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Learning Multivariate Distributions
by Competitive Assembly of Marginals
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Abstract—We present a new framework for learning high-dimensional multivariate probability distributions from estimated
marginals. The approach is motivated by compositional models and Bayesian networks, and designed to adapt to small sample
sizes. We start with a large, overlapping set of elementary statistical building blocks, or “primitives”, which are low-dimensional
marginal distributions learned from data. Each variable may appear in many primitives. Subsets of primitives are combined in
a lego-like fashion to construct a probabilistic graphical model; only a small fraction of the primitives will participate in any valid
construction. Since primitives can be precomputed, parameter estimation and structure search are separated. Model complexity
is controlled by strong biases; we adapt the primitives to the amount of training data and impose rules which restrict the merging
of them into allowable compositions. The likelihood of the data decomposes into a sum of local gains, one for each primitive in the
final structure. We focus on a specific subclass of networks which are binary forests. Structure optimization corresponds to an
integer linear program and the maximizing composition can be computed for reasonably large numbers of variables. Performance
is evaluated using both synthetic data and real datasets from natural language processing and computational biology.

Index Terms—graphs and networks, statistical models, machine learning, linear programming

�

1 INTRODUCTION

PROBABILISTIC graphical models provide a po-
werful tool for discovering and representing the

statistical dependency structure of a family of random
variables. Generally, these models exploit the duality
between conditional independence and separation in
a graph in order to describe relatively complex joint
distributions using a relatively small number of para-
meters. In particular, such graded models are poten-
tially well-adapted to small-sample learning, where
the bias-variance trade-off makes it necessary to invest
in model parameters with the utmost care. Learning
models with a very reduced number of samples is
no more difficult than with a great many. However,
arranging for such models to generalize well to un-
seen sets of observations, i.e., preventing them from
overfitting the training data, remains an open and
active area of research in the small-sample domain.

The introduction of carefully chosen topological
biases, ideally consistent with prior domain know-
ledge, can help to guide learning and avoid model
overfitting. In practice, this can be accomplished by
accepting a restricted set of graph structures as well as
by constraining the parameter space to only encode a
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restricted set of dependence statements. In either case,
we are talking about the design of a model class in
anticipation of efficient learning.

Our model-building strategy is “compositional” in
the sense of a lego-like assembly. We begin with a set
of “primitives” — a large pool of low-dimensional,
candidate distributions. Each variable may appear in
many primitives and only a small fraction of the
primitives will participate in any allowable construc-
tion. A primitive designates some of its variables as
input (α variables) and others as output (ω variables).
Primitives can be recursively merged into larger dis-
tributions by matching inputs with outputs: in each
merge, one primitive is designated the “connector”,
and the other primitives’ α variables must match a
subset of the connector’s ω variables. Matched vari-
ables lose their α and ω designations in the result.
The new distribution over the union of variables is
motivated by Bayesian networks, being the product of
the connector’s distribution with the other primitives’
distributions conditioned on their α nodes. In fact,
each valid construction is uniquely identified with a
directed acyclic graph over primitives.

The process is illustrated in Fig. 1 for a set of
fourteen simple primitives over twelve variables. This
figure shows an example of a valid construction with
two connected components using six of the primitives.
The form of the corresponding twelve-dimensional
probability distribution will be explained in the text.
Evidently, many other compositions are possible.

We seek the composition which maximizes the like-
lihood of the data with respect to the empirical distri-
bution over the training set. Due to the assembly pro-
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Fig. 1. Simple example of primitives and assemblies.

cess, the global “score” (i.e., expected log-likelihood)
of any valid composition decomposes into a sum of
local scores, one for each participating primitive; these
scores are themselves likelihood ratios corresponding
to the gain incurred in fusing the individual variables
into the primitive distribution relative to indepen-
dent variables. This decomposition has several con-
sequences. First, all scores can be precomputed; con-
sequently, parameter estimation (building primitives)
and model construction (competitive assembly) are
separated. That is, once the primitives are learned the
process is data-independent. Second, in many cases,
searching over all decompositions for valid composi-
tions can be done by integer linear programming.

The primary intended application is molecular net-
work modeling in systems biology, where it is com-
mon to encounter a complex underlying dependency
structure among a large number of variables and yet
a very small number of samples, at least relative to
other fields such as vision and language. DNA mi-
croarrays provide simultaneous snap-shot measure-
ments of the levels of expression of thousands of
genes inside cells [1], [2], [3]. However, the number of
profile measurements per experimental study remains
quite small, usually fewer than a few hundreds. Simi-
larly, advances in genotyping microarrays currently
make it possible to simultaneously detect single nu-
cleotide polymorphisms (SNPs) over millions of loci
practically covering the entire genome of an organism,
while the number of individuals in any given study
remains orders of magnitude smaller [4], [5], [6].
Thus, any attempt to infer generalizable multivariate
distributions from these data, in particular correla-
tion patterns or even higher-dimensional interactions,
must deal with well-known trade-offs in computa-
tional learning theory between sample size and model
complexity [7], and between bias and variance [8].

Our proposals for model-building and complexity
control are illustrated with both synthetic and real
data. In the former case, experiments include measur-
ing the KL divergence between the optimal composi-
tion and the true distribution as a function of the sam-
ple size and the number of variables. We compare our
graphs with several well-known methods for “reverse

engineering” networks, including relevance networks
[9], ARACNE [10], CLR [11], which infer graphs from
data, and the K2 algorithm [12] for learning Bayesian
networks. We present two real-data experiments. One
is based on inferring a semantic network from text.
The other involves learning dependencies among mu-
tations of the gene TP53, which plays a central role
in cancer genomics. The substructures in the opti-
mal composition appear biologically reasonable in
the sense of aggregating driver mutations and being
significantly enriched for certain cell functions. Still,
we view our main contribution as methodological,
these experiments being largely illustrative.

After discussing related work in Section 2, we will
present the general theoretical framework for our
models in Section 3, followed by specialization to a
specific subclass based on balanced binary trees. In
Section 4, we will discuss the choice of a statistically
significant set of primitives. These primitives are com-
bined to build the graph structure that maximizes
the empirical likelihood of the observed data under
a given set of topological constraints. In Section 5
we will show how the corresponding optimization
problem can be dealt with using either greedy search
or a more efficient integer linear programming formu-
lation. Section 6 discusses the relationship of the fore-
going approach to maximum a posteriori estimation of
graphical model structure and parameters. After this,
Section 7 presents some results from synthetic data
simulations. In Section 8 we will look at further results
obtained using the 20newsgroups public dataset and
the IARC TP53 Database. Finally, we will provide a
general discussion and we will sketch some directions
for future research.

2 RELATED WORK
Historically, the problem of finding an optimum
approximation to a discrete joint probability distribu-
tion has been addressed in the literature during the
last half century [13]. A seminal paper published by
Chow and Liu in the late sixties already proposed the
use of information theoretic measures to assess the
goodness of the approximation and formulated the
structure search as an optimization problem over a
weighted graph [14]. Improvements to the original al-
gorithm [15] as well as extensions beyond the original
pairwise approach [16] have been proposed. Recently,
the popularity of Bayesian networks combined with
the need to face small-sample scenarios have led to
several works where structural biases are imposed
upon the graphs used to approximate the target dis-
tribution in order to facilitate learning. Bounded tree-
width is an example of such structural constraints.
Even though the initial motivation for this approach
was to allow for efficient inference [17], [18], [19], there
has been work on efficient structure learning [20] and
work that uses this kind of bias to avoid model over-
fitting [21]. Other examples of structural bias aimed
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at achieving better generalization properties are the
use of L1 regularization to keep the number of edges
in the network under control [22], and constraints
provided by experts [23]. We will discuss in Section 6
how our method is related to these prior approaches.

