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Abstract

We utilized abundant transcriptomic data for the primary classes of brain cancers to study the feasibility of separating all of
these diseases simultaneously based on molecular data alone. These signatures were based on a new method reported
herein – Identification of Structured Signatures and Classifiers (ISSAC) – that resulted in a brain cancer marker panel of 44
unique genes. Many of these genes have established relevance to the brain cancers examined herein, with others having
known roles in cancer biology. Analyses on large-scale data from multiple sources must deal with significant challenges
associated with heterogeneity between different published studies, for it was observed that the variation among individual
studies often had a larger effect on the transcriptome than did phenotype differences, as is typical. For this reason, we
restricted ourselves to studying only cases where we had at least two independent studies performed for each phenotype,
and also reprocessed all the raw data from the studies using a unified pre-processing pipeline. We found that learning
signatures across multiple datasets greatly enhanced reproducibility and accuracy in predictive performance on truly
independent validation sets, even when keeping the size of the training set the same. This was most likely due to the meta-
signature encompassing more of the heterogeneity across different sources and conditions, while amplifying signal from
the repeated global characteristics of the phenotype. When molecular signatures of brain cancers were constructed from all
currently available microarray data, 90% phenotype prediction accuracy, or the accuracy of identifying a particular brain
cancer from the background of all phenotypes, was found. Looking forward, we discuss our approach in the context of the
eventual development of organ-specific molecular signatures from peripheral fluids such as the blood.
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Introduction

One important goal in systems medicine is to develop molecular

diagnostics that can accurately and comprehensively report health

and disease states of an organ system [1,2]. The discovery of

organ-level molecular signatures [3] from global biomolecule

expression measurements would mark a significant advance

toward this goal. In this regard, genome-wide transcriptomic data

are readily available, making this a promising source for molecular

signatures as well as a good means to study the robustness of

signatures across different studies. During the past decade,

transcriptomics analyses on clinical patient samples have been

widely used to uncover cancer-associated genes [4] and to discover

biomarkers for diagnosis, prognosis prediction, or optimal therapy

selection [5–7]. Recently, RNAs measured in blood have also been

used as serum-based molecular fingerprints of neurological disease

[8].

While many molecular signature studies have focused on

identifying differences between case (e.g., cancer) and control

(e.g., normal), a more clinically relevant and challenging task is the

multi-category classification problem. This task pertains especially

to identifying signatures for molecular screening and monitoring

purposes. Such signatures need to detect and stratify various

pathological conditions simultaneously; they must therefore be

highly specific for a particular disease as well as tissue of origin.

The successful identification of more reliable and efficient

molecular signatures will also be critical for the blood-based,

organ-specific diagnostics envisioned for the future [9].
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Data-driven, hierarchical approaches to multi-category classifi-

cation have been investigated extensively in machine learning

[10,11]. The basic idea of these methods is first to construct a

classification framework in the form of a hierarchy, so that multi-

category classifications can be reformulated into a series of binary

decision sets (i.e., discriminating one class or group of classes from

a second class or group of classes). The next step is to identify

binary classifiers for all decision points (i.e., nodes and/or edges) of

the hierarchy. This principle can be applied directly towards

molecular disease classification, wherein all diseases can be

organized into a global hierarchy of disease sets, where the

diseases in each set share common expression patterns. The sets of

binary classifiers can further be aggregated into a classifier marker-

panel, which can direct diagnosis of an unlabeled patient sample

down the hierarchical structure towards a particular label.

Therefore, the cumulative expression patterns constitute ‘‘hierar-

chically-structured’’ molecular signatures.

A significant drawback to the use of molecular signatures

derived from high-throughput—particularly transcriptomic—data

is limited reproducibility and performance accuracy, which is often

observed across independent studies of what are considered the

same disease phenotype. This drawback holds true for both binary

and multi-category classification problems. The lack of robustness,

even for promising results, can be attributed to molecular

heterogeneity within tumors or other diseased tissue-samples

[12,13], complex disease subtypes, various patient demographics,

and/or other biologically relevant factors. Another major issue is

batch effects, which arise from differences or inconsistencies in

experimental protocols, data quality, data-processing techniques,

and laboratory conditions and personnel [14].

A promising method to address some of these limitations in

robustness is to accumulate and combine data from many

independent studies into large meta-analyses [15,16]. This

integrated strategy naturally expands sample sizes across diverse

sources and conditions and can therefore provide more reliable

disease signatures as phenotype-associated signals become stronger

relative to noise from batch effects and other sources of variance.

In this study, we developed a computational approach called

Identification of Structured Signatures And Classifiers (ISSAC) to

identify molecular signatures that simultaneously distinguish major

cancers of the human brain. From an integrated dataset of publicly

available gene expression data, ISSAC provides a global diagnostic

hierarchy and corresponding structured brain cancer signatures

composed of sets of gene-pair classifiers. The signal in the

transcriptomics data was sufficient to develop accurate, compre-

hensive signatures, as long as the training set was sampled from the

same population as the validation set (i.e., cross validation). In

contrast, training on one dataset and testing against an indepen-

dent set (i.e., an independent study measured from another lab)

generally failed to reach the same performance due to biological

and technical sources of dataset variation. To address this issue, we

found that integration of datasets from multiple studies enhanced

the disease signal sufficiently to mitigate batch effects and greatly

improve independent validation results for brain cancers.

Results/Discussion

We compiled a multi-study, integrated dataset of brain cancer

and normal transcriptomes [17–30] (Table 1, Table S1, and Table

S2), on which we used our ISSAC algorithm (described below) to

assemble classifiers into a node (Table 2, Table S3, and Figure 1)

and a decision-tree (Table 3, Table S4, and Figure 2) marker

panel. Importantly, while developing our algorithm to identify

molecular signatures of brain cancer, we explored the effects of

integrating data from multiple studies on classification perfor-

mance, confirming that our integrated approach does indeed lead

to more robust phenotype signatures.

Our marker panel consists of 39 total gene pairs and 44 unique

genes (46 unique Affymetrix microarray probe IDs). Details on

how the gene-pair sets were chosen as classifiers, and how they are

used for phenotype prediction, can be found in the Materials and

Methods section and Text S1. In addition, we discuss how the

genes and gene pairs in our marker panel were found to have

previously confirmed associations with brain cancer. Overall, we

generated a marker panel with reasonably high multi-class brain

cancer classification accuracy and straightforward biological

interpretation.

An overview of Identification of Structured Signatures
and Classifiers (ISSAC)

Here, we summarize the overall method of ISSAC into three

main steps (Figure S1); a detailed algorithm and step-by-step guide

are presented in the Materials and Methods section and Text S1,

respectively. First, ISSAC constructs the framework for brain

cancer diagnosis (Figure 3A and Figure S2)—a tree-structured

hierarchy of all brain phenotypes including ependymoma (EPN),

glioblastoma multiforme (GBM), medulloblastoma (MDL), me-

ningioma (MNG), oligodendroglioma (OLG), pilocytic astrocyto-

ma (PA), and normal brain, built using an agglomerative

hierarchical clustering algorithm on gene expression training data.

The construction of the hierarchy relies on iteratively identifying

pairs of phenotype groups based on shared features in gene

expression. As shown in Figure 3A, the cumulative set of different

phenotypes is partitioned into smaller and more homogeneous

subsets, thereby decomposing the multi-class diagnosis problem

into more tractable sub-problems of class prediction.

