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Abstract—Multiclass shape detection, in the sense of recognizing and localizing instances from multiple shape classes, is formulated

as a two-step process in which local indexing primes global interpretation. During indexing a list of instantiations (shape identities and

poses) is compiled, constrained only by no missed detections at the expense of false positives. Global information, such as expected

relationships among poses, is incorporated afterward to remove ambiguities. This division is motivated by computational efficiency. In

addition, indexing itself is organized as a coarse-to-fine search simultaneously in class and pose. This search can be interpreted as

successive approximations to likelihood ratio tests arising from a simple (“naive Bayes”) statistical model for the edge maps extracted

from the original images. The key to constructing efficient “hypothesis tests” for multiple classes and poses is local ORing; in particular,

spread edges provide imprecise but common and locally invariant features. Natural tradeoffs then emerge between discrimination and

the pattern of spreading. These are analyzed mathematically within the model-based framework and the whole procedure is illustrated

by experiments in reading license plates.

Index Terms—Shape detection, multiple classes, statistical model, spread edges, coarse-to-fine search, online competition.

�

1 INTRODUCTION

WEconsider detecting and localizing shapes in cluttered
gray-level images when the shapes may appear in

many poses and there are many classes of interest. In many
applications, a mere list of shape instantiations, where each
item indicates the generic class and approximate pose,
provides a useful global description of the image. (Richer
descriptions, involving higher-level labels, occlusion pat-
terns, etc., are sometimes desired.) The set of feasible lists
may be restricted by global, structural constraints involving
the joint configuration of poses; this is the situation in our
application to reading license plates.

In this paper, indexing will refer to noncontextual
detection in the sense of compiling a list of shape
instantiations independently of any global constraints;
interpretation will refer to incorporating any such con-
straints, i.e., relationships among instantiations. In our
approach, indexing primes interpretation.

1.1 Indexing

Ideally, we expect to detect all instances fromall the classes of
interest under a wide range of geometric presentations and
imaging conditions (resolution, lighting, background, etc.).
This can be difficult even for one generic class without
accepting false positives. For instance, all approaches to face
detection (e.g., [8], [31], [36]) must confront the expected

variations in the position, scale, and tilt of a face, varying
angles of illumination, and the presence of complex back-
grounds; despite considerable activity andmarked advances
in speed and learning, no approach achieves a negligible false
positive rate on complex scenes without missing faces. With
multiple shape classes, an additional level of complexity is
introduced and subtle confusions between classes must be
resolved in addition to false positives due to background
clutter.

Invariant indexing, or simply invariance, will mean a null
false negative rate during indexing, i.e., the list of reported
instantiations is certain to contain the actual ones. Dis-
crimination will refer to false positive error—the extent to
which we fantasize in our zeal to find everything. We
regard invariance as a hard constraint. Generally, para-
meters of an algorithm can be adjusted to achieve near-
invariance at the expense of discrimination. The important
tradeoff is then discrimination versus computation.

Hypothetically, one could achieve invariance and high
discrimination by looking separately for every class at every
possible pose (“templates for everything”). Needless to say,
with a large number of possible class/pose pairs, this would
be extremely costly, and massive parallelism is not the
answer. Somehow we need to look for many things at once,
which seems at odds with achieving high discrimination.

Such observations lead naturally to organizing multiclass
shape detection as a coarse-to-fine (CTF) computational process.
Begin by efficiently eliminating entire subsets of class/pose
pairs simultaneously (always maintaining invariance) at the
expense of relatively low discrimination. From the point of
view of computation, rejecting many explanations at once
with a single, relatively inexpensive “test” is clearly efficient;
after all, given an arbitrary subimage, the most likely
hypothesis by far is “no shape of interest” or “background”
and initially testing against this allows for early average
termination of the search. If “background” is not declared,
proceed to smaller class/pose subsets at higher levels of
discrimination and, finally, entertain highly discriminating

1606 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 12, DECEMBER 2004

. Y. Amit is with the Department of Statistics and the Department of
Computer Science, University of Chicago, Chicago, IL, 60637.
E-mail: amit@marx.uchicago.edu.

. D. Geman is with the Department of Applied Mathematics and Statistics,
and the Whitaker Biomedical Engineering Institute, The Johns Hopkins
University, Baltimore, MD 21218. E-mail: geman@jhu.edu.

. X. Fan is with the Department of Electrical and Computer Engineering,
The Johns Hopkins University, Baltimore, MD 21218.
E-mail: xdfan@cis.jhu.edu.

Manuscript received 18 Aug. 2003; revised 9 Apr. 2004; accepted 26 Apr. 2004.
Recommended for acceptance by D. Forsyth.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0234-0803.

0162-8828/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society



procedures but dedicated to specific classes and poses.
Accumulated false positives are eventually removedbymore
intense, but focused, processing. In this way, the issue of
computation strongly influences the very development of the
algorithms, rather than being an afterthought.

A natural control parameter for balancing discrimination
and computation is the degree of invariance of local features,
not in the sense of fine shape attributes, such as geometric
singularities of curves and surfaces, but rather coarse, generic
features which are common in a set of class/pose pairs.
“Spread features” ([1], [3], [8]) provide a simple example: A
local feature is said to be detected at a given location if the
response of the feature detector is strong enough anywhere
nearby. The larger the spreading (degree of local ORing), the
higher the incidence on any given ensemble of classes and
poses and checking for a certain number of distinguished
spread features provides a simple, computationally efficient
test for the ensemble. During the computational process, the
amount of spreading is successively diminished.

1.2 Interpretation

The outcome of indexing is a collection of instantiations
—class/pose pairs. No contextual information, such as
structural or semantic constraints, has been employed. In
particular, some instantiationsmaybe inconsistentwithprior
information about the scene layout.Moreover, several classes
will often be detected at roughly the same location due to the
insistence on minimizing false negatives. In this paper, the
passage from indexing to interpretation is largely based on
taking into account prior knowledge about the number of
shapes and the manner in which they are spatially arranged.
Assuming shapes do not overlap, a key component of this
analysis is a competition among shapes or sequences of
shapes covering the same image region, forwhichwe employ
a likelihood ratio test motivated by our statistical model for
local features. Since a relatively small number of candidate
instantiations are ever involved, it is also computationally
feasible to bring finer features into play, as well as template-
matching, contextual disambiguation, and other intensive
procedures.