Compositional representations of entities as hierar-
chies of elementary, reusable parts that are combined
to form a larger whole constitute an active topic of
research in computer vision. Such modeling frame-
works are usually built upon a set of composition
rules, based on parts and combinations of parts, that
progressively define the likelihood of images given
the presence of an object at a given pose [24], [25].
A very simple composition rule, based on each part
voting for the presence of a relevant object around its
location, under the assumption of complex poses, has
been proposed in [26]. The hierarchical structures in-
duced by this kind of aggregation procedures provide
a convenient tool for hardwiring high-level contextual
constraints into the models [27], [28], [29], [30].

Dependency networks, which were proposed in
[31] as an alternative to standard Bayesian networks,
also provide an interesting example of compositional
modeling, since they are built by first learning a set
of small graph substructures with their corresponding
local conditional probabilities. These “parts” are later
combined to define a single joint distribution using
the machinery of Gibbs sampling. In any case, the idea
of combining compositional modeling and Bayesian
networks dates back to the nineties, with the multi-
ply sectioned Bayesian networks (MSBNs) from [32]
and the object-oriented Bayesian networks (OOBNs)
from [33]. Both approaches, as our work, provide
ways to combine a number of elementary Bayesian
networks in order to construct a larger model. The
final structure can be seen as a hypergraph where
hypernodes correspond to those elementary building
blocks and hyperlinks are used to represent relations
of statistical dependence among them. Hyperlinks are
typically associated to so-called “interfaces” between
the blocks, which correspond to non-empty pairwise
intersections of some of their constituting elements.
Even though the actual definition of interface may
vary, it usually involves a notion of d-separation of
nodes at both of its sides within the network. Later on,
the use of a relational structure to guide the learning
process [34] and the introduction of structured data
types based on hierarchical aggregations [35] (antici-
pated in [33]) led to novel families of models.

All of the above approaches must confront the
structure search problem. That is, given a criterion
for scoring graphical models of some kind over the
observed variables, how do we computationally find
the single highest-scoring graph, either exactly or
approximately? Structure search is itself an approxi-
mation to Bayesian model averaging as in [36], but
it is widely used because it has the computational
advantage of being a combinatorial optimization pro-

blem. In the case of Bayesian networks, Spirtes et
al. [37, chapter 5] give a good review of earlier
techniques, while Jaakkola et al. [38] review more
recent alternatives including exact ones. Like many
of these techniques (but unlike the module network
search procedure in [39]), ours can be regarded as
first selecting and scoring a set of plausible building
blocks and only then seeking the structure with the
best total score [23]. We formalize this latter search as
a problem of integer linear programming (ILP), much
as in [38], even if our building blocks have, in general,
more internal structure. However, in the particular
case that we will present in this paper, we search
over more restricted assemblies of building blocks,
corresponding to trees (generalizing [14]) rather than
DAGs. Thus, our ILP formulation owes more to recent
work on finding optimal trees, e.g., non-projective
syntax trees in computational linguistics [40].

3 COMPETITIVE ASSEMBLY OF MARGINALS

In this section, we formulate structure search as a
combinatorial optimization problem — Competitive
Assembly of Marginals (CAM) — that is separated from
parameter estimation. The family of models that we
will consider is partially motivated by this search
problem. We also present a specific subclass of model
structures based on balanced binary forests.

3.1 General Construction
Our objective is to define a class of multivariate
distributions for a family of random variables X =
(Xi, i ∈ D) for D = {1, . . . , d}, where Xi takes values
in a finite set Λ. For simplicity, we will assume that
all the Xi have the same domain, although in practice
each Xi could have a different domain Λi. We shall
refer to the elements of ΛD as configurations.

First we mention the possibility of global, structural
constraints: for each S ⊂ D, we are given a class MS

of “admissible” probability distributions over the set
of subconfigurations ΛS (or over S, with some abuse).
Our construction below will impose MS as a cons-
traint on all joint distributions that we build over S.
To omit such constraint, one can let MS consist of all
probability distributions on S. Let M∗ =

⋃
S⊂DMS .

If π ∈ M∗, we will write J(π) for its support, i.e., the
uniquely defined subset of D such that π ∈ MJ(π).

3.1.1 Primitives as Elementary Building Blocks
The main ingredient in our construction is a family T0
of relatively simple probability distributions that we
call primitives. A distribution over X will be in our
class only if it factors into a product of conditional
distributions each of which is specified by a primitive.
The elements of T0 are triplets φ = (π,A,O) where
π ∈ M∗ and A,O are subsets of J(π) that serve as
“connection nodes.” A set of five primitives is shown
in Fig. 2. The variables (or “nodes”) in A will be called
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Fig. 2. Example of primitives and merge operations. Left panel shows a set of 5 primitives built from a set of |D| = 25 random variables.
Center panel illustrates a merge operation where primitives φ1 and φ4 are bound using primitive φ3 as a connector. The resulting new
assembly φ = Γ(φ3, φ1, φ4) is shown, as well as its associated primitive DAG (where primitives are drawn as pentagons). Right panel shows
the same diagrams for a second merge φ′ = Γ(φ, φ5, φ2) where the recently created assembly φ acts as a connector to bind φ5 and φ2.

α-nodes (A being the α-set of primitive φ), and the
variables in O will be called ω-nodes (O being the ω-
set of φ). We require A,O �= ∅ and A ∩ O = ∅. Any
other nodes, J(π) \ (A∪O), are the interior nodes of φ.

3.1.2 Compositional Modeling by Primitive Merges

One can combine primitives (conditioning on their α-
sets as needed) to build more complex distributions,
which also have α- and ω-nodes. The merging of
three primitives (φ3, φ1, φ4) is illustrated in the second
panel of Fig. 2. Here φ3 serves as the binding primi-
tive, or connector. The merged assembly φ is shown at
the top of the third panel and has |A| = 1, |O| = 9.

Formally, given a group of primitives
(φ0, φ1, . . . , φr), where each φk = (πk, Ak, Ok), we
define a merged distribution π over S =

⋃r
k=0 J(πk) as:

π(xS) = π0(xJ(π0))
r∏

k=1

πk(xJ(πk) | xAk
) (1)

where φ0 serves as the connector. (Here and below, xI
(for I ⊂ D) denotes the restriction of x to I , and we
abuse notation by designating joint and conditional
probabilities using the same letter as the original
probability, the set over which they are defined being
implicitly assigned by the variables.)

To ensure that (1) defines a proper distribution, we
may only merge (φ0, φ1, . . . , φr) when

(M1) J(πk)∩ J(π0) = Ak ⊂ O0, for all k = 1, . . . , r.
(M2) J(πk) ∩ J(πl) = ∅ for all k, l = 1, . . . , r, k �= l.

