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Abstract. We study visual selection: Detect and roughly localize all instances of a generic object class, such as
a face, in a greyscale scene, measuring performance in terms of computation and false alarms. Our approach is
sequential testing which is coarse-to-fine in both in the exploration of poses and the representation of objects. All
the tests are binary and indicate the presence or absence of loose spatial arrangements of oriented edge fragments.
Starting from training examples, we recursively find larger and larger arrangements which are “decomposable,”
which implies the probability of an arrangement appearing on an object decays slowly with its size. Detection
means finding a sufficient number of arrangements of each size along a decreasing sequence of pose cells. At the
beginning, the tests are simple and universal, accommodating many poses simultaneously, but the false alarm rate
is relatively high. Eventually, the tests are more discriminating, but also more complex and dedicated to specific
poses. As a result, the spatial distribution of processing is highly skewed and detection is rapid, but at the expense
of (isolated) false alarms which, presumably, could be eliminated with localized, more intensive, processing.
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1. Introduction

We study face detection in the framework of learning-
based, visual selection: Starting with a training set of
examples of a generic object class, in our case a “face,”
detect and roughly localize all instances of this class
in greyscale scenes. The training examples are subim-
ages containing a single instance of the object at various
poses, for example frontal views of faces at a range of
scales, tilts, etc. Whereas the backgrounds in the train-
ing samples might be very simple, the detection algo-
rithm must function in natural, highly cluttered scenes.

Performance is measured by the false alarm rate
and the amount of (on-line) computation necessary to
achieve a very small false negative rate, albeit with an
imprecise determination of the pose. In fact, we are

going to emphasize computation; presumably, suffi-
ciently isolated false alarms could be removed, and
better localization achieved, with more intensive but
highly localized processing, and therefore with a mod-
est increase in computation. Finally, other performance
factors might also be important, such as memory, the
size of the training set, and the duration of training.

The problem of detecting instances from a generic
object class has of course been studied in the computer
vision literature. We restrict our attention to detecting
(but not recognizing) faces, and without information
due to color, depth or motion. The generality of our
approach is discussed in the concluding section; any
potential limitations should then be apparent.

A variety of methods have been proposed for face
detection, including artificial neural networks (Rowley
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et al., 1998; Sung and Poggio, 1998), support vec-
tor machines (Osuna et al., 1997), graph-matching
(Leung et al., 1995; Maurer and von der Malsburg,
1996), Bayesian inference (Cootes and Taylor, 1996),
deformable templates (Miao et al., 1999; Yuille et al.,
1992) and those based on color (Haiyuan et al., 1999;
Sabert and Tekalp, 1998) and motion (Ming and
Akastuka, 1998; Wee et al., 1998). The precursor of
this work is (Amit and Geman, 1999): Features are
spatial arrangements of edge fragments, induced from
training faces at a reference pose, and computation is
minimized via a generalized Hough transform; there
is no on-line optimization and no segmentation apart
from visual selection itself. In evaluating our results,
we are also going to focus on comparisons with the
work in Rowley (1999) and Rowley et al. (1998) since
this seems to be among the most comprehensive studies
as well as a fair representation of the state-of-the-art.

This work stems from a broader project on visual
recognition as a “twenty questions game,” in other
words a problem in efficient sequential testing. This
theme was pursued in the context of classification
trees and stepwise entropy reduction in Amit and
Geman (1997), Geman and Jedynak (1996), Jedynak
and Fleuret (1996) and Wilder (1998). The detection
counterpart of classification is sequential testing in or-
der to discover which of two classes is true; one is the
target and the other, “background,” is dominant. For
example, we seek to identify one famous person from
among all others, a compound alternative which is a
priori much more likely. The target is represented as
a conjunction of elementary attributes (for instance,
Napoleon is simultaneouslydeceased, general, Corsi-
can, etc.) which can be checked in any order.

If the “cost” of checking every attribute is the same,
then naturally a good procedure is to check them in their
order of likelihood relative to the dominant class—from
rare ones to common ones. In this way the search is over
quickly on the average, but never fails to detect the tar-
get. However, if there are numerous target variations
and if common attributes (relative to the background
population) appear in many representations, then it
makes sense to make “testing” for common attributes
relatively cheaper than for rare ones, in which case it
may be more globally efficient to proceed instead from
common to rare. This is the case, for instance, if the
cost of testing an attribute is its negative log-likelihood
(as in coding). This type of reasoning motivates our se-
quential testing strategy: The backbone of the detection
algorithm is a “coarse-to-fine” tree structure which

minimizes average computation under a certain statis-
tical model for cost and likelihood.

In visual processing, the corresponding attributes are
binary image functionals; in fact, throughout this paper,
all features are binary, and referred to as “tests.” The ob-
ject class is no longer a simple conjunction, but rather,
like the background class, an enormousdisjunction of
conjunctions. The individual conjunctions correspond
to distinguished object features when the pose and
lighting are known to very high precision. The disjunc-
tions account for general poses (locations, scales, ori-
entations) as well as finer variations due to lighting and
local, nonlinear shape deformations. Of course efficient
detection implies a high degree of invariance—
capturing these disjunctions succinctly, without
explicit enumeration.

The most elementary tests correspond to local edge
fragments. The fragments have an approximate loca-
tion and an approximate orientation; the definition is
purposely loose in order to accommodate geometric in-
variance. The other tests are products (conjunctions) of
elementary ones, and hence correspond to the presence
or absence of a spatial arrangement of edge fragments.
They have no a priori semantical interpretation; the
construction is purely statistical and learning-based.
The key property of the products is “decomposabil-
ity”: each product can be divided into two correlated
subproducts, each of which further splits into two cor-
related smaller subproducts, and so forth all the way
down to the elementary tests. The motivation is that the
probability that a decomposable test of sizek appears
on an object instance decreases gradually ask increases
compared with the decrease in general backgrounds—
in fact exponentially with log2 k instead ofk (§6).

The testing strategy is based on a sequence of nested
partitions of the set of possible poses. The strategy is
coarse-to-fine in the generality of the pose, and coarse-
to-fine in complexity at each level of generality. In or-
der to declare detections, we successively visit cells in
these partitions and successively check for a minimal
number of decomposable tests of each complexity. The
order of visitation is adaptive and chosen to minimize
overall computation. Initially, the conjunctions are sim-
ple and sparse (e.g., involve only a few non-localized,
non-specific edge fragments), and thereby accommo-
date many poses simultaneously; eventually they are
more dense (i.e., larger numbers of more specialized
fragments), and hence more dedicated to specific poses.
The result is that flat areas and other “non-object-like”
portions of the image are rejected very quickly and with
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Figure 1. The coarse-to-fine nature of the algorithm is illustrated by counting, for each pixel, the number of times the detector checks for the
presence of an edge in its vicinity. Left: The grey level is proportional to this count. Right: The scan line corresponding to the arrow; it covers
three faces.

very simple tests. Highly cluttered areas require more
processing and faces the most of all. In Fig. 1 we show
an illustration of the spatial distribution of processing
corresponding to the scene in Fig. 2; it is very highly
concentrated in the area of detections.

The experiments involve scenes with frontal views of
faces. We train with a portion of the Olivetti database—
300 faces representing 10 pictures of each of 30 in-
dividuals. The learning algorithm is a procedure for
building larger and larger decomposable tests in a re-
cursive, bottom-up fashion, and dedicated to specific
pose cells. The algorithm for each cell is identical; only
the training set changes. A relatively small training set
is sufficient since we only use it to estimate correla-
tions. In particular, we do not estimate a large system

Figure 2. Example of a scene.

Figure 3. The detections in Fig. 2.

of coupled parameters as in other statistical learning
methods.