1.3 New Directions
We explore three new directions:

. Multiple Shape Classes. Our previous work con-
cerned coarse-to-fine (CTF) representations and
search strategies for a single shape or object class
and, hence, was based entirely on pose aggregation.
We extend this to hierarchies based on recursively
partitioning both class and pose.

. Contextual Analysis. With multiple classes, testing
one specific (partial) interpretation against another is
eventually unavoidable, which means we need
efficient, online tests for competing hypotheses. In
particular, we derive online tests based on local
features for resolving one specific hypothesis (a
character at a given pose) against another.

. Model-Based Framework. We introduce a statistical
model for the local features which provides a
unifying framework for the algorithms employed
in all stages of the analysis and which allows us to
mathematically analyze the role of “spread features”
in balancing discrimination and computation during
coarse-to-fine indexing.

These ideas are illustrated by attempting to read the
characters appearing on license plates. Surprisingly, per-
haps, there does not seem to be any published literature apart
from patents. Several systems appear to be implemented in
theUS andEurope. For example, in London, cars entering the
metropolitan area are identified in order to charge an
entrance fee and, in France, the goal is to estimate the
average driving speed between two points. We have no way
to assess the performance of these implementations. Our
work was motivated by the problem of identifying cars
entering a parking garage forwhich current solutions still fall
short of commercial viability, mainly due to the high level of
clutter and variation in lighting. It is clear that, for any
specific task, there are likely to be highly dedicated
procedures for improving performance; for example, only
reporting plates with identical matches on two different
photos, taken at the same or different times. Our goal instead
is a generic solution which could be easily adapted to other
OCR scenarios and to other shape categories and, eventually,
to three-dimensional objects. In particular, we do not use any
form of traditional, bottom-up segmentation in order to
identify candidate regions or jump start the recognition
process. There are many well-developed techniques of this
kind in the document analysis literature which are rather
dedicated to specific applications; see, for example, the
review [24] or the work in [19].

Related work on visual attention, CTF search, hierarchical
template-matching, and local ORing is surveyed in the
following section. Our formulation of multiclass shape
detection is given in Section 3, followed in Section 4 by a
brief overview of the computational strategy. The statistical
model for the local features is described in Section 5, leading
to a natural likelihood ratio test for an individual detection.
Efficient indexing is the theme of Sections 6, 7, and 8. The
spread local features are introduced in Section 6, including a
comparison of spreading versus two natural alternatives—
summing them and downsampling—and the discrimina-
tion/computation tradeoff is studied under a simple statis-
tical model. How tests are learned from data and organized
into a CTF search are discussed in Sections 7 and 8,
respectively. In Section 9, we explain how an interpretation
of the image is derived from the output of the indexing stage.
The application to reading license plates, including the
contextual analysis, is presented in Section 10 and we
conclude with a discussion of our approach in Section 11.

2 RELATED WORK

Focus-of-Attention. The division of the system into indexing
followed by global interpretation is motivated by computa-
tional efficiency.More generally, our indexing phase is away
of focusing attention, which is studied in both computer vision
and in modeling biological vision. The purpose is to focus
subsequent, detailed processing on a small portion of the
data. Two frameworks are usually considered: task-indepen-
dent, bottom-up control based on the “saliency” of visual
stimuli (see, e.g., [16], [20], [28], [27]) and task-driven, top-
down control (see, e.g., [3], [25], [35], [36]). Our approach is
essentially top-down in that attention is determined by the
shapes we search for, although the coarsest tests could be
interpreted as generic saliency detectors.

CTF Search. CTF object recognition is scattered through-
out the literature. For instance, translation-basedversions can
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be found in [31], [17] and work on distance matching ([32]).
The version appearing in [12] prefigures our work. Related
ideas on dealing with multiple objects can be found in [2]. In
addition, CTF search motivated the face detection algorithm
in [3] andwas systematically explored in [8] basedonanested
hierarchy of pose bins (and CTF in complexity within bins)
and in [7] based on an abstract theoretical framework.
Variations have also been proposed in [33] and [36]:Whereas
most poses are explicitly visited, computational efficiency is
achieved by processing which is CTF in the sense of
progressively focusing on hard cases. Whatever the particu-
larCTFmechanism, the end result is that intensiveprocessing
is restricted to a very small portion of the image data, namely,
those regions containing actual objects or object-like clutter.
Work on efficient “indexing” based on geometric hashing
([18]) and Hough transforms ([14], [30]) is also related.

Context. The issue of context is central to vision and
several distinct approaches can be discerned in the literature.
In ours, context refers to structural rather than semantic
relationships; indexing is entirely noncontextual and is
followed by global interpretation in conjunction with
structural constraints. In contrast, all scene attributes are
discovered simultaneously in the compositional approach
([13]), which provides a powerful method for dealing with
context and occlusion, but involves formulating interpreta-
tion as global optimization, raising computational issues.
Otherwork involves “contextual priming” ([34]) to overcome
poor resolution by starting interpretation with an estimate of
semantic context based on low-level features. Context can
also be exploited ([6]) to provide local shape descriptors.

Natural Vision. There are strong connections between
spreading local features and neural responses in the visual
cortex. Responses to oriented edges are found primarily in
V1, where so-called “simple” cells detect oriented edges at
specific locations, whereas “complex” cells respond to an
oriented edge anywhere in the receptive field; see [15]. In
other words, local “ORing” is performed over the receptive
field region and the response of a complex cell can thus be
viewed as a “spread edge.” Because of the high density of
edges in natural images, the extent of spreading must be
limited; too much will produce responses everywhere.
Neurons in higher level retinotopic layers V2 and V4 exhibit
similar properties, inspiring the work in [9] and [10] about
designing a neural-like architecture for recognizing patterns.
In [1] and [4], thespreading of more complex features is
incorporated into a neural architecture for invariant detec-
tion. An extension to continuous-valued variables can be
achievedwith a “MAX”operation, a generalization ofORing,
as proposed in [29].