(M1) ensures that the α-set of each φk matches some
subset of the connector’s ω-set. Together with (M2), it
also ensures that, aside from those matchings, primi-
tives (φ0, φ1, . . . , φr) are over disjoint sets of variables.

We will say that the group (φ0, φ1, . . . , φr) is merge-
able with φ0 as connector if (M1) and (M2) are satisfied
and π ∈ MS . We then define the resulting merge
to be the triplet φ = (π,A,O) with A = A0 and
O =

⋃r
k=0Ok \ ⋃r

k=1Ak. So the α-set of a merge is
the α-set of the connector, and its ω-set is the union
of the original ω-sets, from which the α-nodes of the
non-connector primitives are removed (and become
interior nodes in the new structure). This merge or
output will be denoted φ = Γ(φ0, . . . , φr).

The merge operation can now be iterated to form
probability distributions over increasingly large sub-
sets of variables. This is illustrated in the last panel
of Fig. 2, where the merge from the second panel is
itself merged with two of the original primitives. For
S ⊂ D, we will denote by T ∗

S the set of probability dis-
tributions on S that can be obtained by a sequence of
merges as defined above. If S is a singleton, we let, by
convention, T ∗

S = MS . Finally, we let T ∗ =
⋃
S⊂D T ∗

S .
We would define our final model class F∗ (of distri-

butions over D) as T ∗
D, except that each distribution in

T ∗
D consists of a single connected component. Instead

we define F∗ as all product distributions of the form

P (x) =

c∏
k=1

πk(xJ(πk)) (2)

where J(π1), . . . , J(πc) partition D and πk ∈ T ∗
J(πk)

.
The size and complexity of F∗ are limited by two

choices that we made earlier: the set of initial primi-
tives T0, and the set of admissible distributions M∗.
Note that for S � D, the constraints imposed by MS

on intermediate merges may be redundant with the
final constraints imposed by MD (as in Section 3.3
below), or may instead act to further restrict F∗.

The final distribution P is a product of (conditional-
ized) primitives, whose relationships can be captured
by a directed acyclic graph. Indeed, in view of (1),
there is an evident connection with Bayesian networks
which is amplified in the proposition below.

3.1.3 Atomic Decompositions and Primitive DAGs
Given Ψ = {ψ1 . . . , ψN} ⊂ T0, we will let TΨ
denote the subset of T ∗ obtained by iterations of
merge operations involving only elements of Ψ or
merges built from them. Equivalently, TΨ is the set
of distributions obtained by replacing T0 by Ψ in the
construction above. If φ ∈ T ∗, we will say that a
family of primitives Ψ = {ψ1 . . . , ψN} ⊂ T0 is an
atomic decomposition of φ if Ψ is a minimal subset of
T0 such that φ ∈ TΨ (i.e., φ can be built by merges
involving only elements of Ψ and all elements of Ψ are
needed in this construction). If P ∈ F∗ is decomposed
as in (2), an atomic decomposition of P is a union
of atomic decompositions of each of its independent
components. Finally, let T ∗

0 (resp. F∗
0 ) be the set of
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atomic decompositions of elements of T ∗ (resp. F∗).
The set of roots in the atomic decomposition Ψ ∈ T ∗

0

is denoted RΨ and defined as the set of indices k such
that Ak ∩ J(πl) = ∅ for all k, l = 1, . . . , r, k �= l.

Proposition 1. Let Ψ = {ψ1, . . . , ψN} ∈ T ∗
0 with

ψk = (πk, Ak, Ok) and define the directed graph G(Ψ)
on {1, . . . , N} by drawing an edge from k to l if and only
if Al ⊂ Ok. Then G(Ψ) is acyclic.

This proposition is part of a larger one, Proposition
S.1, which is stated and proved in Appendix A (see
supplemental material). The acyclic graph G(Ψ) is
illustrated in Fig. 2 for the merges depicted in the mid-
dle and right panels. Notice that the nodes of these
graphs are primitives, not individual variables. Con-
sequently, our models are Bayesian networks whose
nodes are overlapping subsets of our variables X.

3.1.4 Generalization Using Weaker Merging Rules
We remark that the constraints defining merging rules
could be relaxed in several ways, resulting in less
restricted model families. For example, one could
replace (M2) by the weaker condition that supports
of non-connectors may intersect over their α-sets, i.e.,

(M2)’ J(πk) ∩ J(πl) ⊂ Ak ∩Al.
Similarly, one can remove the constraint that ω-sets
do not intersect α-sets within a primitive, allowing for
more flexible connection rules, as defined by (M1) (the
ω-set after merging would then simply be the union
of all previous ω-sets, without removing the α-sets).
Such modifications do not affect the well-posedness
of (1). An extreme case is when primitives contain all
possible pairs of variables, (M2) is replaced by (M2)’
and the ω-set constraint is relaxed. Then our model
class contains all possible Bayesian networks over the
variables (i.e., all probability distributions).

3.2 Likelihood
We now switch to a statistical setting. We wish to
approximate a target probability distribution P ∗ on
ΛD by an element of F∗. This will be done by mini-
mizing the Kullback-Leibler divergence between P ∗

and the model class. Equivalently, we maximize

L(P ) = EP∗(logP ) =
∑
x∈Λd

P ∗(x) logP (x), (3)

where P ∈ F∗. Typically, P ∗ is the empirical distribu-
tion obtained from a training set, in which case the
procedure is just maximum likelihood.

Let each primitive distribution be parametric, φ =
(π(·; θ), A,O), where θ is a parameter defined on a set
Θφ (which can depend on φ). From the definition of
merge, it is convenient to restrict the distributions in
F∗ by separately modeling the joint distribution of
the α-nodes and the conditional distribution of the
other nodes given the α-nodes. Therefore, we assume
θ = (σ, τ), where the restriction of π to A only depends

on σ and the conditional distribution on J(π)\A given
xA only depends on τ , i.e.,

π(xJ(π); θ) = π(xA;σ)π(xJ(π)\A | xA; τ).
We assume that single-variable distributions are un-
constrained, i.e., there is a parameter Pj(λ) for each
λ ∈ Λ, j ∈ D.

In order to maximize L, we first restrict the pro-
blem to distributions P ∈ F∗ which have an atomic
decomposition provided by a fixed family Ψ =
{ψ1, . . . , ψN} ∈ F∗

0 . Afterwards, we will maximize the
result with respect to Ψ. Let θk = (σk, τk) ∈ Θψk

, k =
1, . . . , N and let �(θ1, ..., θN ) be the expected log-
likelihood (3). Rewriting the maximum of � based on
likelihood ratios offers an intuitive interpretation for
the “score” of each atomic decomposition in terms of
individual likelihood gains relative to an independent
model. For any primitive φ = (π(·; θ), A,O), define

ρ(φ) = max
θ
EP∗ log π(XJ(π); θ) (4)

−max
σ

EP∗ log π(XA;σ) +
∑

j∈J(π)\A
H(P ∗

j ),

where H(P ∗
j ) = −EP∗

j
(logP ∗

j ). This is the expected
log-likelihood ratio of the estimated parametric model
for Ψ and an estimated model in which i) all variables
in J \A are independent and independent from vari-
ables in A, and ii) the model on A is the original one
(parametrized with σ). We think of this as an internal
binding energy for primitive φ. Similarly, define

μ(φ) = max
σ

EP∗ log π(XA;σ) +
∑
j∈A

H(P ∗
j ), (5)

the expected likelihood ratio between the (estimated)
model on A and the (estimated) model which decou-
ples all variables in A. Then it is rather straightfor-
ward to show that the maximum log-likelihood of
any atomic decomposition decouples into primitive-
specific terms. The proof, which resembles that of the
Chow-Liu theorem [14], is provided in Appendix B.