Second, ISSAC identifies gene-pair classifiers corresponding to

the nodes and edges of the diagnostic hierarchy (Figures 1 and 2

and Tables 2 and 3). Both types of classifiers are binary, i.e.,

attempt to distinguish between two sets of phenotypes. The

objective of a node classifier is to distinguish the set of phenotypes

associated with the node from all other phenotypes. For example,

the classifiers of node 6 in Figure 1 and Table 2 can predict the

class label of a particular transcriptome sample as either glioma

(EPN, GBM, OLG, and PA) or non-glioma (MNG, MDL, and

normal). In the case of an edge-based, decision-tree classifier, the

objective is to distinguish the two sets of phenotypes associated

with the two child nodes, analogous to rules of an ordinary

decision tree. In the case of the two genes PRPF40A and PURA in

Author Summary

From a multi-study, integrated transcriptomic dataset, we
identified a marker panel for differentiating major human
brain cancers at the gene-expression level. The ISSAC
molecular signatures for brain cancers, composed of 44
unique genes, are based on comparing expression levels of
pairs of genes, and phenotype prediction follows a
diagnostic hierarchy. We found that sufficient dataset
integration across multiple studies greatly enhanced
diagnostic performance on truly independent validation
sets, whereas signatures learned from only one dataset
typically led to high error rate. Molecular signatures of
brain cancers, when obtained using all currently available
gene-expression data, achieved 90% phenotype prediction
accuracy. Thus, our integrative approach holds significant
promise for developing organ-level, comprehensive, mo-
lecular signatures of disease.

Transcriptomic Meta-Signatures of Brain Cancer
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Figure 2 and Table 3, this classifier determines the label of a

sample as either brain cancer or normal phenotype. All classifiers

are based on comparing the relative expression values (i.e., ranks)

between two genes or several pairs of genes within a gene

expression profile (Figures 1 and 2 and Tables 2 and 3). The

chosen pairs are those that best differentiate between the

phenotype sets and are based entirely on the reversal of relative

expression (Materials and Methods), as previously reported [31].

Briefly, the decision rule by Geman et al. is based on two genes

(e.g., gene i and gene j) for distinguishing between two phenotypes

(e.g., class A and class B): If the expression of gene i is greater than

that of gene j for a given profile, then the phenotype is classified as

class A; otherwise, class B. It has been shown that using such

simple decision rules with only a small number of gene pairs can

lead to highly accurate supervised classification of human cancers

[32,33]. We describe the advantages of using relative expression

reversals in Text S2. In addition, we provide a summary of the

expression differences between classifier genes i and j in Table S5.

Overall, the collection of node classifiers represent a series of

coarse-grained to fine-grained explanations of the hierarchical

groupings and are used in diagnosis to screen for phenotype-

specific expression patterns (described below). Thus, the hierarchy

of binary predictors guides classification of an expression profile in

a dynamic coarse-to-fine fashion: a classifier is executed if and only if

all of its ancestor classifiers have been executed and have returned

a positive response—i.e., predicted the phenotypes in each node.

The cumulative outcome of the node classifiers for a given

expression profile is the set of its candidate phenotypes,

corresponding to all the leaves of the hierarchy that were reached

and tested positively. This property means that it is possible to

traverse multiple paths to multiple leaf nodes, and thus multiple

diagnoses may be made in this step (though in practice it is usually

just one). For tie-breaking purposes, the decision-tree classifiers at

the edges of the diagnostic hierarchy are used to reach a unique

diagnosis.

Finally, ISSAC uses the gene-pair classifiers for class prediction

(Figure 3B). Given a transcriptome sample, ISSAC executes the

node classifiers in a hierarchical, top-down fashion within the

disease diagnostic hierarchy to identify the phenotype(s) whose

class-specific signature(s) is present. As shown in Figure 3B,

transcriptome samples 4–7 all have expression signatures of at least

one class, i.e., a sample is classified (positive) as at least one

terminal node (leaf) phenotype. In contrast, samples 1–3 do not

have any class-specific signatures, i.e., samples are not positive for

Figure 1. Gene-pair sets of the node marker-panel are shown at their corresponding twelve nodes in the brain cancer diagnostic
hierarchy. Gene i (left) and Gene j (right) are the genes expressed higher and lower within each gene-pair, respectively. A transcriptome test sample
is classified as the phenotype(s) of the node if the number of corresponding gene-pairs with a ‘true’ outcome for the statement ‘‘Gene i is expressed
higher than Gene j’’ is greater than or equal to a threshold k defined for that node.
doi:10.1371/journal.pcbi.1003148.g001

Figure 2. Gene-pairs of the decision-tree marker-panel are
shown at their corresponding edges in the brain cancer
diagnostic hierarchy. Gene i and Gene j are the genes expressed
higher and lower within the gene-pair, respectively. For a given test
sample, the direction of its classification down the diagnostic hierarchy
is based on the gene-pair classifiers’ true/false outcomes (left/right,
respectively) for the statement ‘‘Gene i is expressed higher than Gene j’’.
doi:10.1371/journal.pcbi.1003148.g002

Transcriptomic Meta-Signatures of Brain Cancer
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any leaf, and are labeled as ‘‘Unclassified’’. In case of multiple class

candidates, i.e., node classifiers for multiple leaves are positive as

in samples 6 and 7, the ambiguity is resolved by aggregating all the

decision-tree classifiers into a classification decision-tree, thereby

leading any expression signature down one unique path toward a

single phenotype. Once the hierarchy and classifiers were

determined, ISSAC distinguished brain cancer phenotypes with

an accuracy of 90% in ten-fold cross-validation (discussed below).

When the individual transcriptomic samples used in the training

set were re-examined, ISSAC correctly observed all samples with

an apparent (resubstitution) accuracy of 94%. This gives a sense

for the relatively small degree of over-fitting compared to the

cross-validation accuracy estimate.

Integrating disparate datasets identifies more robust
molecular signatures across independent studies

To estimate the robustness of signature accuracy, it is best to test

molecular signatures against datasets (i.e., patient samples) that are

truly independent of the training set (e.g., drawn from a different

patient population, clinical laboratory, etc.). To study the effects of

training across multiple studies, we used glioblastoma (GBM),

where we had the highest number of transcriptomic datasets for

the phenotype. We trained ISSAC on each of the five

transcriptomic datasets (i.e., GSE #) of GBM, coupled in each

case to all the data from the other brain phenotypes. The full

multi-class signatures were completely relearned (every step) with

the only difference in each case being which single GBM dataset

was included in the training stage. We then assessed the accuracy

of correctly classifying GBM transcriptomes measured in the four

held-out datasets from all other possible phenotypes. We term this

evaluation method as ‘‘hold-one-lab-in validation’’.

The overall hold-one-lab-in validation performance, or the

average of all classification accuracies in Figure 3a, was 38%. This

shows that, in general, individual datasets do not consistently yield

robust molecular signatures. For example, GBM signatures from

GSE8692 (6 samples, ref. 21) and GSE9171 (13 samples, ref. 22)

led to average accuracies of 22% and 0% for classifying

independent GBM samples from other studies, respectively. These

significantly low performance results are not surprising for these

sets given the very small sample numbers. To an extent, relatively

larger datasets could indeed yield disease signatures of higher

average accuracy. However, sample size was not the sole

determining factor of signature performance. For example,

training on GSE4412 (59 samples, ref. 19) gave an average

accuracy of 23% (Figure 4a) on the remaining GBM samples from

the other studies. As a notable exception, training on GSE4271 (76

samples, ref. 20) alone resulted in the best overall average accuracy

(87%) in correctly classifying samples from the four held-out GBM

datasets, with individual validation set accuracies ranging from

78% to 100% (Table S6). However, when GSE4290 (77 samples,

ref. 23) was used as the training set, there was over a 30% lower

average GBM classification accuracy (56%) despite the nearly

identical sample size with GSE4271.

We found considerable discrepancy between the minimum and

maximum validation set accuracies for training sets GSE4412 (0%

and 83%, respectively) and GSE4290 (17% and 92%) (Table S6).

This indicates that batch effects, as well as potential biological

discrepancies between populations studied at different sites, can

lead to remarkable variation among transcriptomic datasets of

supposedly the same phenotype. This ‘‘dataset variation’’ is

widespread in large-scale expression studies, causing inconsisten-

cies in molecular signature identification and performance

reproducibility [34]. Large variation within and across transcrip-

tomic datasets of GBM is perhaps not surprising, given that GBM

is known to have various molecular subtypes [35]. Therefore, as

mentioned above, molecular signatures from any single dataset

need to be approached with caution in terms of their generaliza-

tion.

Table 1. Description of all GEO microarray datasets used in this study.