One result is displayed in Fig. 3. There are defi-
nitely false alarms, ranging from several to several tens
depending on the scene, but the processing time and
the number of missed faces are small relative to other
algorithms; see §8. Hopefully, the confusions can be
eliminated (without losing faces) with various amelio-
rations or with highly selective but relatively intensive
processing, perhaps involving greyscale normalization
and on-line optimization.

2. Organization of the Paper

Since the algorithm is structured around nested par-
titions of “pose”, we begin with that in §3. Given a
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“reference set” of poses, the mathematical set-up and
performance criteria can made precise (§4). A sum-
mary of the detection and learning algorithms is given
in §5; the constituents are then fleshed out in the re-
maining sections, except for a few technical arguments
which appear in Appendices. Section 6 is devoted to
the features we use, especially the notion of “decom-
posability” and a corresponding likelihood bound, and
§7 explains how the decomposable arrangements—the
main ingredients of the detector—are induced from
training data. The sequential testing strategy for eval-
uating the detector is then described in §8 and experi-
ments follow in §9. Finally, there is a critical evaluation
of our approach in §10.

3. Pose Decomposition

The coarse-to-fine search is based on a hierarchical
decomposition of the set of possible “poses” or “pre-
sentations” of an object. There is an invariant filter
for each “cell” of the decomposition. In this paper
the notion of pose is purely geometric, characterized
by position, scale and orientation. However, even for
a semi-rigid object such as a face, there are other
aspects of an instantiation which carry valuable in-
formation for selection and discrimination, such as
photometric parameters, more refined linear geomet-
ric properties and the existence of sub-components
(e.g., glasses and beards). For some objects—including
faces—it could be more efficient to recursively par-
tition the presentations in a less dedicated way than
is done here, thereby accommodating other important
variations.

It is natural to define the pose of an object in terms
of distinguished points. No corresponding features are
defined; the points merely serve to define the pose. For
faces, we use the positions of the eyes. Equivalently,
the pose of a face has, by definition, a location (the mid-
point between the eyes), a scale (the distance between
the eyes) and a tilt (relative to the axis perpendicular
to the segment joining the eyes). The position of the
mouth is then roughly determined by the basic mor-
phology of the face (although residual variations in the
eye-to-mouth distance can be significant and could en-
ter a finer decomposition). We do not attempt to detect
frontal views of faces at all possible poses. Rather, the
tilt (orientation) is restricted to [−20◦,+20◦] and the
scale to 10–160 pixels. Consequently, we do not at-
tempt to detect faces which are very tilted, very small
or very large.

The invariant filters rely on common properties of
faces over a range of poses. But faces at very different
scales have very little shared structure, even if they are
roughly superimposed. The same is true for two faces
at approximately the same scale but far apart relative
to that scale. Consequently, the coarsest pose cell we
analyze invariantly accommodates all tilts but restricts
the scale to thereference rangeof 10–20 pixels and
confines the location to thereference blockof size 16×
16. Let2denote this reference subset of poses. One can
argue that the real detection problem does begin here;
there is certainly enormous variability due to lighting,
scale, tilt, local deformations, and of course different
faces.

All the learning is dedicated to2. Faces in the scale
range 20–160 are detected by downsampling and rerun-
ning the algorithm dedicated to2; faces at locations
outside the reference block are detected by partitioning
the image lattice into non-overlapping 16× 16 blocks.
More details about these two “outer loops” are given
in §5.

The set of poses2 is partitionedM times by suc-
cessive refinements. Let3m,l , l = 1, . . . , Lm, be the
l ’th cell of them’th partition,m = 0, 1, . . . ,M . Here,
30,1=2 and for eachm= 1, . . . ,M , the collec-
tion {3m,l , l = 1, . . . , Lm} is a partition of2 and a
refinement of{3m−1,l , l = 1, . . . , Lm−1}. The complete
family of cells is denoted byC. In our experiments,
M = 5. There are three quaternary splits on location
(16× 16 → 8 × 8 → 4 × 4 → 2 × 2), and then
one binary split on scale and one binary split on tilt.
Modulo translation, this yields ten different cells, as
depicted in Table 1. The finest cells localize the face

Table 1. Modulo translation, there are ten different “pose
cells” in the hierarchy. Location, tilt and scale are defined in
the text in terms of the positions of the two eyes. The finest
cells are not very fine with respect to tilt and scale.

Location (in pixels) Tilt (in degrees) Scale (in pixels)

16× 16 −10–10 10–20

8× 8 −10–10 10–20

4× 4 −10–10 10–20

2× 2 −10–10 10–20

2× 2 −10–0 10–20

2× 2 0–10 10–20

2× 2 −10–0 10–14

2× 2 −10–0 15–20

2× 2 0–10 10–14

2× 2 0–10 15–20
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Figure 4. Random samples of training faces for each of three pose cells; they are synthetically generated from the original Olivetti database.
Top: Location restricted to 8× 8, all tilts and all (reference) scales; Middle: Location in 2× 2, right tilts, all scales; Bottom: Location in 2× 2,
right tilts, large scales (15–20).

within a 2× 2 block and correspond to either “small
scale” (10–14) or “big scale” (15–20), and to either “left
tilt” ([ −20◦, 0◦]) or “right tilt” ([0 ◦, 20◦]). Hence there
are 256 fine cells. They are not really very “fine” but
suffice to detect faces with a relatively small number
of false alarms.

In Fig. 4 we show a random sample of faces from
the training set for each of three pose cells: The top
group of faces have poses with location restricted to
an 8× 8 block, but no restrictions on tilt or scale; the
middle group all have location in 2× 2 block, right
tilt, and scale in the full range 10–20; and the bottom
group the same except that the scale is restricted to
15–20.

4. Performance Constraints

As indicated earlier, the scenario we envision (“visual
selection”) is that the algorithm should be constructed
to find all faces with very little computation, cer-
tainly well under one second for average-sized scenes.
Weeding out the false positives is to be accomplished
with more intensive but localized processing (or per-
haps manually in some medical, military and other
applications).

We can now be more precise about this formulation.
LetI denote a set of (sub)imagesI ={I (u, v), (u, v) ∈
G}, say all “natural images,” whereG is a reference
grid andI (u, v) is quantized in a standard way, say to
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256 grey levels. The images are partitioned into two
subsets, “face” and “background,” denotedIF andIB.
The face images contain a frontal view of a face with
pose in2, where the corresponding 16× 16 block is
centered inG. All other images are background, even
if there is a face at a pose outside2. Due to limiting
the distance between the eyes to 10–20 pixels, taking
G of dimension 64× 64 then accommodates all faces
at reference poses.

Let P denote a probability measure onI. We can
think of P as the empirical measure on 64×64 subim-
ages of all larger, natural images. ThenP induces two
conditional measures onI: P0(·) = P(·|IB), the distri-
bution on the background class, andP1(·) = P(·|IF ),
the distribution on the object class. Similarly, for any
subset3 ⊂ 2, we defineP3 to be the induced proba-
bility measure on faces with a pose in3.

A detector is a mapping f : I → {0, 1} where
f (I ) = 0 indicates “background” andf (I ) = 1 in-
dicates “face.” The false negative error off relative
to 3 is α( f ) = P3( f = 0); the overall false nega-
tive error isP1( f = 0) and the false positive error is
P0( f = 1). An invariant detectorhasα( f ) = 0.

In §8 we will define a random variable which is the
cost of a procedure used to evaluatef . The mean cost
with respect toP0 represents the average amount of
computation necessary to classify a background im-
age. The motivation for the expectation relative toP0 is
that P(IF )¿ P(IB); hence computational efficiency
is driven by the rate at which background images are
rejected as face candidates.