Proposition 2. Let �(θ1, · · · , θN ) be the expected
log-likelihood of the composition generated by Ψ =
(ψ1, . . . , ψN ) ∈ F∗

0 . Then

max
θ1,...,θN

�(θ1, · · · , θN ) = �∗(Ψ)−
∑
j∈D

H(P ∗
j )

where

�∗(Ψ) =
∑
k∈RΨ

μ(ψk) +
N∑
k=1

ρ(ψk). (6)

Since the sum of entropies does not depend on Ψ,
finding an optimal approximation of P ∗ “reduces”
to maximizing �∗ over all possible Ψ. More precisely,
finding an optimal approximation requires computing

Ψ̂ = argmax
Ψ∈F∗

0

�∗(Ψ) (7)

(with optimal parameters in (4) and (5)).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

The important point is that the values of all ρ’s
and μ’s can be precomputed for all primitives. Con-
sequently, due to (6), any valid composition can be
scored based only on the contributing primitives.
In this way, parameter estimation is separated from
finding the optimal Ψ. Obviously, the constraint Ψ ∈
F∗

0 is far from trivial; it requires at least that Ψ satisfy
conditions (i) and (ii) in Proposition S.1 (Appendix A).
Moreover, computing Ψ̂ typically involves a complex
combinatorial optimization problem. We will describe
it in detail for the special case that is our focus.

3.3 Balanced Compositional Trees

We now specialize to a particular set of constraints
and primitives. In everything that follows, we will
assume a binary state space, Λ = {0, 1}, and restrict
the admissible distributions M∗ to certain models that
can be represented as trees (or forests), for which
we introduce some notation. We call this subclass of
models balanced compositional trees.

If T is a tree, let J(T ) ⊂ D denote the set of nodes
in T . For s ∈ J(T ), s+ denotes the set of children of s
and s− the set of its parents. Because T is a tree, s−

has only one element, unless s is the root of the tree,
in which case s− = ∅. We will say that T is binary if
no node has more than two children, i.e., |s+| ≤ 2 (we
allow for nodes with a single child). If s+ = ∅ then
s is called a terminal node, or leaf, and we let L(T )
denote the set of all leaves in T . If s has two children,
we will arbitrarily label them as left and right, with
notation s.l and s.r. Finally, Ts will denote the subtree
of T rooted at s, i.e., T restricted to the descendants
of s (including s). We will say that T is almost-balanced
if for each s ∈ J(T ) such that |s+| = 2, the number of
leaves in Ts.l and Ts.r differ in at most one unit.

Probability distributions on ΛJ(T ) associated with
T are assumed to be of the form:

π(xJ(T )) = p0(xs0)
∏

s∈J(T )\L(T )

ps(xs+ | xs) (8)

where s0 is the root of T , p0 is a probability dis-
tribution and ps, s ∈ J(T ) \ L(T ) are conditional
distributions. This definition slightly differs from the
usual one for tree models in that children do not have
to be conditionally independent given parents.

For S ⊂ D, we will let MS denote the set of models
provided by (8), in which T is an almost-balanced
tree such that J(T ) = S. The balance constraint is
introduced as a desirable inductive bias intended to
keep the depth of the trees under control. The set
T0 will consist of primitives φ = (π,A,O) where π
is a probability distribution over a subset J ⊂ D
with cardinality two or three; A (the α-set) is always
a singleton and we let O = J \ A. Primitives will
be selected based on training data, using a selection
process that will be described in the next section.

Fig. 3. Illustration of a set of primitives and an atomic decomposi-
tion for compositional trees. Left panel shows a pool of 15 primitives
built from 23 variables. The encircled ones constitute an atomic
decomposition for the four-component model depicted in the top-right
panel. The center and bottom right panels show the corresponding
DAGs of primitives and variables, respectively. In the last graph,
dashed lines are used to link siblings within the same primitive.

Because α-sets have cardinality one, we have
μ(φ) = 0 for all φ ∈ T0 (where μ is defined in (5)),
and (6) boils down to maximizing

�∗(Ψ) =
N∑
k=1

ρ(ψk) (9)

over F∗
0 . The description of F∗

0 and of our maximiza-
tion procedures is given in Section 5.

An example of a set of primitives that can be used
to build balanced compositional trees is presented in
Fig. 3, together with a sequence of elementary merges.

4 PRIMITIVE SELECTION

From here, we restrict our presentation to the
particular case of balanced compositional trees. We
discuss selecting an initial set of primitives T0 and
estimating their parameters. We justify the need for
a lower bound on the empirical likelihood gain for
each accepted primitive and we describe a procedure
for choosing this threshold based on controlling the
expected number of false positives under the null
hypothesis of mutual independence.

4.1 Stepwise Dependency Pursuit

We first specify the allowed representations for pri-
mitives, φ = (π(·; θ), A,O). Primitives are defined over
pairs or triplets in D. With pairs, we allow π to be any
distribution on {0, 1}2. More precisely, letting A = {s}
and O = {t}, and using notation from Section 3.2, we
let σ = πs(1) and τ = (πt(1 | xs = 0), πt(1 | xs = 1)).

For triplets, we introduce several levels of comple-
xity, each adding a single parameter to the joint distri-
bution. Let A = {s} and O = {u, v}. We can make the
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joint distribution of (Xs, Xu, Xv) progressively more
general with the following steps:

(1) Xs, Xu, Xv are independent (3 parameters).
(2) Xv⊥(Xs, Xu) (4 parameters).
(2′) Xu⊥(Xs, Xv) (4 parameters).
(3) Xu⊥Xv | Xs (5 parameters).
(4) Xu⊥Xv | Xs = 0 (6 parameters).
(4′) Xu⊥Xv | Xs = 1 (6 parameters).
(5) Unconstrained joint (7 parameters).

Case (1) corresponds to the default singletons, and
(2), (2’) involve a pair primitive and a singleton.
“True” triplet distributions correspond to (3) through
(5). The selection process that we now describe will
assign one model to any selected triplet (s, u, v).