Phenotype name GEO accession # First author (publication year) Ref. Sample size Affymetrix array

Ependymoma GSE16155 Donson (2009) 17 19 U133 plus2.0

GSE21687 Johnson (2010) 18 83 U133 plus2.0

Glioblastoma Multiforme GSE 4412 Freije (2004) 19 59 U133A

GSE 4271 Phillips (2006) 20 76 U133A

GSE 8692 Liu (2007) 21 6 U133A

GSE 9171 Wiedemeyer (2008) 22 13 U133 plus2.0

GSE 4290 Sun (2006) 23 77 U133 plus2.0

Medulloblastoma GSE 10327 Kool (2008) 24 61 U133 plus2.0

GSE 12992 Fattet (2009) 25 40 U133 plus2.0

Meningioma GSE 4780 Scheck (2006) - 62 U133A/U133 plus2.0

GSE 9438 Claus (2008) 26 31 U133 plus2.0

GSE 16581 Lee (2010) 27 68 U133 plus2.0

Oligodendroglioma GSE 4412 Freije (2004) 19 11 U133A

GSE 4290 Sun (2006) 23 50 U133 plus2.0

Pilocytic Astrocytoma GSE 12907 Wong (2005) 28 21 U133A

GSE 5675 Sharma (2007) 29 41 U133 plus2.0

Normal Brain GSE 3526 Roth (2006) 30 146 U133 plus2.0

GSE 7307 Roth (2007) - 57 U133 plus2.0

Studies that have not been published are denoted as ‘-’.
doi:10.1371/journal.pcbi.1003148.t001

Transcriptomic Meta-Signatures of Brain Cancer
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We next analyzed how the multi-study integration approach

affects performance robustness. One of each of the five datasets of

GBM was sequentially withheld as the validation set, while all

remaining gene expression data (including those from all other

phenotypes) were used for training. The GBM signature was then

evaluated on the held-out validation set. We term this strategy as

‘‘leave-one-lab-out validation’’. Classification accuracies using this

approach ranged from 63% (GBM training set: 155 samples across

four datasets; validation set: GSE4271, 76 samples) to 100%

(GBM training set: 225 samples across four datasets; validation set:

GSE8692, 6 samples) (Figure 4b). The average accuracy of the five

leave-one-lab-out validations was 83%, which was considerably

higher than that obtained from training on individual GBM

datasets (38%). We conjecture that this result is due to the

underlying variation in the training sets better representing the

true variation in the population, both by achieving a greater

sample size, as well as by having the samples come from a broader

range of situations.

To evaluate how multi-study dataset integration alone affects

performance robustness independent of sample size, we performed

hold-one-lab-in and leave-one-lab-out validations for the studies

with the largest number of samples, GSE4412, GSE4271, and

GSE4290 (59, 76, and 77 samples, respectively) while training on

the same number of samples for GBM. More specifically, the same

steps in the analyses of Figure 4a and Figure 4b were used, while

GBM signatures were learned from a training set of exactly 50

samples chosen randomly from either an individual dataset or

across four combined datasets (with the fifth data set left out for

validation). This process was conducted ten times for each GBM

training set.

The average performances of hold-one-lab-in and leave-one-

lab-out validations were 47% and 70%, respectively. Overall, the

results were consistent with our two aforementioned conclusions:

1) when a molecular signature is learned from an individual

dataset, its ability to accurately and precisely represent phenotype

features across a broad population highly varies depending on the

particular dataset used for training (Figure 4c and Table S7); and

2) combining datasets considerably increased average accuracy

(Figure 4d and Table S7). Thus, dataset integration across multiple

studies, even without change in sample size, can lead to significant

improvements in predictive performance.

Lastly, we used the results in Figure 4c and Figure 4d to

compare performances of different GBM signatures on the same

validation set (Figure 4e). In all cases, signatures from combined

datasets had, on average, higher classification accuracy than those

from any of the individual datasets—even though the same

number of samples was used in the training sets and were tested on

a validation set independent of the training set. These results were

then used to evaluate the precision of a GBM signature’s

classification accuracy by calculating its ‘‘signal-to-noise ratio

(SNR)’’. SNR in the accuracy estimate was calculated herein as the

ratio of average classification accuracy to standard deviation in the

accuracy estimate across studies. We found that, for all validation

set cases, GBM signatures developed on the basis of multiple

datasets had SNRs greater by at least two fold than those from

individual data sets. This clearly shows that learning on integrated

datasets leads to molecular signatures that have higher and more

consistent (i.e. less variable) predictive performance (Figure 4f),

and motivated our choice in developing the brain cancer ISSAC

signature to only use cases where we had at least 2 independent

studies to learn across.

Overall, we have shown that when a broader range of

conditions within a particular phenotype is presented during the

classifier-learning stage, ISSAC can better distinguish the true

disease signal from noise prior to independent validation.

However, single and/or smaller training sets that were used to

define the classifiers might not be representative of, or general-

Table 2. The node marker-panel is a collection of gene-pair
classifiers from the nodes of the diagnostic hierarchy.

Node
#a Node classesb Gene ic Gene jc kd

2 EPN GBM MDL MNG OLG PA PRPF40A PURA 1

3 normal PURA PRPF40A 1

4 EPN GBM MDL OLG PA NRCAM ISLR 1

IDH2 GMDS

5 MNG ISLR NRCAM 1

6 EPN GBM OLG PA SALL1 PAFAH1B3 2

SRI NBEA

DDR1e TIA1

DDR1e MAB21L1

ITPKB PDS5B

7 MDL PAFAH1B3 SALL1 4

NBEA SRI

TIA1 DDR1e

MAB21L1 DDR1e

PDS5B ITPKB

8 EPN NUP62CL ZNF280A 2

GALNS WAS

CELSR1 OR10H3

TLE4 OLIG2

9 GBM OLG PA ZNF280A NUP62CL 1

10 GBM OLG DDX27 KCNMA1 1

COX7A2 GNPTAB

11 PA KCNMA1 DDX27 3

GNPTAB NDUFS2

APOD PPIA

CD59 SNRPB2

SEMA3E ADAMTS3

CD59 HINT1

BAMBI CIAPIN1

12 GBM FLNA TNKS2 1

ITGB3BP RB1CC1

DDX27 TRIM8

13 OLG LARP5 ANXA1 1

aNode # corresponds to numerical labels in the diagnostic hierarchy shown in
Figure 1.
bDisease abbreviation (name): EPN (Ependymoma), GBM (Glioblastoma
Multiforme), MDL (Medulloblastoma), MNG (Meningioma), OLG
(Oligodendroglioma), PA (Pilocytic astrocytoma), and normal (Normal brain).
cGene i and gene j are the genes expressed higher and lower, respectively,
within each gene-pair classification decision rule. Specifically, the statement of
‘‘Gene i is expressed higher than Gene j’’ being true contributes to the
expression profile being classified as the phenotype(s) of the node. Gene
names, chromosome loci, and Affymetrix microarray platform probe IDs of the
classifier genes can be found in Table S1.
dThe minimum number of gene-pair classifiers whose decision rule outcomes
for an expression profile are required to be ‘true ( = 1)’ for the profile to be
classified as the phenotype(s) of the node.
eGenes that share same symbol/name, but correspond to different Affymetrix
probe IDs.
doi:10.1371/journal.pcbi.1003148.t002

Transcriptomic Meta-Signatures of Brain Cancer
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izable to, larger populations – leading to poor validation results.

Therefore, the utilization of all currently available datasets from

various sources and conditions may be a promising approach to

finding novel diagnostic markers, and eventually bringing the

successful adaptation of genomic biomarkers into clinical practice.

Also, prospective design of studies is generally best when they

utilize multiple sites to avoid over-fitting to particular contexts.

It is worth mentioning that in some cases, molecular signatures

from a single source can have (or at least appear to have) superior

performance, as demonstrated by the molecular signatures from

GSE4271. Specifically, training on a single GSE4271 data set

provided higher accuracy (87%, Figure 4a) than learning on any of

the four sets combined (average 83%, Figure 4b). Indeed, when

such surprisingly robust single datasets are identified, they

potentiate significant new insight into the underlying heterogene-

ities present in a patient population of a disease phenotype. Such

data sets can be utilized for follow-up studies, and hence serve as a

valuable resource to the scientific and medical communities. It is,

however, difficult in practice to predict in advance data set

robustness, which must be ensured through careful sample

collection and data set preprocessing techniques. To help ensure

the production of reliable omics-based data sets, we recommend

the following: 1) Good experimental design, such as clearly

defining clinical phenotypes of interest; 2) When collecting new

experimental data, sufficient sample size must be obtained; 3) All

aspects of the experimental and analytical procedures must be

carefully controlled to avoid batch effects; and 4) No confounding

from factors unrelated to phenotype(s) of interest must occur.