5. Summary of the Algorithm

There are really two algorithms—one for detection and
one for learning. What follows is a summary of each
one.

5.1. Detection

The detection algorithm has four nested loops. The
two outer loops focus attention on a subset of scales
and locations, namely a copy of2 determined by a
particular 64× 64 subimage at a particular resolution.
The two inner loops are the important ones and repre-
sent the coarse-to-fine search over refinements of the
pose and over the complexity of the features. The outer
loops are inherently parallel and the inner ones are
serial.

One part of the outer loops is over resolutions. We
downsample once (by averaging two-by-two blocks)
in order to detect faces at scales 20–40, twice to detect
scales 40–80, and thrice to detect scales 80–160. The
other part of the outer loop is over blocks. We parti-
tion the lattice intonon-overlapping16× 16 blocks,
and visit each one to determine if the image data in
the surrounding 64× 64 region supports the hypoth-
esis of a face located there. Thus, at every resolution
and in every block, we are only looking for faces at
a reference pose. Surely there is some redundancy in
separately analyzing the image data in each such re-
gion. For example, the basic local features are detected
first throughout the image and other elements of the
processing could be implemented more globally.

The two parts of the outer loop are depicted in
Fig. 5. The original image is on the left; it is downsam-
pled once in the middle and twice on the right. In each
case, the partition into non-overlapping 16×16 blocks
is indicated by the overlaid grid. From left to right, the
third (middle) face is too small to be detected; the first,
fourth and fifth faces are in the scale range 10–20 and
therefore we expect to detect them in the left image;
the second face is in the range 20–40 and we expect to
detect it in the middle image.

The heart of the detection algorithm, the inner loops,
is the search for a face in an image I∈ I with pose in
2. For each cell3 ∈ C, the learning routine (see below)
yields an invariant detectorf3. The final detector, call
it F : I → {0, 1}, depends only on the binary values
{ f3,3 ∈ C}: F(I ) = 1 if and only if there is a “chain
of ones”—a complete sequence of positive responses
among the{ f3,3 ∈ C} ranging from the coarsest cell
30,1 = 2 down to one of the finest cells. In other
words, there is a sequence{3m,lm,m= 0, . . . ,M}with
3m+1,lm+1 ⊂ 3m,lm such thatf3(I ) = 1 for each such
3 = 3m,lm.

However, we do not evaluate F(I ) by first computing
every f3(I ) and then checking for a chain of ones.
This would be highly inefficient. Instead, among all
sequential procedures for evaluatingF , we take the one
which minimizes the average amount of computation
under a certain model for the computational cost and the
joint probability distribution (underP0) of the random
variables{ f3,3 ∈ C}.

Finally, each detectorf3 embodies a coarse-to-fine
progression in feature complexity. The features are con-
junctions of disjunctions of edge fragments; the com-
plexity is the size of the conjunction. “Tests” of every
complexity k = 1, . . . , K must be verified in order
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Figure 5. The two parts of the outer loop are depicted above. The original image, on the left, is downsampled once (middle image) and twice
(right image). The scale of the smallest face is less than ten and hence this face is not detected. The next three in size are in the scale range 10–20
and should be detected in the left image and the biggest face should be detected in the middle image.

Figure 6. The functionZk(I ) is the number of conjunctions of size
k found in the imageI . Instances of clutter and faces are separated
by progressively checking for at leastt (k) conjunctions of sizek.
Many subimages can be immediately dismissed as object candi-
dates based on edge counts alone(Z1); more global confusions
require further examination involving increasingly structured edge
arrangements.

to continue processing. Thus, eachf3 has the form
of a right vine (Fig. 6) proceeding fromk= 1 down
to k= K , just as in checking for Napoleon. Verifying a
test of complexityk means finding at leastt (k)conjunc-
tions (decomposable arrangements) of sizek: see §6.

5.2. Learning

Whereas f3 is defined explicitly (in §6) in terms of
a P3-dependent family of random variables onI, the
actual construction is inductive, based on a sample of
training images of faces with a pose in3. Up to trans-
lation and reflection, there is one learning problem for

each cell3 in the decomposition of2. In other words,
if one cell can be shifted or reflected to another then
obviously we simply shift or reflect the tests. Thus,
with our decomposition (three times quaternary in lo-
cation and one time binary in scale and tilt), there are
seven separate learning problems; these are the cells in
Table 1 modulo reflection around the vertical axis.

The learning might be simplified by “scaling” the
tests dedicated to one cell in order to construct tests for
another cell with a different range of scales but other-
wise equivalent. We have not done this. In the limit, one
could train only at a reference pose and then attempt to
transform the tests to accommodate any given subset3

of poses. Despite the reduction in the amount of train-
ing, there are disadvantages. How does one transform
the tests so as to maintain both efficiency and discrim-
ination power? We have not explored the tradeoffs.

We induce features and estimate thresholds based on
the empirical measurêP3 generated by a training set
L3. By and large, training amounts to estimating the
probability distribution underP3 of image events, i.e.,
calculating relative frequencies inL3; these estimates
determine the components off3. The training setL3
is assumed to be a random sample fromI underP3.
An important constraint is that the size ofL3 would
not be sufficiently large to reliably estimate a number
of inter-dependentparameters of the same order as the
number we estimate.

6. Features

Throughout this section, we fix a pose cell3 ∈ C. A test
is a binary function onI. We will define a hierarchy of



92 Fleuret and Geman

tests, from simple and localized to more complex and
more spatially extended, whose statistics in the two
populationsIF andIB become increasingly disparate.
In §6.1 we define “elementary tests”Xi , which repre-
sent localized edge fragments and involve comparisons
of intensity differences; then, in §6.2, we consider con-
junctions

XA =
∏
i∈A

Xi

of elementary tests, which represent spatial arrange-
ments of edge fragments.

Defineδt (u) = 0 if u < t andδt (u) = 1 if u ≥ t .
The detectorf3 dedicated to3 is then:

f3 =
K (3)∏
k=1

δt

(∑
A∈A

XA

)
(1)

wheret = t (3, k) is a threshold andA=A(3, k) rep-
resents a distinguished family of conjunctions of size
k dedicated to poses in3. The particular conjunctions
A ∈ A are the “decomposable” ones mentioned ear-
lier. As we shall see, the difference in likelihood of the
events{XA = 1} on faces and general backgrounds
grows quickly withk= |A|. This property is pivotal
in reducing the sums to manageable size (order 100),
thereby “summarizing” a large disjunction of conjunc-
tions.

6.1. Elementary Tests

An elementary testis a local disjunction of local filters.
In our experiments the local filters detect edge frag-
ments; other, more sophisticated, filters might be more
effective. The edge filter we use is described in Amit
and Geman (1999) and additional details may be found
in Fleuret (2000). Briefly, the filter is applied at each
location inG, and has an direction (horizontal, verti-
cal, and two diagonals) and a contrast (positive or neg-
ative), yielding eight “types” denoted byξ = 1, . . . ,8.
For example, in the case of a horizontal edge “at”
(u, v), the absolute difference|I (u, v) − I (u, v + 1)|
is compared with a threshold, with the differences
|I (u, v)− I (u′, v′)| for the nearest neighbors(u′, v′) of
(u, v) and with the differences|I (u, v+1)− I (u′, v′)|
for the nearest neighbors(u′, v′) of (u, v + 1); it has
positive contrast ifI (u, v)> I (u, v + 1). The defini-
tions of the other filters are analogous.