If d = |D| is the number of variables, there are
d(d− 1) possible pairs and d(d− 1)(d− 2)/2 possible
triplets. Since we are targeting applications in which d
can reach hundreds or more, limiting the pool of pri-
mitives is essential to limiting the complexity of both
statistical estimation and combinatorial optimization.
The selection will be based on a very simple principle:
only accept a primitive at a given complexity level
when the previous level has been accepted and the ex-
pected likelihood increment in passing to the higher-
dimensional model is sufficiently large. So, when
building a primitive φ = (π(·; θ), A,O) supported by
a set J , with θ ∈ Θφ, we will assume a sequence of
submodels Θ1 ⊂ Θ2 ⊂ · · · ⊂ Θq and let Θφ be indexed
by the largest k such that, for all l = 1, . . . , k − 1

max
θ∈Θl+1

EP∗ log π(XJ ; θ)−max
θ∈Θl

EP∗ log π(XJ ; θ) ≥ η

where η is a positive constant and P ∗ is the empirical
distribution computed from observations. For exam-
ple, to form a pair primitive over J = {u, v}, we
compare the joint empirical distribution over J (which
estimates three parameters) to the one for which
Xu and Xv are independent (which estimates two
parameters), and we accept the pair primitive if

EP∗ log
P ∗(Xu, Xv)

P ∗(Xu)P ∗(Xv)
≥ η(2). (10)

(For simplicity, we are just writing P ∗(Xu, Xv) for the
empirical joint distribution of Xu, Xv ; in each case
the meaning should be clear from context.) In fact,
we accept two primitives if this inequality is true:
one for which u is the α-node and v the ω-node,
and one for which the roles are reversed. Note that
selection for pairs reduces to applying a lower bound
on the mutual information, the same selection rule as
in relevance networks [9].

For triplets, we will apply the analysis to the se-
quence of models (1), (2)/(2’), (3), . . . above. For
example, to accept a triplet that corresponds to model
(3), we first require that model (2) (or (2’)) is preferred
to model (1), which implies that either the pair (s, u)
or the pair (s, v) is accepted as a primitive using (10).

We then demand that model (3) is significantly better
than, say, model (2), meaning that

EP∗ log
P ∗(Xu | Xs)P

∗(Xv | Xs)

P ∗(Xu | Xs)P ∗(Xv)
≥ η(3). (11)

To select model (4), we need model (3) to have been
selected first, and then, defining

P̂ (xu, xv | xs) =
{
P ∗(xu | xs)P ∗(xu | xs) if xs = 0

P ∗(xu, xv | xs) if xs = 1,

we will require

EP∗ log
P̂ (Xu, Xv | Xs)

P ∗(Xu | Xs)P ∗(Xv | Xs)
≥ η(4). (12)

Selecting model (5) is done similarly, assuming that
either model (4) or (4)’ is selected.

4.2 Determination of the Selection Threshold
The threshold η determines the number of selected
primitives and will be based on an estimation of the
expected number of false detections. At each step of
the primitive selection process, which correspond to
the five numbered steps from above, we will assume
a null hypothesis consistent with the dependencies
accepted up to the previous level and according to
which no new dependencies are added to the model.
We will define η to ensure that the expected number of
detections under this null is smaller than some ε > 0,
which will be referred to as the selection threshold.

We will fix η(2) such that the expected number of
selected pairs under the assumption that all variables
are pairwise independent is smaller than ε. Assuming
that m(2) pairs have been selected, we will define η(3)
to ensure that the expected number of selected triplets
of type (3) is smaller than ε, under the assumption that
any triplet of variables must be such that at least one
of the three is independent from the others. Similarly,
assuming that m(3) triplets are selected, η(4) will be
chosen to control the number of false alarms under
the hypothesis of all candidates following model (3).
In some sense, selection at each level is done condi-
tionally to the results obtained at the previous one.

At each step, the expected number of false alarms
from model (k − 1) to (k) can be estimated by ε̂,
which is defined as the product of the number of
trials and the probability that model (k) is accepted
given that model (k − 1) is true. Since model (k) is
preferred to model (k − 1) when the likelihood ratio
between the optimal models in each case is larger
than η(k), ε̂ will depend on the distribution of this
ratio when the smaller model is true. If the number of
observations, n, is large enough, this distribution can
be estimated via Wilks’ theorem [41] which states that
two times the likelihood ratio asymptotically follows
a χ2 distribution, with degrees of freedom given by
the number of additional parameters (which is equal
to one for each transition).
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The number of trials for passing from level (3) to
(4) and from level (4) to (5) is the number of selected
triplets of the simplest type, i.e., t(3) = m(3) and
t(4) = m(4) respectively. Between levels (2) and (3), we
make t(2) = (d−2)m(2) trials, and t(1) = d(d−1)/2 tri-
als between levels (1) and (2). With this notation, and
the fact that each new level involves one additional
parameter, we use the following selection process: let
η(k), k = 2, . . . , 5 be defined by

η(k) =
1

2n
F−1
step

(
1− ε

4t(k−1)

)
(13)

where Fstep is the cumulative distribution function of
a χ2 with 1 d.f. (a standard normal squared) and the
factor 4 ensures that the total number of expected false
alarms across all levels is no more than ε.

For small values of n, the approximation based on
Wilks’ theorem is in principle not valid. Based on
Monte-Carlo simulations, however, we observed that
it can be considered as reasonably accurate for n ≥ 20,
which covers most practical cases. When n < 20,
we propose to choose η(k) using Monte-Carlo (for
very large values of d, the number of required Monte
Carlo replicates may become prohibitively large, but
learning distributions for extremely large d and n < 20
may be a hopeless task to begin with).

5 STRUCTURE SEARCH ALGORITHM

The procedure defined in the previous section yields
the collection, T0, of building blocks that will be com-
posed in the final model. Each of these blocks, say ψ,
comes with their internal binding energy, ρ(ψ), which
can be precomputed. The structure search problem, as
described in (9), consists in maximizing

�∗(Ψ) =
N∑
k=1

ρ(ψk)

over all groups Ψ = {ψ1, . . . , ψN} ∈ F∗
0 , i.e., all groups

of primitives that lead to a distribution on D that can
be obtained as a sequence of legal merges on Ψ.

We start by describing F∗
0 . Recall that each family

Ψ = {ψ1, . . . , ψN} ⊂ T0 defines an oriented graph
G(Ψ) on D, by inheriting the edges associated to each
of the ψk’s. We have the following fact (the proof is
provided in Appendix C, as supplemental material).

Proposition 3. A family of primitives Ψ ⊂ T0 belongs to
F∗

0 if and only if
(i) The α-nodes of the primitives are distinct.

(ii) The primitives do not share edges
(iii) G(Ψ) is an almost-balanced binary forest.

These conditions can be checked without seeking a
particular sequence of admissible merges that yields
G(Ψ). That is, the structure search problem reduces
to maximizing �∗(Ψ) over all Ψ = {ψ1, . . . , ψN}
such that G(Ψ) is an almost-balanced forest. This is

still hard: when the true underlying distribution is
rich in dependencies (yielding a large set T0), the
number of possible Ψ’s explodes combinatorially as
the number of variables increases. Because of this,
the exhaustive enumeration of all possible forests is
not feasible. We propose two alternatives: a greedy
search heuristic and a reformulation of the search as
an ILP optimization problem, which can be solved
using publicly available software (we worked with the
Gurobi optimizer).