Brain cancer marker-panel achieves high classification
accuracy in cross-validation

As shown by our leave-one-lab-out validations, learning

signatures across multiple datasets significantly improved average

classification accuracy with concomitant reduction in performance

variance. In this regard, the brain cancer marker-panel obtained

using all currently available microarray data simultaneously

(Tables 2 and 3) should represent more robust phenotype

signatures.

The classification performance of this comprehensive brain

cancer marker-panel was evaluated by ten-fold cross-validation

(Figure S3). Our marker-panel achieved a 90% average of

phenotype-specific classification accuracies (Table 4), showing

strong promise against a multi-category, multi-dataset background

at the gene expression level. In addition, we observed higher

classification accuracy (93%) among the expression profiles for

which a unique diagnosis was obtained without subsequent

disambiguation from the decision-tree (Table S8). Furthermore,

the glioblastoma (GBM) classification accuracy previously seen in

our leave-one-lab-out analysis (83%) is comparable to that seen in

cross-validation (85%). Indeed, that these two accuracies are so

close suggests that, for GBM, the effects of variability among the

datasets from different institutions and time-points have been

mostly overcome by integration across multiple training studies.

Four other brain cancers (ependymoma, medulloblastoma,

meningioma, and pilocytic astrocytoma) have estimated accuracies

of at least 91%, suggesting clear differences between them and the

other phenotypes at the transcriptomic level. The anatomical

region specificity of these four cancers may have contributed

toward their highly accurate separation, as there are regional areas

of unique gene expression patterns. Roth et al. analyzed gene

expression of 20 anatomically distinct regions of the central

nervous system [30] and clustered all anatomical sites into distinct

groups, providing evidence of region-specific expression patterns.

However, results from another study analyzing gene expression

data from distinct brain regions suggested that clustering

disparities might also be due to activity of distinct brain cell types,

rather than solely on region [36,37]. Furthermore, if region

specificity played a dominant role in classification, we would

expect to see a high number of misdiagnoses to occur between the

normal brain, which was derived from 25 different locations (Text

S3), and the six cancers. Such a trend was not observed in Table 4.

Therefore, our predictive results suggest a stronger contribution

from underlying cell-type specific and disease-intrinsic elements

than from region effects alone.

Compared to the cross-validation accuracies of other pheno-

types, lower performance was observed for GBM and oligoden-

droglioma (OLG) (85% and 75%, respectively). This could have

been mainly a consequence of the limited ability of the marker-

panel to correctly differentiate these two cancers from each other.

Indeed, the distinction of these two phenotypes from transcrip-

tomics seems to be rather difficult in general, and our accuracies

here are comparable to those reported previously in two-

phenotype comparison studies [38,39]. Furthermore, our signa-

tures did show an excellent degree of sensitivity (96%) and

specificity (97%) for distinguishing these two well-progressed

gliomas as a set from all other brain phenotypes. There exist

genetic tests and methods that differentiate GBM and OLG well,

such as the combined loss of chromosome arms 1p and 19q [40],

and over-expression of the transcription factor protein Olig2 [41],

but our goal in this particular study was to evaluate molecular

discriminatory power as represented in transcriptomes across

multiple brain cancers.

Table 3. The decision-tree marker-panel shows phenotype-specific signatures in the form of binary patterns.

Gene symbolsa Disease binary signaturesb

Gene i Gene j EPN GBM MDL MNG OLG PA normal

PRPF40A PURA 1 1 1 1 1 1 0

NRCAM ISLR 1 1 1 0 1 1 -

SRI NBEA 1 1 0 - 1 1 -

NUP62CL OR10H3 1 0 - - 0 0 -

DDX27 KCNMA1 - 1 - - 1 0 -

FLNA TNKS2 - 1 - - 0 - -

aAffymetrix microarray platform probe IDs of the classifier genes are shown in Table S2.
bFor each gene-pair comparison (i.e., Is Gene i.Gene j ?), 1 and 0 delineates ‘true’ and ‘false’, respectively, and ‘–’ denotes that the outcome is not used for classification.
doi:10.1371/journal.pcbi.1003148.t003
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Marker-panel genes’ association to cancer biology
Several genes in our marker panel are strongly associated with

brain cancers, suggesting putative relationships to the underlying

pathophysiology of their corresponding phenotypes. One such

gene is NRCAM (nodes 4 and 5 of Figure 1 and Table 2), which

was reported as a marker for high-risk neuroblastoma [42] and

poor prognostic ependymoma [43]. NRCAM was also found to be

over-expressed in cell lines derived from pilocytic astrocytomas

and glioblastoma multiforme tumors [44]. The receptor tyrosine

kinase DDR1, a predicted marker gene for PA when expressed

higher than TIA1 and MAB21L1 (nodes 6 and 7), was found to be

over-expressed in high-grade gliomas and to promote tumor cell

invasion [45]. FLNA was detected in the serum of high-grade

astrocytoma (grade 3 and GBM) patients [46], and ANXA1, a gene

that encodes an anti-inflammatory phospholipid binding protein,

was implicated in astrocytoma progression [47]. These reports are

consistent with our identification of FLNA and ANXA1 as two

classifier genes expressed higher in GBM than in oligodendrogli-

oma (nodes 12 and 13). The basic helix-loop-helix (bHLH)

transcription factor OLIG2 is innately expressed in oligodendro-

cytes and was recently characterized as a key antagonist of p53

function in neural stem cells and malignant gliomas [48]. In

accordance with lower expression of OLIG2 as an EPN classifier in

this study (node 8), OLIG2 expression was used as a negative

marker to differentiate EPN from other gliomas [49]. SEMA3E,

one of several classifier genes for PA (node 11), has been reported

to drive invasiveness of melanoma cells in mice [50]. And finally,

mutation to IDH2 (node 4) in GBM is well known, with occurrence

reported in 80% of secondary glioblastomas [51,52]. That the

genes in our marker panel have previously confirmed ties to brain

cancers raises the question of what is the underlying molecular

framework surrounding the generation of gene-pair classifiers,

which would be an interesting direction for future studies. Among

the gene pairs in our marker panel, we focus on two pairs (below)

in which the genes’ common functional roles or relevance to

cancer suggest putative relationships to corresponding pathology.

Our discussions below point to potential biological relationships

underlying the observed gene expression reversals, representing

hypotheses that require further experimental validation.

One of the classifier gene pairs involved in the differentiation

between meningioma and the remaining five brain cancers (EPN,

GBM, MDL, OLG, PA) are two metabolic enzymes, IDH2 and

GMDS (node 4). IDH2 converts isocitrate to a-ketoglutarate within

the TCA cycle. This reaction produces NADPH, which not only is

an essential cofactor for many metabolic reactions, but also helps

to protect the cell against oxidative damage [53]. Moreover,

GMDS aids the biosynthesis of GDP-fucose from GDP-mannose in

mannose metabolism, in which NADPH is produced [54]. That

the enzymatic activities of both IDH2 and GMDS participate in the

conversion between NADP+ and NADPH is interesting, consid-

ering the well-known alteration to cellular metabolism and

deregulated redox balance in cancer [55]. Possible MNG-specific

mutations in IDH2 and/or GMDS, or changes in the regulatory

network that controls the expression of these two genes, may affect

cellular redox balance and functions of other metabolic enzymes.