Hierarchical Template Matching. Recent work on
hierarchical template matching using distance transforms,
such as [11], is related to ours in several respects even
though we are not doing template-matching per se. Local
ORing as a device for gaining stability can be seen as a
limiting, binary version of distance transforms such as the
Chamfer distance ([5]). In addition, there is a version of CTF
search in [11] (although only translation is considered based
on multiple resolutions) which still has much in common
with our approach, including edge features, detecting
multiple objects using a class hierarchy, and imposing a
running null false negative constraint. Another approach to
edge-based, multiple object detection appears in [26].

Local Features. Finally, in connectionwith spreading local
features, another mechanism has been proposed in [22] that
allows for affine or 3D viewpoint changes or nonrigid
deformations. The resulting “SIFT descriptor,” based on
local histograms of gradient orientations, characterizes a
neighborhood (in the Gaussian blurred image) around each
individual detected key point, which is similar to “spread-
ing” the gradients over a 4� 4 region. A detailed comparison
of the performance of SIFT with other descriptors can be
found in [23]

3 SHAPE DETECTION

Consider a single, gray-level image. In particular, there is no
information from motion, depth, or color. We anticipate a
large range of lighting conditions, as illustrated in Fig. 1 (see
also Fig. 5), as well as a considerable range of poses at which
each shape may be present. Moreover, we anticipate a
complex background consisting partly of extended struc-
tures, such as clutter and nondistinguished shapes, which
locally may appear indistinguishable from the shapes of
interest.

Let I ¼ fIðzÞ; z 2 Zgbe the rawintensitydataon the image
lattice Z. Each shape of interest has a class c 2 C and each
instantiation (presentation in I) is characterized by a
pose � 2 �. Broadly speaking, the pose � represents (“nui-
sance”) parameters which at least partially characterize the
instantiation. For example, one component of the pose of a
printed character might be the font. In some contexts, one
might also consider parameters of illumination. For simpli-
city, however, we shall restrict our discussion to the geometric
presentation and, specifically (in view of the experiments on
license plates), to position, scale, and orientation. Much of
what follows extends to affine and more general transforma-
tions; similarly, it would not be difficult to accommodate
parameters such as the font of a character.

For a pose �, let zð�Þ be the translation, �ð�Þ the scale, and
�ð�Þ the rotation. Denote by �0 the identity pose, namely,
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Fig. 1. Two images of the back of a car from which the license plate is to be read.



zð�0Þ ¼ �ð�0Þ ¼ 0 and �ð�0Þ ¼ 1, and by R a reference

sublattice of the full image lattice Z such that any shape
at �0 fits inside R. For any subset F of Z, let

F ð�Þ ¼ fz 2 Z : ��1z 2 Fg:

In particular, Rð�Þ is the “support” of the shape at pose �.
The set of possible interpretations for an image I is

Y ¼
[K
k¼1

ðC ��Þk;

where, obviously, K represents the maximum number of
shapes in any given layout. Thus, each interpretation has
the form y ¼ fðc1; �1Þ; � � � ; ðck; �kÞg. The support of an
interpretation is denoted

RðyÞ ¼ [k
i¼1Rð�kÞ:

We write y� for the true interpretation and assume it is
unambiguous, i.e., y� ¼ y�ðIÞ.

Prior information will provide some constraints on the
possible lists; for instance, in the case of the license plates, we
knowapproximately howmany characters there are andhow
they are laid out. In fact, it will be useful to consider the true
interpretation to be a randomvariable,Y , and to suppose that
knowledge about the layout is captured by a highly
concentrated prior distribution on Y. Most interpretations
have mass zero under this distribution and many interpreta-
tions in its support, denoted byY� ¼ fy 2 Y : �ðyÞ > 0g, have
approximately the samemass. Indeed, for simplicity, wewill
assume that the prior is uniform on its support Y�.

4 OVERVIEW OF THE COMPUTATIONAL STRATEGY

What follows is a summary of the overall recognition
strategy.All of thematerial from this point to the experiments
pertains to one of four topics:

. Statistical Modeling. The gray-level image data I is
transformed into an arrayof binary local featuresXðIÞ
which are robust to photometric variations. For
simplicity, we use eight oriented edge features
(Section 5), but the entire construction can be applied
to more complex features, for example, functions of
the original edges (see Section 11). We introduce a
likelihoodmodelP ðXjY ¼ yÞ forXðIÞ given an image
interpretation Y ¼ y. Thismodelmotivates the defini-
tion of an image-dependent set DðXÞ � C �� of
detections, called an index, based on likelihood ratio
tests. According to the invariance constraint, the tests
are performed with no missed detections (i.e., null
type I error), which in turn implies that Y � D with
probability one (at least in principle). However, direct
computation of D is highly intensive due to the loop
over class/pose pairs.

. Efficient Indexing. The purpose of the CTF search is
to accelerate the computation of D. This depends on
developing a “test” TB for an entire subset B � C ��
whose complexity is of the order of the test for a single
pair ðc; �Þ but which nonetheless retains some dis-
criminating power; see Section 6. The setD \B is then
found by performing TB first and then exploring the
individual hypotheses in B one-by-one only if TB is

positive. This two-step procedure is then easily
extended (in Section 8) to a full CTF search for the
elementsofDand the computationalgainprovidedby
the CTF search can be estimated.

. Spreading Features. The key ingredient in the
construction of TB is the notion of a “spread feature”
based on local ORing. Checking for a minimum
number of spread features provides a test for the
hypothesis Y \B 6¼ ;. The same spread features are
used formanydifferent bins, thusprecomputing them
at the start yields an important computational gain. In
the Appendix, the optimal domain of ORing, in terms
of discrimination, is derived under the proposed
statistical model and some simplifying assumptions.

. Global Interpretation. The final phase is choosing
an estimate ŶY � D. A key step is a competition
between any two interpretations y; y0 � D for which
RðyÞ � Rðy0Þ, i.e., which cover the same image
region. The subinterpretations must satisfy the prior
constraints, namely, y; y0 2 Y�; see Section 9. A
special case of this process is a competition between
single detections with different classes but very
similar poses. (We assume a minimum separation
between shapes, in particular no occlusion.) The
competitions once again involve likelihood ratio
tests based on the local feature model.

5 DATA MODEL

We describe a statistical model for the possible appearances
of a collection of shapes in an image as well as a crude
model for “background,” i.e., those portions of the image
which do not belong to shapes of interest.