5.1 Greedy Search Solution
We begin with an edgeless graph where all variables
are treated as singletons, i.e. Ψ0 = ∅. The search
operates by progressively adding new elements to Ψ
until no such option exists. At step k of the procedure,
with a current solution denoted Ψk, we define the next
solution to be Ψ(k+1) = Ψk ∪ {ψk+1} where ψk+1 is
chosen as the primitive for which ρ is maximized over
all primitives that complete Ψk into a legal structure
(and the procedure stops if no such primitive exists).
At the end of each step, the set T0 can be progressively
pruned out from all primitives that will never be used
to complete the current Ψk, i.e., primitives that share
an edge, or an α-node, with already selected ψj ’s,
or primitives with ω-nodes coinciding with already
allocated α-nodes. Of course, this strategy risks get-
ting trapped in local maxima and is not guaranteed
to find the optimal global solution.

5.2 Integer Linear Programming Solution
Exact maximization of �∗(Ψ) is an ILP problem. Let V
be the set of vertices and let E be the set of (oriented)
edges present in T0. Here, whenever we speak of an
edge we refer to edges in the graph structure associ-
ated to each primitive, where each node corresponds
to a variable (as opposed to hyperedges in the higher
level hypergraph where each node corresponds to
a different primitive). The graph structure for pair
primitives consists of an oriented edge from the α-
node to the ω-node. The graph for triplet primitives
consists of two oriented edges from the α-node to each
of the ω-nodes (as shown in Fig. 3).

Introduce binary selector variables xψ, ψ ∈ T0 and
ye, e ∈ E . For e ∈ E , let Te be the set of ψ ∈ T0
that contain e. We want to rephrase the conditions in
Proposition 3 using linear equalities on the x’s, y’s and
other auxiliary variables. (The meaning of the notation
x, y, is different, in this section only, of what it is in
the rest of the paper, in which it is used to denote
realizations of random variables.)

We formulate the ILP here only in the specific set-
ting of balanced compositional trees (Section 3.3), al-
though the approach generalizes to other cases where
G(Ψ) is restricted to be a forest. If we wished to
allow G(Ψ) to be any DAG, we would modify the
ILP problem to rule out only directed cycles [38], [42].
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The first constraint is, for all e ∈ E ,∑
t∈Te

xt = ye,

which ensures that every selected edge belongs to one
and only one selected primitive.

We also need all edges in each selected primitive to
be accounted for, which gives, for all ψ ∈ T0,

(|ψ| − 1)xψ ≤
∑
e∈ψ

ye

where |ψ| is the number of vertices in ψ (two or three).
For every directed edge e = (v, v′) with v, v′ ∈ V ,

let its reversal be ē = (v′, v). Our next constraint
imposes ye+ yē ≤ 1. Note that this constraint is made
redundant by the acyclicity constraint. Still, it may be
useful to speed up the solver.

Vertices must have no more than one parent and no
more than two children, which gives, for all v ∈ V ,∑

(v′,v)∈E
y(v′,v) ≤ 1 and

∑
(v,v′)∈E

y(v,v′) ≤ 2.

We also ensure that no vertex is the α-node of two
distinct selected binary primitives. For v ∈ V , let Ψv
denote the subset of T0 containing binary primitives
with {v} as an α-node. Then we want, for all v ∈ V∑

ψ∈Ψv

xψ ≤ 1.

The remaining conditions are more complex and
require auxiliary variables. We first ensure that the
graph associated to the selected ψ’s is acyclic. This
can be done by introducing auxiliary flow variables
fe, e ∈ E with the constraint{
−C(1− ye) + ye +

∑
e′→e fe′ ≤ fe ≤ ye +

∑
e′→e fe′

0 ≤ fe ≤ Cye

where C is large enough (e.g., C = |E|) and e′ →
e means that the child in edge e′ coincides with the
parent in edge e. (If ye = 1, this condition implies
fe = 1+

∑
e′→e fe′ which is impossible unless fe = ∞

if the graph has a loop.)
The last condition is for balance. Introduce variables

ge, e ∈ E and he, e ∈ E with constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ he ≤ ye

he ≤ 1− ye′ if e→ e′

he ≥ 1−∑
e→e′ ye′ − C(1− ye)

−C(1− ye) +
∑
e→e′ ge′ ≤ ge ≤ he +

∑
e→e′ ge′

ye ≤ ge ≤ Cye

for all triplets ψ, |ge(ψ) − ge′(ψ)| ≤ 1 + C(1− xψ)

where e(ψ) and e′(ψ) denote the two edges in triplet
ψ. The variable he equals 1 if and only if e is a terminal
edge. The variable ge counts the number of leaves (or
terminal edges). We have ge = 0 if ye = 0. If e is
terminal and ye = 1, then the sum over descendants

vanishes and the constraints imply ge = 1. Otherwise
(he = 0 and ye = 1), we have ge =

∑
e→e′ ge′ . The last

inequality ensures that the trees are almost-balanced.
The original problem can now be solved by maxi-

mizing
∑
ψ∈T0

ρ(ψ)xψ subject to these constraints, the
resulting solution being Ψ̂ = {ψ : xψ = 1}.

ILP is a general language for formulating NP-
complete problems. Although the worst-case runtime
of ILP solvers grows exponentially with the problem
size, some problem instances are much easier than
others, and modern solvers are reasonably effective at
solving many practical instances of moderate size. We
show empirical runtimes in Section 2 of the supple-
mental material, together with an analysis of the size
of the ILP encoding. Note that one can improve upon
greedy search even without running the ILP solver
to convergence, since the solver produces a series of
increasingly good suboptimal solutions en route to the
global optimum. Also, when the number of variables
and constraints in the ILP problem becomes compu-
tationally prohibitive, we can adopt a hybrid search
strategy: start by running a greedy search (which
typically leads to a forest with several independent
components) and then solve multiple ILP problems as
the one described above, each restricted to ψ′s that are
supported by the set of variables involved in each of
those components. Even though the solution may still
not be globally optimal, this coarse-to-fine approach
may lead to improved performances over the use of
greedy search and ILP alone.

6 CONNECTION WITH MAP LEARNING OF
BAYESIAN NETWORK STRUCTURE

To situate our statistical approach with respect to the
prior work of Section 2, we now discuss how it relates
to MAP estimation of Bayesian networks.

6.1 Primitives as Bayesian Networks

The approach that we propose in this paper consists
in constructing small-dimensional primitives, possibly
having complex parametrizations (if allowed by the
data-driven selection process), and assembling them
globally into a model covering all variables subject
to complexity contraints. Note that, even though the
global relationship among primitives is organized as a
Bayesian network, as described in Section 3.1, the dis-
tribution specified by each primitive can be modeled
in an arbitrary way. We conceive of these primitives
as small modeling units, and the parametric repre-
sentation introduced in Section 3.2 can be based on
any appropriate model (one can use, for example, a
Markov random field built by progressive maximum
entropy extension [43], selected similarly to Section 4).

In the case in which these primitives are also
modeled as Bayesian networks, the global distribution
of our model is obviously also represented as such.
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This case includes the compositional trees introduced
in Section 3.3, for which deriving a Bayesian network
representation in cases (2)–(5) is straightforward.