Figure 3. Comprehensive classification of human brain cancer and normal brain transcriptomes using molecular signatures from
ISSAC. A The coarse-to-fine classification process is represented by a hierarchically structured groupings of phenotypes. There is a node classifier for
each set of phenotypes in the hierarchy, which is designed to respond positively if the sample belongs to this set of diseases and negatively
otherwise. Our diagnostic hierarchy has thirteen nodes in total, and seven terminal nodes (i.e., leaves). The node classifiers are executed sequentially
and adaptively on a given expression profile; a classifier test for a particular node is performed if and only if all of its ancestor tests were performed
and deemed positive. The node classifiers are used to screen for phenotype-specific signatures. B Leaves that have positive classifier outcomes
correspond to the candidate phenotypes of a given expression profile. If there is no candidate phenotype, the expression profile is labeled as
‘Unclassified’. If only one candidate phenotype is identified, the profile is labeled as that phenotype of the respective leaf. If the profile is considered
to consist of multiple phenotype signatures, the ambiguity is resolved using the decision-tree classifiers based on the same diagnostic hierarchy.
Here, the decision-tree classifiers are executed starting from the root of the tree, directing the profile to one of the two child nodes sequentially until
it completes a full path towards a leaf. The phenotype label of the final destination corresponds to the unique diagnosis.
doi:10.1371/journal.pcbi.1003148.g003

Figure 4. Molecular signatures from multi-study, integrated
datasets have higher average phenotype prediction accuracy
and lower performance variance than those from individual
datasets. A Hold-one-lab-in validation results for each of the five
glioblastoma (GBM) datasets. Gray line indicates average accuracy on
the four validation sets. B Leave-one-lab-out validation results for each
of the five GBM datasets. Blue and red line indicates average accuracy of
GBM signatures from leave-one-lab-out (L1LO) validation and hold-one-
lab-in (H1LI) validation, respectively. C H1L1 validation to test GBM
signatures from GSE4412, GSE4271, and GSE4290, while keeping the
number of samples in the GBM training set the same. 50 samples were
randomly selected from each GBM dataset for signature learning. H1LI
validation was executed ten times for each of the three GBM datasets.
Error bars indicate standard deviations. D L1LO validation to test GBM
signatures on GSE4412, GSE4271, and GSE4290 validation sets, while 50
total samples were randomly selected from the other four GBM datasets
for signature learning. L1LO validation was executed ten times. E Data
from C and D are used to show GBM signatures’ accuracies on GSE4412,
GSE4271, and GSE4290 validation sets when the GBM training data
were from individual or combined GBM datasets. Y, W, and V indicate
statistical significance relative to GSE4271, GSE4290, and GSE4412,
respectively (Tukey’s post-hoc test, p,0.01). F Signal-to-noise ratios
(SNRs) from data in E. SNR was calculated as the ratio of average
accuracy to standard deviation.
doi:10.1371/journal.pcbi.1003148.g004
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The TLE4 and OLIG2 gene pair is used to differentiate EPN

from GBM, OLG, and PA (node 8). TLE4, a human homolog of

the Drosophila Groucho protein, represses the Wnt and FGF

developmental signaling pathways [56–58] by recruiting deacety-

lases to histones H3 and H4 [59]. FGF receptor signaling was

reported to control neuronal and glial cell development by

regulating OLIG2 expression in zebrafish [58]. This connection

between these two genes in regards to brain cell development

could be reflective of the extent of cell-type differentiation (a

hallmark of cancer), or lack thereof, unique to EPN compared with

the other gliomas.

To develop further hypotheses of the functional relationships

between the classifiers and pathophysiological traits, we looked for

statistical enrichment of biological properties (e.g. biological

processes, chromosome numbers) on an exhaustive list of gene

pairs discriminating GBM and OLG (Text S4). Our statistical

enrichment of biological processes of gene-set i and gene-set j (the

union of genes in each gene-pair classifier that are expressed

relatively higher and lower in GBM, respectively) showed that the

genes reflect disease properties. Specifically, the genes that are in

gene-set i, or those expressed higher in GBM compared to OLG,

were the most enriched in the biological process of ‘Immunity and

Defense’ (Figure S4); this is in concordance with clinical

observations showing high degree of inflammation inside malig-

nant tumors (such as GBM), as well as the subsequent high

number of immune cells. Our additional reports on the statistical

enrichment of certain chromosome numbers link our classifiers to

known genomic aberrations of their respective brain cancers,

providing further insight as to why certain genes might have been

selected as classifiers.

Looking ahead: Molecular signatures based on putative
blood borne biomolecules offer a glimpse into possible
molecular diagnostics

The work reported herein has focused on identifying a

structured molecular signature that can separate major brain

cancers simultaneously, as well as on evaluating issues related to

reproducibility in molecular signatures. However, our long-term

motivation for wanting molecular signatures of an organ system is

ultimately to find corresponding signatures in the blood, where

they can be assayed non-invasively. Blood bathes virtually all

organs, which secrete proteins and nucleic acids. Subsets of these

secreted biomolecules can potentially constitute disease signatures

for molecular diagnostics, as measurement technologies mature.

Moreover, the blood is easily accessible in contrast to biopsies of

diseased organs for obtaining transcript or protein profiles. In this

regard, the brain represents an organ system where a critical need

exists to develop non-invasive techniques to monitor its health

state through secreted proteins.

Previously, organ-specific proteins have been detected in blood;

when these proteins changed in concentration or chemical

structure, the tissue origin of this change was identified [60]. For

blood-based, organ-specific diagnostics, molecular signatures need

to detect and stratify various possible cancers and other

pathological conditions simultaneously. In the context of this

current study, an intriguing question is if training ISSAC on shed

or secreted blood borne biomolecule measurements identifies

molecular signatures that allow us to distinguish health from

disease; and if diseased, which one and how far has it progressed?

Thus, the approach laid out herein for transcriptomics is a

foundation for identifying similar signatures from blood proteins as

these measurements become more abundant.

As proof of concept and to provide candidates for targeted

proteomics analysis, we performed the above transcriptomic

analysis of finding brain cancer signatures using only the genes

that are annotated to encode extracellular proteins (Materials and

Methods). We trained ISSAC on a total of 767 genes that matched

this criterion, which led to a new brain cancer marker-panel

composed of 41 gene-pair classifiers from 71 unique features

(Figure S5). When looking at the case of GBM gene-pair classifiers,

i.e. 59 node-based genes involved in the detection of either GBM

or phenotype groups that include GBM, 11 were previously

identified as potential GBM-specific serum markers (detected

either from GBM cell-line secretome experiments or in human

plasma): APOD [61], CALU [62], CD163 [63,64], CHI3L1 [65–67],

CSF1 [68,69], EGFR [68,70,71], IGFBP2 [62,72–75], NID1 [76],

PDGFC [77,78], PSG9 [72], and PTN [79]. We provide the

functional roles of these genes in Table S9. None of these previous

studies performed relative abundance comparisons or measured

expression ratios, so we are unable to answer at this time whether

the particular relative expression reversal patterns would be

observed in serum. We were not able to find any direct available

evidence associating the remaining GBM classifier genes to

potential serum-based markers. Nevertheless, we were encouraged

that ISSAC was able to verify some previously identified potential

GBM markers, which provides support for its use towards a blood-

Table 4. Classification performance of brain cancer marker-panel in ten-fold cross-validation.

Actual phenotype Predicted phenotype (%)a
Total

EPN GBM MDL MNG OLG PA normal UCb

EPN 92.2 2.8 0.3 1.7 1.3 0.6 0.2 1.0 102

GBM 0.7 84.8 0.2 0.5 11.9 0.1 0.3 1.3 231

MDL 2.2 2.3 91.1 0.8 2.7 0.2 0.0 0.8 101

MNG 0.1 1.8 0.0 97.5 0.1 0.2 0.0 0.2 161

OLG 0.5 20.7 0.2 0.0 74.6 2.1 0.0 2.0 61

PA 1.3 2.3 0.0 0.0 1.3 94.4 0.0 0.8 62

normal 0.0 0.5 0.0 0.1 0.7 0.0 98.5 0.1 203

aAccuracies reflect average performance in ten-fold cross-validation conducted ten times. The main diagonal gives the average classification accuracy of each class
(bold), and the off-diagonal elements show the erroneous predictions.
bUC (Unclassified samples). When using the node classifiers, expression profiles that did not exert a signature of any phenotype (i.e., did not percolate down to at least
one positive terminal node) were rejected from classification. In this case, the Unclassified sample is treated as a misclassification.
doi:10.1371/journal.pcbi.1003148.t004
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based test since there is currently no clinically approved GBM-

specific, serum-based biomarker.