5.1 Edges

The image data is transformed into arrays of binary edges,
indicating the locations of a small number of coarsely defined
edge orientations. We use the edge features defined in [3],
which more or less take the local maxima of the gradient in
one of four possible directions and two polarities. These
edges have proven effective in our previous work on object
recognition; see [2] and [8]. There is a very low threshold on
the gradient; as a result, several edge orientations may be
present at the same location. However, these edge features
have three important advantages:Theycanbecomputedvery
quickly, they are robust with respect to photometric varia-
tions, and they provide the ingredients for a simple “back-
ground” model based on labeled point processes. More
sophisticated edge extraction methods can be used [21],
although at some computational cost. In addition, more
complex features can be defined as functions of the basic
edges, thus decreasing their background density and
increasing their discriminatory power (see [2]) and in such a
way thatmakes the assumed statisticalmodelsmore credible.
For transparency, we describe the algorithm and report
experiments with the simple edge features.

Although the statistical models below are described in
terms of the edges arrays, implicitly they determine a
natural model for the original data, namely, uniform over
intensity arrays giving rise to the same edges. Still, we shall
not be further concerned with distributions directly on I.

Let X�ðzÞ be a binary variable indicating whether or not
an edge of type � 2 � is present at location z 2 Z. The type �
represents the orientation and polarity. The resulting family
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of binary maps—transformed intensity data—is denoted by

X ¼ XðIÞ ¼ fX�ðzÞg�;z. We still assume that Y ¼ Y ðXÞ, i.e.,
Y is uniquely determined by the edge data.

5.2 Probability Model

To begin with, we assume the random variables fX�ðzÞ; � 2
�; z 2 Zg are conditionally independent given Y ¼ y. We offer

two principal “justifications” for this hypothesis as well as

an important drawback:

1. Conditioning. In general, the degree of class-condi-
tional independence among typical local features
depends strongly on the amount of information
carried in the “pose” �—the more detailed the
description of the instantiation, the more decoupled
the features. In the case of printed characters, most
of the relevant information (other than the font) is
captured by position, scale, and orientation.

2. Simplicity. In a Bayesian context, conditional inde-
pendence leads to the “naive Bayes classifier,” amajor
simplification. When the dimensionality of the fea-
tures is “large” relative to the amount of training data,
favoring simple over complex models (and, hence,
sacrificing modeling accuracy) may be ultimately
advantageous in terms of both computation and
discrimination.

3. Drawback. The resulting “background model” is not
realistic. The background is a highly complex mixture
model in which nearby edges are correlated due to
clutterconsistingofpartsofoccludedobjectsandother
nondistinguished structures. In particular, the inde-
pendence assumption renders the likelihood of actual
“background” data (see (4)) far too small and this in
turn leads to the traditional MAP estimator, ŶYmap,
being unreliable. It is for this reason that we will not
attempt to compute ŶYmap. Instead, we base the
upcoming likelihood ratio tests on thresholds corre-
sponding to a fixedmisseddetection rate learned from
data, either by estimating background correlations or
test statistics under shape hypotheses.

For any interpretation y ¼ fðci; �iÞg 2 Y�, we assume the

shapes have nonoverlapping supports, i.e., Rð�iÞ \Rð�jÞ ¼
;; i 6¼ j. Decompose the image lattice into Z ¼ RðyÞ [RðyÞc.
The region RðyÞc represents “background.” Of course, the

imagedataoverRðyÞcmaybequite complexdue toclutterand

other regular structures, such as the small characters and
designs which often appear on license plates. It follows that

P ðXjY ¼ yÞ ¼ P ðXRðyÞcÞjY ¼ yÞ
Yk
i¼1

P ðXRð�iÞjY ¼ yÞ; ð1Þ

where we have written XU for fX�ðzÞ; � 2 �; z 2 Ug for a
subset U � Z.

We assume that the conditional distribution of the data
over each Rð�iÞ depends only on ðci; �iÞ and, hence, the
distribution of XRð�iÞ is characterized by the product of the
individual (marginal) edge probabilities

P ðX�ðzÞ ¼ 1jci; �iÞ; z 2 Rð�iÞ; ð2Þ

where we have written P ð. . . jci; �iÞ to indicate conditional
probability given the event fðci; �iÞ 2 Y g. Notice that (2) is
well-defined due to the assumption of nonoverlapping
supports.

For ease of exposition, we choose a very simple model of
constantedgeprobabilitiesonadistinguished, classandpose-
dependent set ofpoints. The ideasgeneralize easily to the case
where the probabilities vary with type and location. Specifi-
cally, we make the following approximation: For each class c
and for each edge type �, there is a distinguished setG�;c � R

of locations in the referencegridatwhichanedgeof type� has
high relative likelihood when shape c is at the reference pose
(see Fig. 2a). In other words, G�;c is a set of “model edges.”
Furthermore,givenshapecappearsatpose�, theprobabilities
of the edges at locations z 2 Rð�Þ are given by:

P ðX�ðzÞ ¼ 1jc; �Þ ¼ p if z 2 G�;cð�Þ ði:e:; ��1z 2 G�;cÞ
q otherwise;

�

where p >> q. Finally we assume the existence of a

“background” edge frequency which is the same as q.
From (1) and (2), the full data model is then

P ðXjY ¼ yÞ ¼
Y
�2�

Y
z2RðyÞc

qX�ðzÞð1� qÞ1�X�ðzÞ

�
Yk
i¼1

� Y
z2G�;ci

ð�iÞ
pX�ðzÞð1�pÞ1�X�ðzÞ

Y
z2Rð�iÞnG�;ci

ð�iÞ
qX�ðzÞð1� qÞ1�X�ðzÞ

�
:

ð3Þ
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Fig. 2. (a) The horizontal edge locations in the reference grid, Ghor;5. (b) Edges in the image for one pose,Ghor;5ð�Þ. (c) The model edges,GhorðBÞ, for
the entire pose bin B ¼ f5g ��0. (d) A partition of GhorðBÞ into disjoint regions of the form zþ Vhor. (e) The locations (black points) of actual edges
and the domain of local ORing (gray strip), resulting in XsprðziÞ ¼ 1.