In such a case, an alternative characterization of
our method is that we perform a structure search
over Bayesian networks that can be partitioned into
previously selected primitives. In this regard, it can
be compared with other inductive biases, including
the well-studied case of restricting the tree-width
of the graph, which leads to a maximum-likelihood
structure search problem that is equivalent to finding
a maximum-weight hyperforest [44], [45]. Our global
constraints M∗ could be used to impose such a tree-
width restriction on the graph over primitives, during
greedy or global search. In particular, the composi-
tional trees of Section 3.3 restrict this graph to tree-
width 1, yielding our simpler combinatorial problem
of finding a maximum-weight forest whose nodes
are (possibly complex) primitives. Relaxing (M2) to
(M2)’ in Section 3.1, we remark that if our primiti-
ves consist of all Bayesian networks on subsets of
≤ w + 1 variables, then assembling them under the
global compositional-tree constraint gives a subset of
Bayesian networks of tree-width w, while dropping
the global constraint gives the superset CPCPw [46].

6.2 Primitive Selection vs. MAP Estimation

Suppose we omit the initial step of primitive fil-
tering. Then purely maximum-likelihood estimation
could be done using our global structure search algo-
rithms from Section 5. Naturally, however, maximum-
likelihood estimation will tend to overfit the data by
choosing models with many parameters. (Indeed, this
is the motivation for our approach.) A common rem-
edy is instead to maximize some form of penalized
log-likelihood. For many penalization techniques, this
can be accomplished by the same global structure
search algorithm over assemblies of primitives. One
modifies the definition of each binding energy ρ(ψk)
in our maximization objective (9) to add a constant
penalty that is more negative for more complex primi-
tives ψk [23]. Before the search, it is safe to discard any
primitive ψ such that the penalized binding energy
ρ(ψ) < ρ(ψ′) for some ψ′ with (J(ψ), A(ψ)), O(ψ)) =
(J(ψ′), A(ψ′), O(ψ′)), since then ψ cannot appear in
the globally optimal structure [23]. The filtering stra-
tegy in 4.1 can be regarded as a slightly more aggres-
sive version of this, if the penalties are set to 0 for
triplets of type (1), −η(2) for those of type (2)/(2’),
−(η(2) + η(3)) for those of type (3), and so on.

One can regard the total penalty of a structure as
the log of its prior probability (up to a constant).
The resulting maximization problem can be seen as
MAP estimation under a structural prior. To interpret
our η penalties in this way would be to say that a
random model, a priori, is exp η(3) times less likely to
use a given triplet of type (3) than one of type (2).

However, our actual approach differs from the above
MAP story in two ways. First, it is not fully Bayesian,
since in Section 4.2, we set the η parameters of the
prior from our training data (cf. empirical Bayes or
jackknifing). Second, a MAP estimator would include
the η penalties in the global optimization problem—
but we use these penalties only for primitive selection.

Why the difference? While our approach is indeed
somewhat similar to MAP estimation with the above
prior, that is not our motivation. We do not actually
subscribe to a prior belief that simple structures are
more common than complex structures in our appli-
cation domains (Section 8). Furthermore, our goal for
structure estimation is not to minimize the posterior
risk under 0-1 loss, which is what MAP estimation
does. Rather, we seek an estimator of structure that
bounds the risk of a model under a loss function
defined as the number of locally useless correlational
parameters. Our structure selection procedure con-
servatively enforces such a bound ε (by keeping the
false discovery rate low even within T0 as a whole,
and a fortiori within any model built from a subset of
T0). Subject to this procedure, we optimize likelihood,
which minimizes the posterior risk under 0-1 loss for
a uniform prior over structures and parameters.

We caution that ε does not bound the number of
incorrect edges relative to a true model. T0 includes
all correlations that are valid within a primitive, even
if they would vanish when conditioning also on vari-
ables outside the primitive (cf. [47]). To distinguish
direct from indirect correlations, our method uses
only global likelihood as in [14]. In the small-sample
regime, the resulting models (as with MAP) can have
structural errors but at least remain predictive without
overfitting—as we now show. Bounding the number
of incorrect edges would have to underfit, rejecting all
edges, even if true or useful, that might be indirect.

7 SIMULATION STUDY

We assessed the performance of our learned models
using synthetic data. Here we present an overview of
our results. The full description of our simulations is
provided in Section 1 of the supplemental material.

We first run several experiments to measure the
effect of sample size, number of variables, selection
threshold and search strategy upon learning perfor-
mance when the true model belongs to our model
class F∗. We evaluated the quality of the estimation
by computing the KL divergence between the known,
ground truth distribution and the distribution learned
using our models. We evaluated network reconstruc-
tion accuracy by building ROC and precision-recall
(PR) curves in terms of true-positive and false-positive
edges. The actual curves and further details can be
found in Section 1.1 of the supplemental material. Be-
sides the obvious fact that both quality of estimation
and network reconstruction accuracy improved with
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increasing sample sizes, our results showed that i) the
choice of an excessively large selection threshold leads
to model overfitting and ii) for very small samples,
the distribution learned using CAM can be better (in
terms of KL divergence to the ground truth) than
the distribution learned by using the true generating
graph and estimating parameters from data.
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Fig. 4. KL divergence between the Bayesian network ground truth
distribution (d = 14) and the distributions learned using CAM (solid,
blue, cross), K2 (dotted, red, circle) and the true generating graph
with MLE parameters (dashed, green, diamond). Results are shown
for a fixed choice of parameters and averaged over 100 random
replicates (see Section 1.2 of the supplemental material for details).

We compared CAM to other methods from the li-
terature, namely Bayesian networks [48] (represented
by the K2 algorithm [12]), relevance networks (RN)
[9], ARACNE [10] and CLR [11]. Full details are
included as Section 1.2 of the supplemental material.
First, we sampled from a balanced binary forest like
the ones described in previous sections. We found that
CAM outperformed all the alternatives, both in terms
of KL to the true distribution and network reconstruc-
tion accuracy. This was particularly evident for small
samples. Of course, these results were not surprising
because we were in the favorable case where the
ground truth belonged to our constrained family of
models. Next, we considered the unfavorable case
where we sampled from a generic Bayesian network
with a more complex dependency structure than those
allowed within our model class. Fig. 4 shows an exam-
ple of the type of curves that we observed (curves
for other choices of parameters are shown in Fig.
S.7 of supplemental material). CAM offered the best
performance for small samples by favoring bias over
variance. In fact, for small enough sample sizes CAM
performed better than using the true graph and only
estimating parameters, as we had remarked before.
For larger sample sizes, CAM performed worse than
the alternatives. This was expected: when data are
plentiful and the dependency structure is rich, learn-
ing models more complex than ours becomes feasible.
Precision-recall curves (Fig. S.8) showed that, for same
levels of recall, K2 achieves the least precision. In
general, RN, CLR and particularly ARACNE offer
the best performances, although CAM is comparable
for small samples. For larger sample sizes (over 100)
CAM has lower precision than the others (except K2).

8 REAL-DATA EXPERIMENTS

Our first experiment involves a semantic network
learning task for which the results are reasonably easy
to interpret. In the second one, we learn a network of
statistical dependencies among somatic mutations in
gene TP53, which plays an important role in cancer.

8.1 Learning Semantic Networks from Text
The 20newsgroups dataset [49] is a collection of
approximately 20,000 documents that were obtained
from 20 different Usenet newsgroups. We worked
with a reduced version made publicly available by the
late Sam Roweis through his website at the New York
University. The data are summarized in a matrix with
binary occurrence values for d = 100 words across
n = 16, 242 newsgroup postings, these values indi-
cating presence or absence of the word in a specific
document. We discarded some words with general
or ambiguous meanings, leaving 66 words that were
clearly associated to six well differentiated semantic
categories (computers, space, health, religion, sports and
cars). Intuitively, we would expect the occurrences
of words such as dog and boat to be approximately
independent, whereas not so for say hockey and nhl.