The principal motivation for using comparisons of
intensity differences is to gain a measure of photomet-
ric invariance. One major difficulty in detecting faces

is the variation in the appearance of faces due to the
vagaries of lighting; see for example the discussion
in Ullman (1996). In order to diminish the variation,
methods such as those based on neural networks usu-
ally require preprocessing (Rowley, 1999), for instance
subtracting a linear component from the grey level map
followed by histogram equalization (Sung and Poggio,
1998), which can be costly. Instead, the information
we extract from the greylevels are comparisons of in-
tensity differences, which are invariant to linear trans-
formations of the greyscale. In Fig. 7 we show three
versions of a training face together with the detected
edges.

There is an one elementary testX= X(I ) for each
location(u, v), each filter typeξ and each “tolerance”
η = 1, 2, . . . ,10. ThenX= 1 if there is an edge of
type ξ at any location along a line of lengthη cen-
tered at(u, v) and orthogonal to the filter direction;
otherwiseX= 0. Thus, for example, in the case of a
positive, horizontal type at location(u, v) and toler-
anceη= 3, the testX= 1 if there is an horizontal edge
with positive contrast at at least one of the locations
{(u, v − 1), (u, v), (u, v + 1)}; see Fleuret (2000) for
more details.

The tolerance parameterη is crucial for achieving a
degree of invariance to small geometric deformations
of the intensity surface.It allows the elementary tests to
be adapted to the generality of the pose.The larger is3,
the more the edges need to “float” in order to capture a
reasonable percentage of object presentations. Specif-
ically, for each cell3, we only consider elementary
tests for which

P3(X= 1) ≥ 0.5. (2)

These probabilities are estimated fromL; in other
words we requireX(I )= 1 for at least fifty percent
of the training facesI with a pose in3. In addition,
we then suppress other elementary tests of the same
type and location with a tolerance larger thanη, which
necessarily also satisfy the constraint, thereby keeping
only the minimal tolerance achieving a fifty percent
incidence. Let{X1, X2, . . . , XN} denote the surviving
elementary tests, whereN= N(3).

6.2. Decomposable Tests

We refer to a subsetA⊂{1, . . . , N} as anarrange-
mentsince it determines a set of approximate locations
(and orientations) in the gridG corresponding to the
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Figure 7. Detected edges on a training face under three illuminations.

elementary testsXi , i ∈ A. Then XA= 1 if and only
if Xi = 1 for eachi ∈ A, a spatial conjunction of el-
ementary tests. Letsupp Xi ⊂G be the set ofη edge
locations which appear in the definition ofXi . In order
to limit the family of arrangements we shall assume that
supp Xi

⋂
supp Xj = ∅ wheneveri, j ∈ A andi 6= j .

We write |A| for the size ofA. The family {XA} is
our pool of features; the classifier will be constructed
from a subset of these—the decomposable ones—as
indicated in (1).

We want to find arrangementsA for which the statis-
tics of XA are as different as possible underP0 andP3.
Since estimation underP0 is problematic (see §10),
we will attempt to obtain the desired disparity by con-
structing arrangements which are large but still likely
underP3. Size alone renders them rare underP0. The
construction is based on correlation. Letρ(U,V) de-
note the correlation coefficient of random variablesU
and V with respect toP3. For binary variables with
0< P3(U = 1), P3(V = 1) < 1 we have

ρ(U,V)

= P3(U = 1,V = 1)− P3(U = 1)P3(V = 1)

(P3(U = 1)P3(U = 0)P3(V = 1)P3(V = 0))1/2
.

Consider arrangementsXi X j of size two. We could
filter all such pairs by requiring thatρ(Xi , X j )≥ ρ
for some threshold 0< ρ < 1. This yields pairs of
elementary tests which tend to occur (or not occur)
together on objects. Similarly,Xi X j Xk might be a good
candidate for a discriminating arrangement of size three
if, in addition,ρ(Xi X j , Xk) ≥ ρ. Continuing in this
way, we can single out arrangements of size four by
combining two “good” pairsXi X j andXk Xl and fur-
ther requiring thatρ(Xi X j , Xk Xl ) ≥ ρ. And so forth.

Define adecompositionof A to be any nested set
of binary partitions (i.e., successive binary refine-
ments) all the way down to individual elements of
{1, 2, . . . , N}. We shall also assume that a partition
element splits evenly if its size is even and splits into
two child elements whose sizes differ by exactly one
if its size is odd. Call it aρ-decompositionif the
correlation inequality holds at every split. In Fig. 8
we show one decomposition ofA={1, 2, 4, 5, 9}.
It is a ρ-decomposition ifρ(X1X4, X2X5X9)≥ ρ,
ρ(X1, X4) ≥ ρ, ρ(X5X9, X2) ≥ ρ andρ(X5, X9) ≥
ρ. Finally, an arrangementA, or the corresponding test
XA, will be calledρ-decomposableif there isat least
oneρ- decomposition ofA. Summarizing,
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Figure 8. A test isρ-decomposable if it can be broken down in at
least one way into positively correlated subarrangements.

Definition. A test XA is ρ-decomposable if it is an
elementary test or if there exist twoρ-decomposable
testsXB andXC with

• A= B ∪ C, B ∩ C = ∅
• ||B| − |C|| ≤ 1
• ρ(XB, XC) ≥ ρ

6.3. A Likelihood Bound

In generalP0(XA = 1) andP3(XA = 1) depend onA
and decrease as|A| increases. A reasonable assumption
for P0 is some type of exponential decrease, and indeed
this is what we observe empirically. On the other hand,
if XA is ρ-decomposable, we should expect a slower
rate of decrease underP3. This is certainly what we
observe experimentally; see Fig. 9. In fact, the rate of
decrease isρ log2 k. As a result, for “reasonable” values
of ρ, P3(XA = 1) À P0(XA = 1) for “large” A. We
cannot say anything precise about the likelihood ratio
since we do not propose a model forP0. But we can
give lower bounds onP3(XA = 1). LetA(3, k, ρ) de-
note the set of allρ-decomposable arrangements with
|A| = k.

Two bounds are easy to obtain. One is

P3(XA = 1) ≥
(

min
1≤i≤N

P3(Xi = 1)
)k

(3)

which results directly by iterating the basic inequal-
ity that defines decomposability. Another isP3(XA =
1) ≥ U (k), obtained numerically and recursively from

• U (0) = min1≤i≤N P3(Xi = 1)
• U (2k) = ρ ·U (k) · (1−U (k))+U (k)2

• U (2k + 1) = ρ · √U (k) · (1−U (k)) ·U (k+ 1)·√
(1−U (k+ 1))+U (k) ·U (k+ 1)

There is no analytic expression forU .
A closed-form bound which is larger (and hence

better) than the exponential bound is given below.
We will assume thatP3(XA= 1)≤ 0.5 for every
A ∈ A(3, k, ρ). This is implied byP3(Xi = 1)≤ 0.5,
which is the case in practice if we replace the value 0.5
in (2) by one slightly smaller because, due to the toler-
ance parameter, the probabilities in (2) cluster tightly
just above the threshold.

Theorem 1. For any k ≥ 1, ρ > 0 and A ∈
A(3, k, ρ),

P3(XA = 1) ≥ min
1≤i≤N

P3(Xi = 1) · ρ log2 k. (4)

In Fig. 9 we display the shape of these bounds as
well as the empirical behavior of tests. For eachk,
there are ten estimated values ofP3(XA = 1) for ten
tests XA randomly sampled from thousands learned
from training data; see §7. The estimates are relative
frequencies in training data. As can be seen, the bound
in (4) captures the actual rate of decrease fairly well.

6.4. Progression in Feature Complexity

As indicated earlier, we implementf3 as the series
of filters defined in (1) and depicted in Fig. 6. Each
filter is applied only when all simpler ones have re-
jected background. Since the overwhelming majority
of subimages examined are in fact background, very
few are investigated in detail. As seen in (1), the filter
of complexityk is

Z3,k(I ) =
∑

A∈A(3,k,ρ)
XA(I ),

the number ofρ-decomposable tests of sizek which
are positive onI .