Our marker-panel, composed entirely of genes encoding

extracellular products, obtained an average classification accuracy

of 87% in 10-fold cross-validation (Table S10), which compares

favorably to the average accuracy we previously achieved using all

the genes in the microarray (90%). This suggests that strong signal

may possibly persist for phenotype distinction even when using

only secreted biomolecules from diseased organs. If indeed there

are enough biomolecules secreted into the blood at concentrations

that can be accurately and consistently detected by e.g., targeted

mass spectrometry, then there is the very exciting possibility that

organ-specific pathologies, such as those described above, can be

detected from the blood. This would truly make blood a powerful

window into health and disease.

Materials and Methods

Multi-study dataset of human brain cancer
transcriptomes

All transcriptomic data used in our analysis are publicly

available at the NCBI Gene Expression Omnibus (GEO). We

integrated 921 microarray samples of six brain cancers (ependy-

moma, glioblastoma multiforme, medulloblastoma, meningioma,

oligodendroglioma, pilocytic astrocytoma) and normal brain

across 16 independent studies into a transcriptome multi-study

dataset. Importantly, we obtained the raw data (.CEL files) from

each of these studies and preprocessed them uniformly using

identical techniques to greatly reduce extraneous sources of

technical artifacts (discussed below). All data manipulation and

numerical calculations were performed using MATLAB (Math-

Works).

To ensure data quality and to help control for systemic bias and

batch effects), we used the following strict criteria and reasoning

for brain phenotype selection: 1) Expression profiles must have

been conducted on either the Affymetrix Human Genome U133A

or U133 Plus 2.0 microarray platform. This allowed maximum

microarray sample collection without considerable reduction in

number of overlapping classifier features (i.e., microarray probe-

sets). 2) Transcriptomic datasets (i.e., GSE #) for each phenotype

must have been collected from at least two independent sources to

help mitigate batch effects. 3) All datasets must have consisted of

no fewer than 5 microarray samples. 4) All datasets must have

originated from primary brain tumor or tissue biopsies. Expression

profiles from cell-lines or laser micro-dissections were not used in

our study to better ensure sample consistency. 5) Raw microarray

intensity data (.CEL files) must have been available on GEO for

consensus preprocessing (described below). 6) Sample preparation

protocols must have been fully disclosed on GEO. 7) All

microarray samples in a dataset of a given phenotype were used

in order to take into consideration all sources of heterogeneity.

That is, no samples were excluded because their gene expression

profiles were abnormal for their associated phenotypes. We are

aware that this may allow mislabeled samples, e.g. samples that

were originally misclassified by the histopathologist upon class

labeling (Text S5), to be used in the classifier-learning stage, and

thereby limit the biological ‘‘purity’’ of a phenotype in the training

set. This can pose a serious challenge in interpreting misclassified

samples that actually seem to be a much better match (or even

perfect match) to a different phenotype, leading to questions of

whether a misclassification is due to ISSAC’s limitation in

distinguishing phenotypes, or whether a re-evaluation of the

original tumor biopsy is required. Despite these concerns, we

concluded this to be the most stringent test. After an exhaustive

search on GEO, we identified 921 microarray samples from 16

studies that met the above criteria (as of January 2011).

Information on all datasets (e.g., publication sources, Affymetrix

platforms, GEO dataset IDs, and microarray sample IDs), studies,

and GEO microarray sample IDs used in our study is available in

Table 1, Table S1, and Table S2, respectively.

Raw microarray intensity data (.CEL files) were obtained online

from GEO and preprocessed uniformly. More specifically,

common probe-sets were found across all transcriptome samples,

and consensus preprocessing was performed on all the raw

microarray image data to build a consensus dataset. This step

removes one major non-biological source of variance between

different studies. These preprocessed samples were used to build a

multi-study integrated dataset of human brain cancer and normal

brain transcriptomes. Finally, stringent probe-set filtering was used

to remove spurious classifier features. Our consensus preprocessing

and probe-set filtering methods are explained in further detail

below. Our integrated and uniformly pre-processed dataset is

available on our group’s webpage (http://price.systemsbiology.

net/downloads) as a community resource for those who wish to

conduct their own analyses.

Consensus preprocessing using GCRMA
All gene expression data used in our study were measurements

conducted on either the Affymetrix Human Genome U133A or

U133Plus2.0 oligonucleotide microarrays. The expression level of

a target gene on these two platforms is measured by first

quantifying the total intensity of fluorescently labeled RNA

fragments (from patient specimens) that bind to a probe set, or

the set of complementary 25-mer oligonucleotide probe sequences.

The intensities of all probe sets (raw measurements in the form of

.CEL files) are then adjusted for background variability and

normalized across all samples to obtain the target genes’ final

expression values.

Raw .CEL data files were downloaded directly from GEO.

Probe set information used in this study were based on the latest

Affymetrix annotations. Raw intensity measurements of all

microarray samples considered in our study were preprocessed

collectively (consensus preprocessing) using the MATLAB imple-

mentation of the microarray preprocessing GCRMA [80]. Only

the probe sets that map to known genes and exist on both

Affymetrix platforms (same oligonucleotide sequences) were

considered for preprocessing. The use of individual Affymetrix

probe sets as classifiers (and not the mean or median of their

expression values as demonstrated in other microarray-based

studies) imposes limitations in the classifiers’ multi-platform

compliance, as discussed in Text S6 and Text S7.

Probe set filtering using MAS5 calls
Probe sets of Affymetrix microarrays have ‘‘perfect match’’

probes that are exactly complementary to the target gene’s mRNA

sequence. They also have ‘‘mismatch’’ probes that contain a

mismatched nucleotide halfway along the probe sequence, and are

used to estimate the degree of non-specific binding. To ensure that

a probe set is reliably detected, the measurements of the ‘‘perfect

match’’ probes must be significantly greater than those of the

‘‘mismatch’’ probes. This is usually assessed based on statistical

measures. The MAS5 preprocessing software makes expression

quality calls based on the nonparametric Wilcoxon signed-rank

test. The ‘‘absent’’ call is made when the p-value is greater than

0.06, representing no significant difference between the measure-

ments of the ‘‘perfect match’’ and those of the ‘mismatch’ probes

[81]. We eliminated probes that were determined to be ‘‘absent’’

in all samples of the consensus dataset. After this probe set filtering
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step, 19,656 probe sets (corresponding to target genes) within each

microarray sample were kept for further analysis.

All GCRMA preprocessing and MAS5 probe set filtering

procedures were conducted separately for training and test set

samples, i.e., inside each cross-validation or hold-out loop, in order

to avoid possible cross-talk between the two datasets. Genes that

were excluded based on the MAS5 ‘‘absent’’ calls on the training

data were also removed from the corresponding test data.

Description of ISSAC algorithm
A tree-structured framework for brain cancer

diagnostics. Let L denote the set of class labels, in our case

the seven brain phenotypes: six cancers and normal. Given an

expression profile x, the objective is to determine its true

phenotype Y [ L.

The main assumption is that there are natural groupings L 5L
among the phenotypes. Thus, testing for these groupings can more

efficiently utilize the available training data, leading to more

accurate classification than testing for each phenotype individu-

ally. Based on these attributes, the natural structure to represent L
is then a diagnostic hierarchy in the form of a binary hierarchical

decision tree T. Each node t [ T is associated with a set of

phenotypes Lt 5 L. The root of T contains all the phenotypes and

each leaf (terminal node) of T delineates a single phenotype.

Overall, this representation is nested, in the sense that the set of

phenotypes at every non-terminal node is the disjoint union of the

phenotypes of the two child nodes. This tree is built from the

training data by agglomerative hierarchical clustering derived

from features of the profiles, as discussed below.