We first measured the effect of the observed sample
size. We evaluated edgewise network reconstruction
accuracy using a hand-crafted ground-truth network
where words that are semantically related were linked
by an undirected edge. We chose random subsets
of documents of different sizes and we learned a
network for each of them using CAM, RN, CLR
and ARACNE (K2 was not used because the causal
ordering of the variables is unknown). The net re-
sult (not shown) is that all methods provide roughly
comparable ROC and PR curves. We then compared
the predictive performance of CAM versus K2 and
a baseline edgeless Bayesian network as a function
of sample size, by computing average log-likelihood
on different sets of hold-out samples. We arbitrarily
chose an entropy ordering for K2 and, in order to
provide a fair comparison, we enforced the same
ordering constraint upon the set of candidate CAM
structures. Our results show that CAM outperforms
the alternatives when sample sizes are small (details
can be found in Section 3.1 of supplemental material).

Next, we learned the network shown in Fig. 5
using the full dataset. The network is componentwise
optimal. It is not guaranteed to be globally optimal
because the dual gap for the global optimization
problem was non-negligible; still, the result appeared
to be stable after extensive computation (see Section
2.3 of supplemental material). We observe a very good
correspondence between network components and
semantic categories. In fact, there is only one merge
between components that may seem questionable: the
space and religion components end up being connected
by the word earth. This is a consequence of the local

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Fig. 5. Final network learned using a subset of words from the 20newsgroups dataset and the full sample size. This result was obtained
using the ILP search procedure. Dashed lines are used to identify siblings that belong to the same primitive within our model. Words belonging
to the same semantic categories (computers, space, health, religion, sports and cars) tend to form proximity clusters within the network.

scope of our primitives and the fact that this word
is frequently used within both semantic contexts. For
comparison purposes, we learned two graphs using
RN (see Section 3.2 of supplemental material). In the
first case, the threshold for mutual information was
the same as the one used for the CAM binary primi-
tives in Fig. 5; in the RN case all the variables wound
up in the same connected component and the large
number of learned interactions made it somewhat
difficult to interpret the result. In the second case, we
equalized the number of learned edges, leading to the
isolation of twenty variables as singletons (and thus
to the failure to learn some important connections).

8.2 Learning Statistical Dependencies among
Somatic Mutations in Gene TP53

The TP53 gene is located on the short arm of chro-
mosome 17 and encodes the p53 tumor suppressor
protein, which plays a fundamental role in many
human cancers [50], [51]. The p53 protein is activated
when cells are stressed or damaged and it blocks their
multiplication, providing an important mechanism to
prevent tumor proliferation. Mutations in the TP53
gene are primarily of the missense type. They are
known to cause direct inactivation of the p53 protein
in about half of the cancers where this protein fails to
function correctly and indirect inactivation in many
other cases [50]. Because of this, understanding the
effect of these mutations can provide very valuable
insight into the mechanisms of cancer [52].

Most of the somatic mutations reported in the litera-
ture are compiled in the International Agency for Re-
search on Cancer (IARC) TP53 Database [53]. We used
version R15 (updated in Nov. 2010) and worked with
the somatic mutations dataset, which mainly consists
of missense mutations detected by DNA sequencing
in tumor samples and mutations within exons 5-8. The
original dataset contains measurements for d = 4,356
different mutations and n = 25, 101 different tissue
samples. (Discarding mutations appearing in fewer

Fig. 6. Some components of the TP53 somatic mutations network
learned using CAM (full network is provided in Fig. S.12). Dashed
lines link siblings within the same primitive. For each node, we
provide the unique mutation identifier in the IARC Database and
the (standard) mutation description at the protein level, where p.XzY
means substitution of amino acid X by amino acid Y at codon z;
e.g., p.R248W represents substitution of Arg by Trp at codon 248.

than two samples leaves d = 2,000 and n = 23,141.)
We can represent each sample as a d-dimensional
binary vector indicating which mutations were ob-
served in a tissue extracted from a patient. Since
patients can have more than one cancer, multiple
samples may come from the same individual. Still,
we treat the vectors of observations as independent
samples from an underlying multivariate distribution
which characterizes the dependency structure among
mutations in a cancer population.

Selecting ε = 1 leads to 760 candidate primitives.
Using CAM, we learned a network that contained 68
different mutations (out of the original set of 2,000
candidates). Fig. 6 shows some of the components in
this network (the full network graph is provided in
Fig. S.12, Section 4 of supplemental material).
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Each somatic mutation in IARC is annotated with
biochemical details about the actual nucleotide vari-
ation, as well as clinical data for the patient and
tissue where the mutation was observed. Enrichment
of shared annotations is statistically significant for
several subsets of mutations within our network, both
at the pairwise and the component levels, which
suggests that these mutations might be functionally
related. Furthermore, based on a hypergeometric null,
the mutations in our network were significantly en-
riched for several biological indicators such as pre-
sence in CpG sites and associated gain of function
(GoF) at the protein level. The same type of test shows
that our network is significantly enriched for “dele-
terious” or “driver” mutations (which are known to
have a negative impact on the phenotype, as opposed
to “neutral” or “passenger” ones). A detailed expla-
nation of our statistical analysis, including some com-
ments on the biological interpretation of our results,
is provided in Section 4 of the supplemental material.

9 CONCLUSIONS AND FUTURE WORK

We have introduced a new modeling framework
that combines local model selection (designing and
estimating primitives) with a compositional step
that merges primitives into valid graphical arrange-
ments and multivariate distributions. This construc-
tion makes it possible to adjust model complexity
to sample size by controlling the dimension of the
parameter space. The introduction of structural biases
can be used to decrease variance and avoid model
overfitting, which is critical in small sample regimes.

Our approach has been validated using both syn-
thetic and real data. For simulated data, our method
outperforms general Bayesian networks in approxi-
mating the true generating distribution for small sam-
ple sizes. Our approach is also comparable with me-
thods designed for recovering graphs rather than dis-
tributions. Finally, experiments with real data, particu-
larly genetic mutations in the TP53 gene, demonstrate
that the CAM algorithm can cluster mutations into
biologically plausible groups.

Even though in this paper we have only discussed
the case of discrete random variables, the CAM frame-
work generalizes to the continuous case where dis-
crete distributions are replaced by probability density
functions. Also, we have focused on balanced binary
trees, which simplifies both primitive learning and the
combinatorial optimization problem for competitive
assembling. These constraints yield networks which
are easy to interpret, since the limits on topological
complexity often lead to a final graph with several
components of moderate size. These limits include
strong restrictions to the set of allowable values for
incoming and outgoing vertex degrees. However, our
entire framework applies more generally to any fam-
ily of primitives, such as those depicted in Fig. 1,

allowing us to move beyond the strong structural con-
straints imposed by trees in the context of moderate
to large sample sizes. In particular, such extensions
might allow for learning networks with “hubs” and
scale-free properties provided near-optimal assem-
blies can be identified.
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