work on coarse-to-fine ma-
chine vision with E. Bienenstock, S. Geman and D.E.
McClure.

The first author was supported in part by the CNET.
The second author was supported in part by ONR
under contract NO0014-97-1-0249 and ARO under
MURI grant DAAH04-96-1-0445.

References

Amit, Y. 2000. A neural network architecture for visual selection.
Neural Computation12:1059-1082.

Amit, Y. and Geman, D. 1997. Shape quantization and recognition
with randomized treedNeural Computation9:1545-1588.

Amit, Y. and Geman, D. 1999. A computational model for visual
selectionNeural Computation11:1691-1715.



Baum, E.B. and Haussler, D. 1989. What size net gives valid gener-
alization?Neural Comp.1:151-160.

Cootes, T.F. and Taylor, C.J. 1996. Locating faces using statistical
feature detectors. IRroceedings, Second International Confer-
ence on Automatic Face and Gesture RecognitiBEE Computer
Society Press, pp. 204-209.

Devroye, L., Gyorfi, L., and Lugosi, G. 199Brobabilistic Methods
for Pattern RecognitionSpringer-Verlag: Berlin.

Fleuret, F. 2000. Btection hérarchique de visages par apprentissage
statistique. Ph.D. Thesis, University of Paris VI, Jussieu, France.

Geman, D. and Jedynak, B. 1996. An active testing model for tracking
roads from satellite imageKEEE Trans. PAM| 18:1-15.

Grimson, W.E.L. 19900bject Recognition by Computer: The Role
of Geometric Constraint$/IT Press: Cambridge, Massachusetts.
Haiyuan, W., Qian, C., and Masahiko, Y. 1999. Face detection from
color images using a fuzzy pattern matching methg&E Trans.

PAMI, 10.

Jedynak, B. and Fleuret, F. 1996. Reconaissance d’objetd dide
d’'arbres de classification. IRroc. Image’Com 96 Bordeaux,
France.

Lamdan, Y., Schwartz, J.T., and Wolfson, H.J. 1988. Object recogni-
tion by affine invariant matching. roc. IEEE Conf. on Computer
Vision and Pattern Recognitiopp. 335-344.

Leung, T., Burl, M., and Perona, P. 1995. Finding faces in cluttered
scenes using labeled random graph matchingraéteedings, 5th
Int. Conf. on Comp. Visigrpp. 637—644.

Maurer, T. and von der Malsburg, C. 1996. Tracking and learn-
ing graphs and pose on image sequences of faceBroceed-
ings, Second International Conference on Automatic Face and
Gesture RecognitignlEEE Computer Society Press, pp. 176—
181.

Miao, J., Yin, B., Wang, K., Shen, L., and Chen, X. 1999. A hier-
archical multiscale and multiangle system for human face detec-
tion in complex background using gravity-center templBéttern
Recognition32:1237-1248.

Coarse-to-Fine Face Detection 107

Ming, X. and Akatsuka, T. 1998. Multi-module method for detection
of a human face from complex backgroundsPinceedings of the
SPIE pp. 793-802.

Osuna, E., Freund, R., and Girosi, F. 1997. Training support vector
machines: An application to face detectionPhoceedings, CVPR
IEEE Computer Society Press, pp. 130-136.

Rojer, A.S. and Schwartz, E.L. 1992. A quotient space hough trans-
form for space variant visual attention. Neural Networks for
Vision and Image Processin@.A. Carpenter and S. Grossberg
(Eds.), MIT Press: Cambridge, MA.

Rowley, A.R. 1999. Neural network-based face detection. Ph.D. The-
sis, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Rowley, H.A., Baluja, S., and Kanade, T. 1998. Neural network-
based face detectiolEEE Trans. PAM| 20:23-38.

Sabert, E. and Tekalp, A.M. 1998. Frontal-view face detection and
facial feature extraction using color, shape, and symmetry-based
cost functionslEEE Trans. PAM| 19:669-680.

Sung, K.K. and Poggio, T. 1998. Example-based learning for view-
based face detectiolEEE Trans. PAM|20:39-51.

Ulliman, S. 1996High-Level VisionM.|.T. Press: Cambridge, MA.

Vapnik, V. 1996 The Nature of Statistical Learningpringer-Verlag:
Berlin.

Wee, S., Ji, S., Yoon, C., and Park, M. 1998. Face detection us-
ing pattern information and deformable template in motion im-
ages. InProc. Fifth Inter. Conf. on Soft Computing and Informa-
tion/Intelligent System®p. 213-216.

Wilder, K. 1998. Decision tree algorithms for handwritten digit
recognition. Ph.D. Thesis, University of Massachusetts, Amherst,
Massachusetts.

Yuille, A.L., Cohen, D.S., and Hallinan, P. 1992. Feature extraction
from faces using deformable templatéster. J. Comp. Vision
8:104-109.

Zhu, S.C., Wu, Z.N., and Mumford, D. 1997. Minimax entropy prin-
ciple and its application to texture modeli¢eural Computation
9:1627-1660.