Node classifiers are assembled according to the

diagnostic hierarchy. There is a binary classifier ft for every

node t [ T except for the root. The classifier ft is a function of the

expression profile x. Put simply, ft is a collective ‘‘test’’ for

phenotypes in Lt versus all other phenotypes. More formally, the

classifier returns two possible outcomes: ft (x) = 1 (i.e., positive)

signals that we accept the hypothesis that Y [ Lt, and ft (x) = 0 (i.e.,

negative) signals that we reject this hypothesis and conclude that Y

6[ Lt. In particular, ft is not a test for Lt versus the phenotypes in the

sibling of t, as would be the case with a standard decision tree.

Rather, ft looks for traits within a given profile x which

characterize all phenotypes in Lt simultaneously, such that a positive

result signifies that the classifier assumes the true class of x belongs

to Lt.

Classifier learning begins at the two child nodes of the root, and

the classifiers are learned from two types of training data. The

positive training data for learning the classifier ft for node t are all

the expression profiles of the phenotypes in Lt. The negative

training data are all the profiles of the phenotypes that are not in

Lt.

Being binary, each classifier has two performance metrics: the

sensitivity of ft is the probability that ft (x) = 1 given x is from the

positive training data, and the specificity of ft is the probability that ft
(x) = 0 given x is from the negative training data. Due to the

coarse-to-fine, hierarchical manner in which the classifiers are

processed, we required the sensitivity of ft to be as close to unity as

possible. This can be accomplished at the expense of specificity by

adjusting a threshold, as discussed below. The reason for imposing

a high sensitivity on each classifier is that if a test profile is rejected

from belonging to Lt by the classifier when in fact it does belong to

Lt, it cannot be recovered. However, the reduced specificity is only

local to each node, and the overall specificity increases with testing

at subsequent nodes.

A coarse-to-fine screening yields candidate

phenotypes. The strategy for processing any given profile x

with the diagnostic hierarchy is breadth-first, coarse-to-fine.

Starting from the two child nodes of the root, classifiers are

executed sequentially and adaptively, with ft performed if and only

if all its ancestor tests are performed and are positive. More

specifically, ft is performed if and only if fs = 1 for every node s [ T

between t and the root. As soon as ft = 0 for a non-terminal node t,

none of the descendant classifiers in the sub-tree rooted at t are

performed. This is because a negative response of ft means that the

phenotype is unlikely to belong to Lt and the set of phenotypes

associated with descendant of t, which are necessarily subsets of Lt.

This facilitates pruning whole subsets of phenotypes at once.

The complete coarse-to-fine screening process for x results in a

set of detected phenotypes. We denote this set by L(x) 5 L. These

are the phenotypes corresponding to a complete chain of positive

results for all ft from root to leaf. Equivalently, L(x) is the set of

phenotypes that are not ruled out by any test performed. During

the diagnostic process, a profile may traverse only one path all the

way to the terminal node. In this case, L(x) consists of a single

phenotype d, and the diagnostic process terminates with Y = d as

the predicted phenotype. However, a profile may also traverse

multiple branches to the terminal nodes of T, in which case L(x)

consists of multiple candidate phenotypes (see the discussion on

resolving ambiguities below). Moreover, a profile may reach no

terminal nodes, in which case L(x) is empty. When no terminal

node is reached, the profile is determined to be outside of L, and

labeled as ‘Unclassified’.

Resolving ambiguities using a decision-tree

approach. When L(x) consists of multiple phenotypes, it

becomes necessary to refine the diagnosis. The ambiguity is

resolved by another tree-structured process – an ordinary decision

tree based on the same diagnostic hierarchy. For every pair of

sibling nodes, e.g., Lt~fEPNg and Ls~fGBM,OLG,PAg, we

learn a classifier gt,s which tests Y [ Lt versus Y [ Ls, just as in an

ordinary decision-tree (the process of classifier identification is

elaborated below). Starting from the root of the tree, execution of

the decision-tree classifiers directs a profile to one of two sibling

nodes sequentially until it reaches a terminal node. Unlike the

process of traversing the hierarchy of node classifiers, a sample that

enters the decision tree is directed to one and only one leaf node,

and hence uniquely labeled.

Classifier design and learning. Every node classifier is

based on expression level comparisons between two genes. Let G

be the set of all genes for which we have microarray expression

data, and denote the set of all distinct pairs of genes by P. For each

gene-pair gi,gj

� �
[ P, consider the Boolean feature Zij (x) [ 0,1f g

of an expression profile x = xg, g[G
� �

. Zij (x) assumes the value 1

if gene gi is expressed higher than gene gj (i.e., xgi
wxgj

) in x, and

the value 0 otherwise (i.e., xgi
ƒxgj

). These are the features that

have been used in previous work on relative expression reversals

[31]. Each node classifier f is constructed from a small set of gene-

pairs P 5 P, the binary outcomes of Zij for all i,jð Þ [ P, and a

constant threshold k. More specifically, f (x) = 1 if
P

gi ,gj[Pð Þ Zij$k,

and f (x) = 0 otherwise. The threshold k takes values between 1 and

|P|.

There is a classifier of this nature for every node t [ T, except for

the root. The set of gene-pairs P = Pt and threshold k = kt depend

on the node t. Hence, for each t, the classifier ft = 1 if at least kt of

the gene-pair comparisons in Pt are positive Zij~1
� �

; otherwise,

ft = 0. The comparisons are chosen such that, for each pair gi,gj

� �

in Pt, we expect to see gene gi expressed more than gene gj under

the assumption that the phenotype of x belongs to Lt, whereas if

the phenotype of x does not belong to Lt, we expect to see the

reverse. For every node t, every pair of all gene-pair combinations
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is ‘‘scored’’ by the difference between the probability of the event

that Zij = 1 given Y [ Lt and the probability given Y 6[ Lt. These

probabilities are estimated from the training data, and the subset

of pairs with the highest scores are chosen.

Since each positive (resp., negative) comparison is viewed as

evidence for Y [ Lt (resp., Y 6[ Lt), we can then favor sensitivity over

specificity by varying the threshold kt. That is, by choosing a

relatively small value for kt relative to the number of comparisons

in Pt, we can make it highly likely that the classifier responds

positively when in fact the sample belongs to the set Lt. We show

the sets of gene-pairs Pt for each of the twelve nodes in our

diagnostic hierarchy in Table 2 and an illustrative example in

Figure 1. Finally, the decision tree classifiers gt,s are all based on

comparisons of single gene-pairs at all edges of the diagnostic

hierarchy.

While multiple gene pairs were used at each decision point in

the node-based tree, only a single gene pair was used at each

decision point in the decision-tree. This is due to the difference in

the motivation of building the two trees; the node-based tree was

constructed to maximize sensitivity and minimize false-positives

with as many pairs as necessary, while the decision-tree was

designed to resolve multiple diagnoses (i.e. ties) which could be

done with only one pair. We show the pair of genes for each of the

six decision-tree classifiers in Table 3 and Figure 2. MATLAB

implementations of the ISSAC algorithm and a step-by-step

tutorial are available to download at http://price.systemsbiology.

net/downloads.

Selecting genes that encode extracellular products
Using Gene Ontology (GO) annotations, we have identified a

list of 767 genes (mapped on 1,085 total probes) in every

transcriptome sample that encode for possible blood-borne

proteins. Specifically, we selected only the genes whose products

are annotated to be in either the ‘Extracellular Space’ or the

‘Extracellular Region’ cellular locations. We use this gene set as a

starting point for targeted blood diagnostics. All computational

steps and analyses in regards to molecular signature discovery are

identical to those discussed above.

Supporting Information

Figure S1 The overall method of ISSAC can be summarized

into three main steps. A ISSAC constructs the framework for brain

cancer diagnosis – a tree-structured hierarchy of all brain cancer

phenotypes built using an agglomerative hierarchical clustering

algorithm on gene expression training data. B Training on gene-

expression data from all brain phenotypes, ISSAC identifies

disjoint, gene-pair classifiers at all nodes (excluding the root) and

edges of the diagnostic hierarchy, and accumulates them into their

respective marker panels. The chosen pairs are the ones that best

differentiate between the phenotype sets, and are based entirely on

the reversal of relative expression. C ISSAC uses the gene-pair

classifiers for class prediction. Briefly, given a gene expression

profile, ISSAC executes the node classifiers in a hierarchical, top-

down fashion within the disease diagnostic hierarchy to identify

the phenotype(s) whose class-specific signature(s) is present. In case

of multiple class candidates (i.e. node classifiers for multiple leaves

are positive), the ambiguity is resolved by aggregating all the

decision-tree classifiers into a classification decision-tree, thereby

leading any expression signature down one unique path toward a

single phenotype.