For simplicity, we fixρ and suppress it from the
notation. In theory, the optimal value is the one which
minimizes the false positive rate off3 but we have not
performed any systematic exploration of the possible
values, or even considered allowingρ to depend on3.
In all experiments we takeρ = 0.1 for every pose cell.

The maximum size K and the thresholds
t (1), . . . , t (K ) are determined as follows. LetK be the
largestk which “covers” the object class in the sense
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Figure 9. The empirical behavior of randomly selected decomposable tests. The vertical axis is log-probability and the horizontal axis is
complexity(k). Left: Estimated probabilities on face and background subimages. Right: Three lower bounds: numericalU (++++), analytical
(4) (dashed line), exponential (3) (solid line).

thatP3(Z3,k≥ 1) = 1. (In our experience it never hap-
pens that arrangements of sizek cover but arrangements
of size j < k do not.) Given thresholdst (1), . . . , t (K ),
and according to (1), we classifyI as object if it con-
tains more thant (k) ρ- decomposable tests of sizek
for eachk= 1, . . . , K . The thresholdst (1), . . . , t (K )
are defined by

t (k) = max{ j : P3(Z3,k ≥ j ) = 1}. (5)

In other words, the thresholds are the maximum
values which preserve the hard constraint that
α( f3) = 0.

There are several practical obstacles to implement-
ing the detectorsf3 exactly as defined.

• We don’t haveA(3, k, ρ). This would require far
more precise information aboutP3 than can be
gleaned from any training set. Also, the family is too
large to enumerate. Instead we will estimate a fixed
number of decomposable tests of each size, basing
correlation estimates onL.
• The thresholds are difficult to estimate directly from
L without overfitting. In the following section we
shall indicate how this can be accomplished by syn-
thetically enlarging the training set. This also solves
the problem of having enough data to estimate cor-
relations for fine pose cells.
• If a subset of decomposable tests is selected based

on likelihood alone, the test locations will concen-
trate on certain regions of the object and be highly
redundant, as well as provide no protection against
occlusion. Consequently, for eachk, we force the

decomposable tests to “spread out” by restricting
the number of time seach original edge appears in
an arrangement.

7. Feature Learning

Assume3 is still fixed and letL3 be the set of training
images with pose in3. Most of the images inL3 are
obtained synthetically by transforming images in the
original training setL. Bearing this in mind, in order
to simplify the notation we shall simply writeL forL3
andA(k) forA(3, k, ρ), the set of allρ-decomposable
arrangements of sizek, as defined in §6.3. One goal
of learning is to estimate a subfamilyAL(k)⊂A(k)
of sizen for eachk ≤ K . The other learning task is to
estimate the thresholdst (1), . . . , t (K ).

Whereas the definition of a decomposable product
is top-down, the production of examples is bottom-
up. Correlations are estimated underP̂3, the empir-
ical measure derived fromL (L3). The construction
is recursive: First build a family{Xi X j }, then a fam-
ily {Xi X j Xk}, etc. In order to construct decomposable
products of size 2k we only need those of sizek, and
to construct those of size 2k+ 1 we only need those of
sizesk andk+ 1.

Eventually, we want tests{XA, A∈AL(k)}, k =
1, . . . , K , with various properties.

• First, they should “cover the population” in the sense
that, for every face image, at least one test of each
complexity is positive. In other words,t (k) ≥ 1 for
eachk = 1, . . . , K , wheret (k) is defined in (5). (Of
course the probability in (5) is estimated from̂P3.)
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• Second, they should be “spatially non-redundant,”
in the sense of having supports spread out over the
image plane. This does not occur naturally; indeed,
without some constraint, the locations of the tests
tend to accumulate on certain areas of the face.
• Third, there should be relatively few tests. Specif-

ically, the sums appearing in (1) should be of or-
der 100; otherwise, we lose computational efficiency.
Indeed, having a “small” number of decomposable
tests with the two properties above implies a large
degree of invariance.

For eachk we first generate a very large familyF(k)
of decomposable tests and then select a subsetF◦(k) ⊂
F(k) of sizeN by random sampling subject to the first
two constraints mentioned above. The final set,AL(k),
is a small subset ofF◦(k). This multi-step procedure is
how we generate a family which is sufficiently rich to
contain a smaller subfamily which has all the desired
properties.

Consider the even case. The large familyF(k) is the
set of all arrangementsA1

⋃
A2 where

• A1, A2 ∈ F◦(k);
• ρ̂(XA1, XA2) ≥ ρ;
• suppXA1

⋂
suppXA2 = ∅.

Here,suppXA = ∪i∈A suppXi . The process is initial-
ized withF◦(1), the family of distinguished elemen-
tary tests described in §6.1. If the covering condition
for the elementary tests fails, then we do not attempt
to build a classifier at the level of generality of3. For
instance, the covering condition fails if the location
of the face is allowed to roam over a 32× 32 block
(and scale and tilt are unrestricted). This is why we be-
gin at the16× 16 level. The process terminates when
it is impossible to satisfy the constraints. Generally,
N ¿ |F(k)| ¿ N2. The exact sampling procedure for
choosingF◦(k) ⊂ F(k) and thenAL(k) ⊂ F◦(k) is
described in (Fleuret, 2000).

The natural estimators of the thresholdst (1), . . .,
t (K ) are

t̂(k) = max

{
t : P̂3

( ∑
A∈AL(k)

XA ≥ t

)
= 1

}
,

k = 1, . . . , K .

Due to the synthetic deformations of the original train-
ing faces, these thresholds are actually very conserva-
tive and can be used in practice as defined.

Finally, by construction, the tests inAL are ρ-
decomposable with respect tôP3. Are they ρ-
decomposable with respect toP3? It appears that some
are not and some are at even a larger value ofρ. Let
ρ = 0.1; this is the value used in our experiments. Re-
call that each constructedA ∈ A(3, k) has aproposed
ρ0-decomposition. One can then use additional data to
verify this decomposition by re-estimating the correla-
tions. Further, one can determineρmax(A), the maximal
value ofρ for which the given decomposition ofA is a
ρ-decomposition. This value may be smaller or larger
thanρ0. Some results are reported in (Fleuret, 2000).
For example, in one typical experiment, the proposed
decompositions for about 95% of the arrangements are
valid at ρ >0, 80% atρ ≥ 0.1 (the target value) and
45% atρ ≥ 0.2. These estimates are conservative be-
cause the arrangements could decompose differently.

8. Sequential Testing

Recall that the exploration of poses is based on a se-
quence of nested partitions of2 corresponding to di-
visions on location, scale and tilt. We declare a face
with pose in2 if and only if we confirm at least one
decreasing sequence of pose cells arriving at a fine cell.
We use a tree-structured strategy for checking this con-
dition. Roughly speaking, the tests{ f3,3 ∈ C} are
performed adaptively in the order which would mini-
mize the mean amount of computation (under the back-
ground hypothesis) necessary to determineF under a
certain statistical model described in Appendix C. That
particular adaptive procedure, “the coarse-to-fine tree,”
is the topic of this section.

Let γ ( j ) denote the set of ancestors of the fine cell
3M, j , j = 1, . . . , L M :

γ ( j ) = {(m, l ) :3M, j ⊂ 3m,l }.

The detectorf3 corresponding to cell3 = 3m,l will
be denoted byfm,l . Then F(I ) = 1 if and only if I ∈ 0,
where

0 = {I ∈ I : ∃ j 3 ∀(m, l ) ∈ γ ( j ) fm,l (I ) = 1}. (6)

This characterizes F but does not describe an algo-
rithm for evaluating it.The particular algorithm for
checking the conditionI ∈ 0 is what we refer to as the
testing strategy and is described below.