Under this model, the probability of the data given no
shapes in the image is

P ðXjY ¼ ;Þ ¼
Y
�2�

Y
z2Z

qX�ðzÞð1� qÞ1�X�ðzÞ: ð4Þ

6 INDEXING: SEARCHING FOR INDIVIDUAL SHAPES

Indexing refers to compiling a list DðIÞ of class/pose
candidates for an image I without considering global
constraints. The model described in the previous section
motivates a very simple procedure for defining D based on
likelihood ratio tests. The snag is computation—compiling
the list by brute force computation is highly inefficient. This
motivates the introduction of “spread edges” as a mechan-
ism for accelerating the computation of D.

6.1 Likelihood Ratio Tests

Consider a nonnull interpretation y ¼ fðc1; �1Þ; . . . ; ðck; �kÞg
2 Y�.We are going to compare the likelihood of the edge data
under Y ¼ y to the likelihood of the same data under Y ¼ ~yy,
where ~yy is the same as y except that one of the elements is
replaced by the background interpretation, say ~yy ¼
fðc2; �2Þ; . . . ; ðck; �kÞg.Then,using(3)andcancellationoutside
G�;c1ð�1Þ:

P ðXjY ¼ yÞ
P ðXjY ¼ ~yyÞ ¼

Y
�

Y
z2G�;c1

ð�1Þ

p

q

� �X�ðzÞ 1� p

1� q

� �1�X�ðzÞ
: ð5Þ

This likelihood ratio simplifies to:

log
P ðXjY ¼ yÞ
P ðXjY ¼ ~yyÞ ¼

X
�

X
z2G�;c1

ð�1Þ
�X�ðzÞ � �;

where

� ¼ log
pð1� qÞ
ð1� pÞq and � ¼ log

1� q

1� p

and the resulting statistic only involves edge data relevant
to the class pose pair ðc1; �1Þ.

The log likelihood ratio test at zero type I error relative to
the null hypothesis ðc; �Þ 2 Y (i.e., for class c at pose �)
reduces to a simple, linear test—evaluating

Tc;�ðXÞ¼: 1 Jc;�ðXÞ > �c;�
� �

¼ 1 if Jc;�ðXÞ > �c;�
0 otherwise;

�
where

Jc;�ðXÞ¼:
X
�

X
z2G�;cð�Þ

X�ðzÞ ð6Þ

and the threshold �c;� is chosen such that P ðTc;�ðXÞ ¼
0jc; �Þ ¼ 0.Note that the sum isover a relatively small number
of features,concentratedaroundthecontoursof theshape, i.e.,
on the set G�;cð�Þ. We therefore seek the set DðIÞ of all pairs
ðc; �Þ for which Tc;�ðXÞ ¼ 1. Notice that P ðY � DÞ ¼ 1.

Bayesian Inference. Maintaining invariance (no missed
detections) means that we want to perform the likelihood
ratio test in (5) with no missed detections. Of course
computing the actual (model-based) threshold which
achieves this is intractable and, hence, it will be estimated
from training data; see Section 7. Notice that the threshold of
unity in (5) would correspond to a likelihood ratio test

designed to minimize total error; moreover, ðc1; �1Þ 2 ŶYmap

implies that the ratio in (5) must exceed unity. However, due
to the severeunderestimationofbackground likelihoods (due
to the independence assumption), taking a unit threshold
would result in a great many false positives. In other words,
the thresholds that arise froma strict Bayesian analysis are far
more conservative than necessary to achieve invariance. It is
for these reasons that the model motivates our computational
strategy rather than serving as a foundation for Bayesian inference.

6.2 Efficient Search

Webeginwithpurelypose-basedsubsetsofC ��. Fix c, let�0

be a neighborhood of the identity pose �0, and put
B ¼ fcg ��0. Suppose we want to find all � 2 �0 for which
Tc;�ðXÞ ¼ 1.Wecouldperformabrute forcesearchover theset
�0 andevaluateJc;� foreachelement.Generally,however, this
procedure will fail for all elements inB since the background
hypothesis is statistically dominant (relative toB). Therefore,
it would be preferable to have a computationally efficient
binary test for the compound eventB. If that test fails, there is
no need to perform the search for individual poses. For
simplicity,we assume that either the image contains only one
instance fromB—ðHBÞ or no shape at all—ðH;Þ.

The test for HB versus H; will be based on a thresholded
sumof amoderate number of binary features, approximately
the samenumber as in (6). The test shouldbe computationally
efficient (hence, avoiding large loops and online optimiza-
tion) and have a reasonable false positive rate at a very small
false negative rate. Note that the brute force search throughB
can be viewed as a test for the above hypothesis of the form

Tbrute
B ðXÞ ¼ 1 if max�2�0

Tc;�ðXÞ ¼ 1
0 otherwise:

�

Let G�ðBÞ denote the set of image locations z of all model
edges of type � for the poses in B:

G�ðBÞ ¼
[
�2�0

G�;cð�Þ: ð7Þ

This is shown in Fig. 2c for the class c ¼ 5 for horizontal
edges of one polarity and a set of poses �0 consisting of
small shifts and scale changes. Roughly speaking, G�ðBÞ is
merely a “thickening” of the �-portion of the boundary of a
template for class c.

6.3 Sum Test

One straightforward way to construct a bin test from the
edge data is simply to sum all the detected model edges for
all the poses in B, namely, to define

Jsum
B ¼:

X
�2�0

Jc;�ðXÞ ¼
X
�

X
�2�0

X
z2G�;cð�Þ

X�ðzÞ ¼
X
�

X
z2G�ðBÞ

X�ðzÞ:

The corresponding test is then

Tsum
B ¼ 1 Jsum

B > �sumB

� �
; ð8Þ

meaning, of course, that we choose HB if Tsum
B ¼ 1 and

choose H; if Tsum
B ¼ 0. The threshold should satisfy

P ðTsum
B ðXÞ ¼ 0jHBÞ ¼ 0:

The discrimination level of this test (i.e., false positive rate
or type II error) is

	sumB ¼ P ðTsum
B ðXÞ ¼ 1jH;Þ:
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Wewould not expect this test to be very discriminating. A
simple computation shows that, under HB, the probabilities
of X�ðzÞ ¼ 1 for z 2 G�ðBÞ, are all on the order of the
background probabilities q. Consequently, the null type I
error constraint can only be satisfied by choosing a relatively
low threshold �sumB , in which case 	sumB might be rather large.
In other words, in order to capture all the shapes of interest,
wewouldneed to allowmanyconfigurations of clutter (not to
mention other shapes) to pass the test. This observation will
be examined more carefully later on.