(TIFF)

Figure S2 Brain phenotypes are grouped into a global diagnostic

hierarchy, which allows an intuitive representation of the

classification process. The diagnostic hierarchy is built using a

data-driven, iterative approach, and is free of manual, ad-hoc

construction. In each iteration, two classes, or two groups of

classes, with the lowest TSP score (Materials and Methods and

Text S1) among all pair-wise comparisons, come together to form

a node. This approach optimizes overall classification by placing

the more challenging decisions further away from the base of the

tree (i.e. root), thereby ensuring only the minimum misclassifica-

tions percolate down the tree. The final form of the brain

phenotype diagnostic hierarchy represents a hierarchical structure

of nested partitions, where the multi-class problem is decomposed

into smaller and smaller groups using a sequence of diagnostic

decision rules.

(TIFF)

Figure S3 Performance evaluation using ten-fold cross-valida-

tion. A Ten-fold cross-validation is conducted ten times to obtain

the average accuracy. In every iteration of cross-validation, the

order of samples within a particular class are randomly permuted

before training/test set allocations. B Our marker panel achieved

a 90.4% average of phenotype-specific classification accuracies,

showing strong promise against a multi-category, multi-dataset

background at the gene expression level.

(TIFF)

Figure S4 Statistical enrichment analysis on PANTHER

database biological processes and chromosome numbers of the

top 500, 1,000, and 1,500 gene-pair classifiers for GBM vs. OLG.

A ‘Immunity and Defense’ was the most enriched biological

process for ‘gene-set i’, reflecting the chronic inflammatory

conditions inside the GBM tumor. B ‘Neuronal Activities’ was

the most enriched biological process for ‘gene-set j’, reflecting

decrease in neuronal behavior and possibly other brain cell activity

inside the GBM tumor. The genes in ‘gene-set i’ and ‘gene-set j’

were the most enriched in C Chromosome 1 and D Chromosome

10, respectively, reflecting the major chromosome aberrations of

the two brain cancers. Y delineates the most enriched category.
aBiological process abbreviation (name): AAM (Amino acid

metabolism), APT (Apoptosis), CM (Carbohydrate metabolism),

CA (Cell adhesion), CC (Cell cycle), CPD (Cell proliferation and

differentiation), CSM (Cell structure and motility), DP (Develop-

mental processes), HMS (Homeostatis), IMD (Immunity and

defense), IPRT (Intracellular protein transport), MCN (Muscle

contraction), NA (Neuronal activities), NAM (Nucleic acid

metabolism), PMM (Protein metabolism and modification), SM

(Sulfur metabolism), ST (Signal transduction), and TR (Trans-

port).

(TIFF)

Figure S5 Gene-pair classifiers based on only the genes that

encode extracellular products. Gene pairs are shown at their

corresponding nodes in the brain disease diagnostic hierarchy.

The corresponding node-based marker panel consists of 41

classifier pairs and 71 unique classifier features.

(TIFF)

Table S1 Phenotype specimen descriptions and main results for

all GEO accessions used in this study.

(PDF)

Table S2 GEO microarray sample IDs used in this study.

(PDF)

Table S3 Node marker panel for brain cancer and normal

transcriptome classification. Node #: Corresponds to numerical

labels shown in the brain phenotype diagnostic hierarchy

(Figure 1). Brain phenotype abbreviation (name): EPN (Ependy-
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moma), GBM (Glioblastoma multiforme), MDL (Medulloblasto-

ma), MNG (Meningioma), normal (Normal brain), OLG (Oligo-

dendroglioma), and PA (Pilocytic astrocytoma). Gene i/Gene j: the

gene expressed higher and lower in the gene-pair, respectively,

within each corresponding phenotype. Gene name/Chromosome

locus: according to Entrez Gene. Affymetrix Probe ID: For both

Affymetrix Human Genome U133A and U133Plus2.0 Arrays. k:

The minimum number of gene-pair classifiers whose decision rule

outcomes for a test sample are required to be ‘true ( = 1)’ for the

sample to be classified as the phenotype(s) of the corresponding

node.

(PDF)

Table S4 Decision-tree marker panel for brain cancer and

normal transcriptome classification. For each classifier decision

rule (i.e. Is Gene i.Gene j ?), 1 and 0 delineates ‘true’ and ‘false’,

respectively, and ‘–’ denotes that the outcome is not used for

classification. The vertical binary pattern under each class label

corresponds to a phenotype-specific molecular signature.

(PDF)

Table S5 Summary of expression differences between genes-pair

classifiers. Node #: Corresponds to numerical labels shown in the

brain phenotype diagnostic hierarchy (Figure 1). Brain phenotype

abbreviation (name): EPN (Ependymoma), GBM (Glioblastoma

multiforme), MDL (Medulloblastoma), MNG (Meningioma),

normal (Normal brain), OLG (Oligodendroglioma), and PA

(Pilocytic astrocytoma). Sample number: Number of total samples

in classes of respective Node #. Gene i/Gene j: the gene expressed

higher and lower in the gene-pair, respectively, within each

corresponding phenotype. Gene name/Chromosome locus: ac-

cording to Entrez Gene. Affymetrix Probe ID: For both

Affymetrix Human Genome U133A and U133Plus2.0 Arrays. k:

The minimum number of gene-pair classifiers whose decision rule

outcomes for a test sample are required to be ‘true ( = 1)’ for the

sample to be classified as the phenotype(s) of the corresponding

node. Ranked expression differences of each gene pair (i.e.

Rank_gene_i – Rank_gene_j) were calculated for each sample,

and Mean, St. dev., Max., Min., and Median were found across all

samples within classes of respective Node #.

(PDF)

Table S6 Hold-one-lab-in validation accuracies of glioblastoma

signatures.

(PDF)

Table S7 Hold-one-lab-in (H1LI) and leave-one-lab-out (L1LO)

validation accuracies of glioblastoma signatures when training

data were constrained to 50 total samples. H1LI and L1LO

validations were performed ten times for each category of training

data. In each validation trial, 50 samples were randomly selected

from the single microarray dataset (for H1L1) or from the multi-

study, combined dataset (for L1LO).

(PDF)

Table S8 Ten-fold cross-validation accuracies when only the

node marker panel was required to reach unique diagnoses.

Sample size: Average proportion of total samples that reached

unique diagnoses via node marker panel. Accuracy: Reflects

average performance in ten-fold cross-validation conducted ten

times.

(PDF)

Table S9 Functional roles of 11 previously identified GBM

serum markers that are present in our extracellular-product

encoding marker-panel. ahttp://www.ncbi.nlm.nih.gov/gene.

(PDF)

Table S10 Ten-fold cross-validation accuracies of gene-pair

classifiers composed of genes that encode extracellular products.
aAccuracies reflect average performance in ten-fold cross-valida-

tion conducted ten times. The main diagonal gives the average

classification accuracy of each class (bold), and the off-diagonal

elements show the erroneous predictions. bUC (Unclassified

samples). When using the node classifiers, expression profiles that

did not exert a signature of any phenotype (i.e., did not percolate

down to at least one positive terminal node) were rejected from

classification. In this case, the Unclassified sample is treated as a

misclassification.

(PDF)

Text S1 Step-by-step description of how ISSAC works.

(PDF)

Text S2 Advantages of using relative expression reversals to

build classifiers.

(PDF)

Text S3 Twenty-five anatomical regions of the human brain

from which normal transcriptome samples were obtained.

(PDF)

Text S4 Global statistical enrichment analysis of gene-pair

classifiers.

(PDF)

Text S5 Whether ISSAC can play a role in identifying

misdiagnoses.

(PDF)

Text S6 Reasoning for selecting only Affymetrix microarray

platforms and for not using probe-specific offsets.

(PDF)

Text S7 Candidates of brain cancer molecular signatures.

(PDF)
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