Under very mild assumptions (see Appendix B),any
detector f based entirely on the filters{ f3,3 ∈ C}
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hasoverall false negative error zero (i.e., with respect
to P1= P2) if and only if f (I )= 1 for every I ∈0.
Consequently, among all such detectors, the smallest
false positive error is achieved byf = F .

We describe the testing strategy for a binary decom-
position of2 (Lm = 2m). The general case is the same
but the diagrams are messy. LetT be the family of
all labeled trees which evaluateF . EachT ∈ T is a
variable-depth binary tree with each internal node la-
beled by a test in{ fm,l } (the same test may appear more
than once) and each external node (leaf) is labeled ei-
ther “0” or “1”. The left (respectively, right) branch
emanating from an internal node labeled byfm,l indi-
catesfm,l = 0 (resp.,fm,l = 1).

Overloading the symbolT , we will also write
T(I ) for the corresponding detector:T(I )= 0 (resp.
T(I )= 1) if sending I down the tree leads to a “0”
(resp. “1”) leaf.In order to represent F, T(I )= 1 if
and only if I∈0. This means that a leaft is labeled
“1” if and only if, for some j = 1, . . . , L M , the history
of tests along the branch fromt to the root contains the
event{ fm,l = 1 ∀(m, l ) ∈ γ ( j )}. See Fig. 10. Equiv-
alently, a leaft is labeled “0” if and only if there is a
covering partition of “0” tests, i.e., the leaf history con-
tains an event of the form{ fmr ,lr = 0, r = 1, . . . , R}
where∪r3mr ,lr = 2.

Of the many trees inT , the least efficient simply
performs all the tests in some fixed order along ev-
ery branch and therefore has depth uniformly equal
to
∑M

m=0 Lm. Another procedure is the “depth-first,
coarse-to-fine” treeT∗. It is depicted in Figs. 11
and 12 for the two casesM = 1 andM = 2, and can
be defined recursively, as indicated in Fig. 13. It is
unique up to a permutation of the testing order within
each layer, which has no significance.The tree T∗ is the

Figure 10. A binary decomposition of pose space and a “chain of
ones” indicated in grey.

Figure 11. The coarse-to-fine treeT∗ for M = 1.

representation of the detector used by the algorithm.It
is efficient because no finer test (along a chain) is ever
performed before all coarser ones have failed to elim-
inate a candidate subimage, and the testing is stopped
whenF is determined. Notice that the visitation of cells
is not strictly coarse-to-fine along every branch of the
tree, i.e., there is “backtracking” up the pose hierarchy.

In Appendix C we present a model for the statistical
distribution of the tests{ f3,3 ∈ C}with respect toP0,
as well as their cost structure. LetH denote this set of
hypotheses and letE0C(T) denote the expected cost
of T ∈ T underP0 (see Appendix C). Then

Theorem 2. UnderH, the coarse-to-fine tree mini-
mizes computation:

E0C(T∗) = min
T∈T

E0C(T).

Notes: i) In an earlier version of this paper, this result
was stated as a “conjecture.” It has since been proven
in collaboration with Franck Jung. The proof, which is
rather complex, will appear elsewhere.
ii) In processing real scenes, the algorithm based on
T∗ is in fact considerably faster than various alterna-
tives, such going straight to the fine cells, in which case
the processing image corresponding to Fig. 1 is much
flatter (Fleuret, 2000).

9. Experiments in Face Detection

We have extracted 300 images from the Olivetti
database of faces, corresponding to ten different frontal
views of each of 30 individuals; this isL. On each im-
age, we have marked the locations of the eyes. This
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Figure 12. The coarse-to-fine treeT∗ for M = 2.

Figure 13. Recursive definition ofT∗.

determines our three pose parameters—position, scale
and tilt. The decomposition of2 into pose cells was
described in §3. To generateL3, i.e., training faces
with a pose confined to3, we cannot simply use an
appropriate subset ofL since there will not be enough
data for “small” cells. This is due to a limited sample

of scales and tilts (we can always translate to any de-
sired location). To overcome this, we synthesize a set
L3 of size 1200: For eachI ∈ L we select four poses
from 3 at random (uniformly in position, scale, tilt)
and then scale and rotateI to acquire each of these
poses.
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Figure 14. A random sample of learned decomposable arrangements of size eight. The shading indicates the amount of flexibility in the edge
location.

9.1. Learned Arrangements

Randomly chosen examples of learned arrangements
of size eight are shown in Fig. 14. The grey regions
indicate the amount of disjunction in elementary tests.
These arrangements are typical of the thousands in-
ferred fromL. Generally, they utilize elementary tests
based on edges in the region of the eyes, the mouth and
the contours of the face.

One measure of the discriminating power of the tests
was illustrated in Figs. 9. Whereas we can build ar-
rangements up to size 35, the maximum sizeK (3)
in the final detector is closer to 10 due to the cover-
ing criterion. We randomly sampled ten tests for each
k = 1, . . . ,35 and estimated the probability of a posi-
tive response given face (based onL) and given back-
ground (based on randomly selected locations in natu-
ral scenes).

Figure 15 shows the estimated distributions ofZ3,k
underP0 andP3 for k= 5 andk= 8. The possible val-
ues of Z3,k are {0, 1, . . . ,100} since|A3,k| ≡ 100.
Finally, Fig. 16 depicts an estimate of the function

k→ P0(Z1≥ t (1), . . . , Zk≥ t (k)), the rate at which
false positive error decreases with test complexity,
shown as a solid line. The “+”s refer to the individ-
ual statisticsP0(Zk≥ t (k)). The estimates are based on
a large number of non-face images found on the WWW.

9.2. Processing Scenes

The search for a face at a reference pose terminates as
soon as a chain of ones is found. Consequently, there
is exactly one fine cell associated with each detection.
However, given a face is present, the fine cell which is
identified may be due to clutter in the vicinity of the
face, and hence the precision of the detection is only
reliable at the level of the coarsest cell. Still, the in-
formation in the fine cell is nearly always a very good
guess at the pose. In our experiments, the coarsest cell
restricts location to a 16× 16 block; there is no re-
striction on tilt and no restriction on scale within the
reference range, which means detecting scale in one
of the ranges 10–20, 20–40, etc. The number of false



100 Fleuret and Geman

Figure 15. Estimated distributions ofZ5 (left) andZ8 (right) on faces and background samples.

Figure 16. The rate of decrease in false alarms with text complexity.

Figure 17. The number of alarms (detections) as a function of the depthm of focusing in pose space. The value corresponding tom is the
number of blocks surviving past the them’th partition.

positives is then the number of these coarse cells which
are detected at some resolution and which do not con-
tain a face.

We have tested the algorithm on several scenes col-
lected from the WWW and from the set “C” of im-
ages collected at Carnegie Mellon University by H.A.
Rowley et al. (Rowley et al., 1998). One result appears
in Fig. 3. The scene is 450×380. The three faces which
are about half-visible are missed. In Fig. 17 we indicate
the rate at which the number of alarms decreases dur-
ing the focusing in pose, i.e., with the number of splits
on the coarse cell. The value 714 in the righthand panel
is the total number of 16×16 blocks in the image at all
resolutions. Other results are shown in Figs. 18 and 19.
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Figure 18. Additional results.

Measuring the amount of computation is not entirely
straightforward. It depends on the scene, the computer,
the source code and perhaps other factors. With a PC
Pentium II (450 MHz), it takes about one-half second
to process the scene in Fig. 2; this is an average over
100 runs. Most of this time is spent on extracting the
elementary tests; computing the detectorF (at all res-
olutions) requires only about one-tenth of a second.
Clearly, more efficient preprocessing would help.