6.4 Spread Test

A more discriminating test for B can be constructed by
replacing

P
G�ðBÞ X�ðzÞ by a smaller sumof “spread edges” in

order to take advantage of the fact that, under HB, we know
approximately howmany on-shape edges of type � to expect
in a small subregion of G�ðBÞ. To this end, let V� be a
neighborhood of the origin whose shape may be adapted to
the feature type �. (For instance, for a vertical edge �,V� might
be ahorizontal strip.) Eventually, the sizeofV� will dependon
the sizeofB, but fornowletus consider it fixed. For each� and
z 2 Z, define the spread edge of type � at location z to be

Xspr
� ðzÞ ¼ max

z02zþV�

X�ðz0Þ:

Thus, if an edge of type � is detected anywhere in the
V�-shaped region “centered” at z it is recorded at z. (See
Fig. 2e.) Obviously, this corresponds to a local disjunction of
elementary features. The spread edges Xspr ¼ XsprðIÞ ¼
fXspr

� ðzÞg�;z are precomputed and stored. Define also
Xsum

� ðzÞ ¼
P

z02zþV�
X�ðz0Þ.

Let z�;1; . . . ; z�;n be set of locations whose surrounding
regions z�;i þ V� “fill” G�ðBÞ in the sense that the regions are
disjoint and

[n
i¼1

ðz�;i þ V�Þ � G�ðBÞ:

(See Fig. 2d.) To further simplify the argument, just suppose
these sets coincide; this can always be arranged up to a few
pixels. In that case, we can rewrite Jsum

B as

Jsum
B ¼

X
�

X
G�ðBÞ

X�ðzÞ ¼
X
�

Xn
i¼1

Xsum
� ðz�;iÞ:

Now, replace Xsum
� ðz�;iÞ by Xspr

� ðz�;iÞ. The corresponding
bin test is then

Tspr
B ¼ 1 Jspr

B > �sprB

� �
where Jspr

B ¼
X
�

Xn
i¼1

Xspr
� ðz�;iÞ ð9Þ

and �sprB satisfies

P ðTspr
B ðXÞ ¼ 0jHBÞ ¼ 0:

The false positive rate is

	sprB ¼ P ðTspr
B ðXÞ ¼ 1jH;Þ:

6.5 Comparison

Both Tsum
B and Tspr

B require an implicit loop over the locations
in GB. The exhaustive test Tbrute

B requires a similar size loop
(somewhat larger since the same location can be hit twice by
two different poses). However, there is an important

difference: The features Xspr and Xsum can be computed
offline and used for all subsequent tests. They are reusable.
Thus, the tests Tspr

B ; T sum
B are significantly more efficient than

Tbrute
B . Since all tests are invariants forB (i.e., have null type I

error forHB vsH;), thekey issue is reallyoneofdiscrimination-
comparing 	sumB with 	sprB . Notice that, as jV�j increases, the
probability of occurrence of the features Xspr

� ðzÞ increases,
both conditional onHB and conditional onH;. As a result, the
effect of spreading on false positive rate is not entirely
obvious.

Henceforth, we only consider rectangular sets V s;k
� ,

which are of length s in the direction orthogonal to the
edge orientation and of length k in the parallel direction.
(See Figs. 2d, 2e, 12b, and 12d.) Note that Tsum

B ¼ Tspr
B if we

take regions V 1;1
� , i.e., regions of just one pixel. Assume now

that the set G�ðBÞ has more or less fixed width ‘.
In the Appendix, we show, under simplifying assump-

tions, that:
The test Tspr

B with regions V ‘;1
� is the most discriminating over

all possible combinations s; k. In otherwords, the smallest 	sprB is
achieved with s ¼ ‘; k ¼ 1 and, hence, the optimal choice for
V� is a single-pixel strip whose orientation is orthogonal to
the direction of the edge type � and whose length roughly
matches the width of the extended boundary G�ðBÞ. This
result is very intuitive: Spreading—as opposed to sum-
ming—over a region zþ V ‘;1

� that can contain at most one
shape edge for any instantiation in B prevents off-shape
edges from contributing excessively to the total sum. Note
that, if q ¼ 0, i.e., no off-shape edges appear, then the two
tests are identical.

For future use, for a general spread length s, let Xs
�ðzÞ ¼

maxz02zþV s;1
�

X�ðz0Þ: Also, Tspr
B now refers to the optimal test

using regions V ‘;1
� .

6.6 Spreading versus Downsampling

A possible alternative for a bin test could be based on the
same edge features, computed on blurred and downsampled
versions of the original data. This approach is very common
in many algorithms and architectures; see, for example, the
successive downsampling in the feedforward network of
[19] or the jets proposed in [37]. Indeed, low resolution edges
do have higher incidence atmodel locations, but they are still
less robust than spreading at the original resolution. The
blurring operation smooths out low-contrast boundaries and
the relevant information gets lost. This is especially true for
real data such as that shown in Fig. 5 taken at highly varying
contrasts and lighting conditions. As an illustration, we took
a sample of the “A” and produced 100 random samples from
a pose bin involving shifts of � 2 pixels, rotations of
� 10 degrees, and scaling in each axis of � 20 percent; see
Fig. 3a. With spread 1 in the original resolution, plenty of
locations were found with high probability. For example, in
Fig. 3b, we show a probability map of a vertical edge type at
all locations on the reference grid, darker represents higher
probability. Alongside is a binary image indicating all
locations where the probability was above 0.7. In Fig. 3c,
the same information is shown for the same vertical edge
type from the images blurred and downsampled by 2. The
probability maps were magnified by a factor of 2 to compare
to the original scale. Note that many fewer locations are
found of probability over 0.7. The structures on the right leg
of the “A” are unstable at low resolution. In general, the
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probabilities at lower resolution without spread are lower
than the probabilities at the original resolutionwith spread 1.

6.7 Computational Gain

We have proposed the following two-step procedure. Given
data X, first compute the Tspr

B ; if the result is negative, stop
and, otherwise, evaluate Tc;� for each c; � 2 B. This yields a
set DB which must contain Y \B; moreover, either DB ¼ ;
or DB ¼ D \B.

It is of interest to compare this “CTF” procedure to
directly looping over B, which by definition results in
finding D \B. Obviously, the two-step procedure is more
discriminating since DB � D \B. Notice that the degree to
which we overestimate Y \B will affect the amount of
processing to follow, in particular, the number of pairwise
comparison tests that must be performed for detections
with poses too similar to coexist in Y .

As for computation, we make two reasonable assump-
tions: 1) Mean computation is calculated under the hypoth-
esis H;. (Recall that the background hypothesis is usually
true.) 2) The test Tspr

B has approximately the same computa-
tional cost, say �, as Tc;�, i.e., checking for a single hypothesis
ðc; �Þ. As a result, the false positive rate of Tspr

B is then 	sprB .
Consequently, direct search has cost jBj�, whereas the two-
stepprocedurehas (expected) cost� þ 	sprB � jBj�.Measuring
the computational gain by the ratio gives

gain ¼ jBj
1þ 	sprB jBj ;

which can be very large for large bins. In fact, typically,
	sprB � 0:5, so that we gain even if B has only two elements.

There is some extra cost in computing the features Xspr

relative to simply detecting the original edges X. However,
since these features are to be used in many tests for different
bins, they are computed once and for all a priori and this
extra cost can be ignored. This is an important advantage of
reusability—the features that have been developed for the
bin test can be reused in any other bin test.

7 LEARNING BIN TESTS

We describe the mechanism for determining a test for a
general subsetB of C ��. Denote by�B and CB, respectively,
the sets of all poses and classes found in the elements of B.
From here on, all tests are based on spread edges.
Consequently, we can drop the superscript spr and simply
write TB, �B, etc.

For ageneral binB, according to thedefinitionsofG�ðBÞ in
(7) and TB in (9), we need to identify G�;cð�Þ for each
� 2 �; ðc; �Þ 2 B; the locations zi and the extent s of the spread
edges appearing in JB; and the threshold �B. In testing
individual candidatesB ¼ fc; �g using (6), there is no spread
and thepoints zi are givenby the locations inG�;cð�Þ. These, in
turn, can be directly computed from the distinguished sets
G�;c, which we assume are derived from shape models, e.g.,
shape templates. In some cases, the structure of B is simple
enough that we can do everything directly from the
distinguished “model” sets G�;c. This is the procedure
adopted in the plate experiments (see Section 10.1).

In other cases, identifying all ðc; �Þ 2 B, and computing
G�ðBÞ, can be difficult. It may be more practical to directly
learn the distinguished spread edges from a sample LB of
subimages with instantiations from B. Fix a minimum
probability �, say � ¼ 0:5. Start with spread s ¼ 1. Find all
pairs ð�; zÞ; � 2 �; z 2 [�2�B

Rð�Þ such that P̂P ðXs
�ðzÞ ¼

1jHBÞ > �, where P̂P denotes an estimate of the given
probability based on the training data LB. If there are more
than someminimum numberN of these, we consider them a
preliminary pool from which the zis will be chosen.
Otherwise, take s ¼ 2 and repeat the search, and so forth,
allowing the spread to increase up to some value smax.

If fewer thanN such features with frequency at least � are
found at smax, we declare the bin to be too heterogeneous to
construct an informative test. In this case, we assign the binB
the trivial test TB 	 1, which is passed by any data point. If,
however, N features are found, we prune the collection so
that the spreading regions of any two features are disjoint.

This procedure will yield a spread s ¼ sðBÞ and a set of
feature/location pairs, say ð�; zÞ 2 FB, such that the spread
edge Xs

�ðzÞ has (estimated) probability at least � of being
found on an instantiation from the bin population. The
basic assumption is that, with a reasonable choice of � and
N , the estimated spread sðBÞ will more or less correspond
to the width of the set GB. Our bin test is then

TB ¼ 1 JB > �Bð Þ; where JB ¼
X

ð�;zÞ2FB

Xs
�ðzÞ

and �B is the threshold which has yet to be determined.
Estimating �B is delicate, especially in view of our

“invariance constraint” P ðTB ¼ 0jHBÞ 
 0, which is severe
and somewhat unrealistic, at least without massive training
sets. There are several ways to proceed. Perhaps the most
straightforward is to estimate �B based on LB: �B is the
minimum value observed over LB or some fraction thereof
to insure good generalization. This is what is done in [8], for
instance.
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An alternative is to use a Gaussian approximation to the
sum and determine �B based on the distribution of JB on
background. Since the variables fXs

�ðzÞ; ð�; zÞ 2 FBg are
actually correlated on background, we estimate a back-
ground covariance matrix Cs whose entries are the
covariances between Xs

�ðzÞ and Xs
�0 ðzþ dzÞ under H; for a

range of displacements jdzj < 4s. The matrices Cs are then
used to determine �B for any B as follows: First, estimate the
marginal probabilities P ðXs

�ðzÞ ¼ 1jH;Þ based on back-
ground samples; call this estimate qs� , which allows for
�-dependence but is, of course, translation-invariant. The
mean and variance of Js

B are then estimated by


B;; ¼
X

ð�;zÞ2FB

qs�; and

�2
B;; ¼

X
ð�;zÞ2FB

X
ð�0 ;z0 Þ2FB
jz�z0 j<4s

qs�q
s
�0Cð�; �0; z� z0Þ: ð10Þ

Finally, we take

�B ¼ 
B;; þm � �B;;;

wherem is, as indicated, independent ofB, i.e.,m is adjusted to
obtain no false negatives for every B in the hierarchy. This is
possible (at the loss of some discrimination) due to the
inherent background normalization. Of course, since we are
not directly controlling the false positive error, the resulting
threshold might not be in the “tail” of the background
distribution.

8 CTF SEARCH

ThetwostepproceduredescribedinSection6.2wasdedicated
to processing that portion of the image determined by the bin
B¼ fcg ��0. As a result of imposing translation invariance,
this is easily extended to processing the entire image in a two-
level search and even further to a multilevel search.