9.3. Improvements

One fundamental limitation is that false detections
often occur in areas of very high edge activity, as in fo-
liage or fine textures. Indeed, nothing changes if edges
are added to the vicinity of a region already labeled as
a face. In order to remedy this flaw, we have done some
preliminary experiments with “negative tests.” We
use exactly the same learning protocol and detection
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Figure 19. Additional results.

algorithm, except that we add elementary tests whose
response is positive when the local filter response is
negative everywhere in a strip orthogonal to the edge
direction. We have also experimented with a finer pose

decomposition, for instance splitting more than once
on scale or tilt, and with more general notions of pose
(see §3). Preliminary results are promising and suggest
that many of the false positives can be eliminated.
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9.4. Comparisons

It can be hazardous to compare the performance of one
method with that of another. Still, due to the compre-
hensive analysis in Rowley (1999) of publicly available
images and to our familiarity with Amit and Geman
(1999), a few general statements appear evident. First,
our false negative rate is smaller; a 15% rate is re-
ported in Rowley (1999) for an ensemble of images,
and other authors (e.g., (Miao et al., 1999)) obtain sim-
ilar rates. This is consistent with our formulation of
the visual selection problem. Second, there seem to be
fewer false alarms in Rowley (1999). This statement is
based on processing some of the same scenes as those
analyzed in these references. It should be noted that no
reported algorithm detects nearly all faces and nothing
else. Our algorithm is faster than the one in Amit and
Geman (1999) and much faster than the one in Rowley
(1999), which requires 140s to process the scene in
Fig. 2 (with the PC mentioned earlier) and about 2s
with a two-step, coarse-to-fine process for which the
ensemble false negative rate climbs to 26%.

There are other measures of efficiency. The algo-
rithm in Amit and Geman (1999) is perhaps the sim-
plest: The object representation is very compact and
training only occurs at a reference pose, requiring only
a few minutes as opposed to about an hour here and
much longer in Rowley (1999). Our face training set
is the same as in Amit and Geman (1999) and smaller
than in Rowley et al. (1998), Sung and Poggio (1998).
Finally, we often localize with less precision than some
other algorithms. We could do better with more compu-
tation, for example by not terminating the search upon
the first positive chain of responses; obviously there are
many tradeoffs of this nature.

10. Discussion

We have argued that a good start on solving vision
problems might be to think about computation, and
this leads naturally to coarse-to-fine processing in sev-
eral senses, including feature complexity and the search
over nuisance parameters. Start with the simplest and
most common properties over presentations, almost
regardless of discriminating power; rejecting even a
small percentage of background instances with cheap
and universal tests is efficient. Then proceed to more
complex and/or more dedicated properties, reserv-
ing any computationally intensive search for the very
special confusions—those inevitable and diabolical

arrangements of clutter which “look” like objects in
the eyes of the features. Also, design the search to ac-
count for the fact that detecting an object at any given
pose, or even localized set of poses, is an extremely rare
event. We have illustrated these ideas with experiments
on detecting frontal views of faces over a limited range
of tilts and a large range of scales. Although there are
certainly false alarms, the algorithm is fast and unlikely
to miss a face.

This type of reasoning does not seem to drive the con-
struction of very many vision algorithms, at least not in
academic research. Instead, computation is usually an
afterthought; for example, one seeks ways to speed up
an algorithm originally motivated by other principles
(deforming templates, the world is 3D, vision is com-
positional, inference should be Bayesian, etc.). Some
notable exceptions include work on hashing (Lamdan
et al., 1988), Hough transforms (Rojer and Schwartz,
1992; Amit and Geman, 1999; Amit, 1999), and tree-
structured search (Grimson, 1990), all of which have
influenced our thinking.

Our treatment of features is statistical and inductive.
We build a degree of invariance into elementary, binary
features and then learn those conjunctions which are
likely on object instances rather than having any other
a priori distinguished property. The idea is to make the
conjunctions “decomposable” relative to the statistics
of the object class. The induction process does not uti-
lize a background model (such as the minimax entropy
model proposed in Zhu et al. (1997)) or samples of
backgrounds and confusions (as in Sung and Poggio
(1998) and Rowley et al. (1998)), both of which might
improve discrimination.

We have not appealed to general theories for hypoth-
esis testing (for instance likelihood ratio tests based on
models forP0 and P1) or for inductive learning (for
instance structural risk minimization (Vapnik, 1996))
or feedforward classifiers ((Baum and Haussler, 1989;
Devroye et al., 1995). Instead, the global form of the
detector is dedicated to the visual selection problem;
also, each estimated parameter has an explicit interpre-
tation (correlation or quantile) and is decoupled from
the others, which renders training feasible without a
large database. The generic component of the learning
is the concept of a decomposable arrangement, which
might be of interest in other domains; see Fleuret (2000)
for some remarks about natural language and cortical
function.

How would this approach extend to detecting a truly
three-dimensional object, or a more complex one (e.g.,
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a cat) or to detecting many objects simultaneously?
We don’t know. Obviously there are more degrees of
freedom in imaging a 3D or highly deformable ob-
ject. But divide-and-conquer is a very powerful strat-
egy, and can certainly be pushed a good deal further.
Even in searching for a cat, perhaps enough efficiency
can overcome the combinatorics—the sheer number
of presentations and cat-like things—and more gen-
eral pose hierarchies could be generated automatically
based on feature counts. Compared with faces, many
more confusions might be kept around for many more
steps, and eliminating all of them might require on-
line optimization and contextual analysis. However,
since this would only occur in few places, detection
would remain computationally efficient. As for detect-
ing multiple objects, perhaps the key issue, at least in
our framework, is “reusable parts”—representing dif-
ferent objects with the same arrangements whenever
possible. For example, one might build a detector for a
“new” object at some subset of poses from the detectors
already built for other objects in various subsets.

Finally, in defense of limited goals, nobody has yet
demonstrated that objects from even one generic class
under constrained poses can be rapidly detected with-
out errors in complex, natural scenes; visual selection
by humans occurs within two hundred milleseconds
and is virtually perfect.

Appendix A: Proof of Theorem 1

Recall that the bound in question isP3(XA= 1)≥
min1≤i≤N P3(Xi = 1) · ρ log2 k. The result is evident
for k= 1. Let ξ = min1≤ i ≤ N P3(Xi = 1) and let
A(k)=A(3, k). Suppose (4) is true for allk≤ n.
Then for anyi, j ≤ n with i ≤ j ≤ i + 1 and for any
B ∈ A(i ), C ∈ A( j ) with B∪C ∈A(i + j ), we have

P3(XB∪C = 1)

≥ ρ ·
√

P3(XB = 1) · P3(XB = 0) · P3(XC = 1) · P3(XC = 0)

+ P3(XB = 1) · P3(XC = 1)

Defineα = log2 i andβ = log2 j . SinceP3(XB =
1) ≤ 1

2 and P3(XC = 1) ≤ 1
2, andx 7→ x(1− x) is

increasing on [0, 1
2]:

P3(XB∪C = 1)

≥ ρ ·
√
ξ · ρα(1− ξ · ρα) · ξ · ρβ(1− ξ · ρβ)

+ ξ · ρα · ξ · ρβ

≥ ξ · ρ α+β
2 +1 ·

√
(1− ξ · ρα) · (1− ξ · ρβ)

+ ξ2 · ρα+β

Sinceβ ≥ α, we have 1−ξρβ ≥ 1−ξρα and hence:

P3(XB∪C = 1)

≥ ξ · ρ α+β
2 +1 ·

√
(1− ξ · ρα) · (1− ξ · ρα)

+ ξ2 · ρα+β
≥ ξ · ρ α+β

2 +1 · (1− ξ · ρα)+ ξ2 · ρα+β
= ξ · ρ α+β

2 +1 ·
(
1− ξ · ρα + ξ · ρ α+β

2 −1
)

≥ ξ · ρ α+β
2 +1 ·

(
1+ ξ ·

(
ρ

α+β
2 −1− ρα

))
Now i ≥ 1, j ≤ i + 1 implies j ≤ 4i and hence

log2 j ≤ log2 i + 2. It follows that β ≤α + 2 and

ρ
α+β

2 −1 ≥ ρα. As a result,

P3(XB∪C = 1) ≥ ξ · ρ α+β
2 +1

By the concavity ofu→ log2 u:

log2 i + log2 j

2
+1≤ log2

(
i + j

2

)
+1≤ log2(i+ j ),

and therefore

P3(XB∪C = 1) ≥ ξ · ρ log2(i+ j )

To conclude the proof, if (4) is true for everyk< n,
and if A∈A(n+ 1), then if n+ 1 is even (respec-
tively, odd),∃B∈A(n+ 1

2 ), C ∈ A( n+1
2 ) (respectively,

∃B∈A( n
2), C ∈A( n

2 + 1)), with A= B∪C and
ρ(B,C)≥ ρ. Hence,P3(XA= 1)= P3(XB∪C = 1)≥
ξ · ρ log2(n+1).

Appendix B: Error Rates

We justify the statement that our detectorF minimizes
the false positive error rate among all false negative
zero detectors. To simplify matters, let us suppose that
P(I )>0 for everyI ∈ I; it follows that P3(I )>0 for
every I ∈ I3, the set of images containing an object
with pose in3. Let f : I −→ {0, 1} be any detector
and recall thatα( f ) is the false negative errorP3( f =
0). Thenα( f )= 0 if and only if IF ⊂ { f = 1}. In
particular, the condition0 ⊂ { f = 1} impliesα( f ) =
0 becauseI ∈ 3′ ⊂ 3 implies that f3(I ) = 1 (since
f3 is an invariant test for3) and henceIF ⊂ 0.
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Supposef depends onI only through the family
of tests{ fm,l (I )}. Suppose further that every possible
set of test values{ fm,l (I )} ∈ {0, 1}6Lm consistent with
I ∈0 is realized by some object imageI ∈ IF . Then the
condition0 ⊂ { f = 1} is also necessary forα( f ) = 0.
In other words,f has zero false negative error if and
only if f (I )= 1∀I ∈ 0. Consequently, the smallest
false positive error is achieved by settingf (I ) = 1 if
and only if I ∈0, i.e., choosingf = F .

Appendix C: Mean Computation

Consider first detecting a target, represented by asingle
conjunction of attributes, versus a background hypoth-
esis which is a priori far more likely. For example, we
must separate Napoleon from all other prominent his-
torical figures. Let f0, . . . , fM be the binary random
variables corresponding to the attributes; thus the tar-
get is represented by

∏
m{ fm= 1}. We test sequentially.

Background is declared upon the first negative test
and hence all the tests are eventually performed when
the target is present. This procedure is represented
by the labeled vineV in Fig. 20 whereim is the in-
dex of the test performed at stepm+ 1.

Clearly all such procedures have no false nega-
tive error and the minimum possible false positive
error based on the given attributes. We therefore seek
the least expensiveV in terms of mean computation.
Since the background hypothesis is assumed dominant,
the mean is computed relative toP0. Suppose the tests

Figure 20. The vineV ′ is a rearrangement ofV which has lower cost ifin+1 < in.

are independent underP0, with

P0( fm = 0) = βm, m= 0, . . . ,M.

Thus 1− βm the incidence in the background popu-
lation. We can suppose (by relabeling the attributes)
that

0< β0 ≤ β1 ≤ · · · ≤ βM < 1. (7)

Letc0, . . . , cM denote the costs. The cost ofV , denoted
C(V), is the sum of the costs of the tests performed
before reaching a terminal node, and hence a random
variable. The mean cost can be computed by summing,
over all internal nodest of V , the cost of the test att
times the probability of reachingt , yielding:

E0(C(V)) = ci0 +
M∑

m=1

cim

m−1∏
l=1

(1− βi l ).

If cm≡ 1, the mean cost is simply the average num-
ber of tests performed. The best procedure is then
im=M −m, which proceeds from rare to common.
In this case the false positive error is clearly

∏M
m=0(1−

βm). Notice that under the independence assumption, a
background instance can land in the all “1” leaf of the
vine.

However, equal costs is not realistic. General tests
(common attributes) should be inexpensive to test
whereas dedicated tests (rare attributes) should be
costly. For instance, if the cost behaves like an (ap-
proximate) code length, thencm ≈ − log2(1 − βm).
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Suppose, in fact, we assume thatcm = 8(βm), where

8 : [0, 1]→ [0, 1], 8(0) = 0,

and8 is strictly increasing and convex.

Proposition. Under the above cost structure, the best
strategy for detecting a single conjunction of attributes
is im = m, which is coarse-to-fine in likelihood.

Example. The best procedure to check for Napoleon
is thendeceased?→ general?→ Corsican?

Proof: Let V denote the vine in Fig. 20. SupposeV
is optimal but thatim 6= m for somem. Theni n+1 < i n

for somen. The mean cost ofV is

E0(C(V)) = ci0 +
n−1∑
m=1

cim

m−1∏
l=1

(
1− βi l

)
+ cin

((
1− βi1

) · · · (1− βin−1

))
+ cin+1

((
1− βi1

) · · · (1− βin

))
+

M∑
m=n+2

cim

m−1∏
l=1

(
1− βi l

)
Let V ′ be the same vine asV , but with the positions of
fin and fin+1 reversed, as in Fig. 20. The mean cost of
V ′ has a similar expression, with the same first and last
terms, but with the middle terms replaced by

cin+1

((
1− βi1

) · · · (1− βin−1

))
+ cin

((
1− βi1

) · · · (1− βin−1

)(
1− βin+1

))
.

Therefore

E0(C(V))− E0(C(V
′))

= cin

((
1− βi1

) · · · (1− βin−1

))
+ cin+1

((
1− βi1

) · · · (1− βin

))
− cin+1

((
1− βi1

) · · · (1− βin−1

))
− cin

((
1− βi1

) · · · (1− βin−1

)(
1− βin+1

))
= (

cinβin+1 − cin+1βin

) n−1∏
l=1

(
1− βi l

)
> 0.

The last inequality results from convexity and contra-
dicts optimality. Henceim = m for all m. 2

Finally, consider a corresponding model for adis-
junction of conjunctions, and the corresponding opti-
mality of T∗ among all binary trees inT which rep-
resent f . As for the cost structure, forT ∈ T , let Bt

denote the event of reaching nodet . The costC(T) of
T ∈ T is

C(T) =
∑

t

I Bt Ct

where the sum is over all leaves ofT andCt is the sum
of the costs along the branch from the root tot . The
mean cost is

E0(C(T)) =
∑

t

P0(Bt )Ct =
∑

s

P0(Bs)cms

where the second sum is over allinternal nodes ofT
and the test at nodes is (ms, ls).

The hypothesesH in Theorem 2 refer to the follow-
ing three assumptions:

• The tests are conditionally independent underP0.
• The distribution of fm,l depends only onm, with
βm = P0( fm,l = 0) and the ordering in (7).
• The cost of fm,l depends only onm, with cm =
8(βm) and8 as above.

Notice that (7) is now a genuine assumption.
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