8.1 Two-Level Search

Fix a small integer � and let �cent be the set of poses � for
which jzð�Þj � �. For any B � C ��cent and any element
z 2 Z, denote by Bþ z the set of class/pose pairs

fðc; �Þ : zð�Þ ¼ zð�0Þ þ z for some ðc; �0Þ 2 Bg;

namely, all poses appearing in Bwith positions shifted by z.
Thus,

Js
Bþz ¼

X
ð�;z0Þ2FB

Xs
�ðzþ z0Þ:

Due to translation invariance, we need only develop
models for subsets of C ��cent. Let B be a partition of
C ��cent; it is not essential that the elements of B be disjoint.
In any case, assume that, for each B 2 B, a test TBðXsÞ ¼
1 JBðXsÞ > �Bð Þ has been learned as in Section 7 based on a
set FB of distinguished features.

Let Z� be the sublattice of the full image lattice Z based
on the spacing �: Z� ¼ fðk1�; k2�Þg. Then, the full set of
poses is covered by shifts of the elements of B along the
coarse sublattice:

C �� ¼
[
B2B

[
z2Z�

Bþ z:

In order to find the full index set D, we first loop over all
elements B 2 B and, for each B, we loop over all z 2 Z� and
perform the test TBþz, where z ¼ ðk1�; k2�Þ: For those subsets
Bþ z for which TBþz ¼ 1, we loop over all individual
explanations ðc; �Þ and examine each one separately based
on the likelihood ratio test Tc;�ðXÞ described in Section 6.1.

8.2 Multilevel Search

The extension to multiple levels is straightforward. Let
Bð0Þ;Bð1Þ; . . . ;BðMÞ be a sequence of finer and finer partitions
of B¼: Bð0Þ. Each element BðmÞ 2 BðmÞ is the union of elements
in Bðmþ1Þ. Perform the same loop over shifts described above
for all elements Bð1Þ. If TBþzðXÞ ¼ 1 for some B 2 Bð1Þ and
z 2 Z�, loop over all elements of B0 2 Bð2Þ such that B0 � B,
etc., until the finest levelM. Elements ofBðMÞ that are reached
and pass their test are added to D�. Note that the loop over all
shifts in the image is performed only on the coarse lattice at the top
level of the hierarchy. This is summarized in Fig. 4.

8.3 Indexing

The result of such a CTF search is a set of detections (or
“index”) D� � C �� which, of course, depends on the
image data. More precisely, ðc; �Þ 2 D� if and only if TB ¼ 1 for
every B appearing in the entire hierarchy (i.e., in any partition)
which contains ðc; �Þ. In other words, such a pair ðc; �Þ has
been “accepted” by every relevant hypothesis test. If indeed
every test in the hierarchy had zero false negative error,
then we would have Y � D�, i.e., the true interpretation
would only involve elements of D�. In any case, we do
confine future processing to D�.

In general,D� andD, the set of class/pose pairs satisfying
the individualhypothesis test (6), aredifferent.However, if the
hierarchy goes all the way down to individual pairs ðc; �Þ,
thenD� � D. Of course, constraints on learning andmemory
render thisdifficultwhenC �� is very large.Hence, itmaybe
necessary to allow the finest bins B to represent multiple
explanations, although perhaps “pure” in class.

9 FROM INDEXING TO INTERPRETATION:
RESOLVING AMBIGUITIES

We now seek the admissible interpretation y � D� \ Y�

with highest likelihood. In principle, we could perform a
brute force loop over all subsets of D� \ Y�. But, this can be
significantly simplified.

Let y ¼ ðy1; y2Þ, where y1; y2 are two admissible inter-
pretations whose concatenation gives y, and similarly let
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y0 ¼ ðy01; y02Þ. Assume that y1 ¼ y01 and that the supports of

the two interpretations y; y0 are the same, i.e., RðyÞ ¼ Rðy0Þ,
which implies that Rðy2Þ ¼ Rðy02Þ. Then, due to cancellation

over the background and over the data associated with y1, it

follows immediately from (3) that

P ðXjY ¼ yÞ
P ðXjY ¼ y0Þ ¼

P ðXRðy2ÞjY ¼ y2Þ
P ðXRðy2ÞjY ¼ y02Þ

:

9.1 Individual Shape Competition

In the equation above, if the two interpretations y; y0 differ by

only one shape, i.e., if y2 ¼ ðc2; �2Þ and y02 ¼ ðc02; �02Þ, then the

assumptions imply that �2 � �02. Thus, we need to compare

the likelihoods on the two largely overlapping regions Rð�2Þ
and Rð�02Þ. This suggests that an efficient strategy for

disambiguation is to begin the process by resolving compet-

ing detections in D� with very similar poses.
Different elements of D� may indeed have very similar

poses; after all, the data in a region can pass the sequence of

tests leading to more than one terminal node of the CTF

hierarchy. In principle, one could simply evaluate the

likelihood of the data given each hypothesis and take the

largest. However, the estimated pose may not be sufficiently

precise to warrant such a decision and such straightforward

evaluations tend to be sensitive to background noise. More-

over, we are still dealing with individual detections and the

data considered in the likelihoodevaluation involves only the

region Rð�Þ, which may not coincide with Rð�0Þ.
Amore robust approach is to perform likelihood ratio tests

between pairs of hypotheses ðc; �Þ, and ðc0; �0Þ on the region

R� ¼ Rð�Þ [Rð�0Þ so that the data considered is the same for

both hypotheses. The straightforward likelihood ratio based

on (3) and taking into account cancellations is given by

log
P ðXR� jc; �Þ
P ðXR� jc0; �0Þ ¼X
�

� X
z2G�;cð�ÞnG�;c0 ð�0Þ

X�ðzÞ log
p

q
þ ð1�X�ðzÞÞ log

1� p

1� q

�
X

z2G�;c0 ð�0ÞnG�;cð�Þ
X�ðzÞ log

p

q
þ ð1�X�ðzÞÞ log

1� p

1� q

�
:

ð11Þ

9.2 Spreading the Likelihood Ratio Test

Notice that, for each edge type �, the sums range over the
symmetric difference of the edge supports for the two
shapes at their respective poses. In order to stabilize this
log-ratio, we restrict the two sums to regions where the two
sets G�;cð�Þ and G�;c0 ð�0Þ are really different as opposed to
being slight shifts of one another. This is achieved by
limiting the sums to

G�;cð�Þ � ½G�;c0 ð�0Þ�s and G�;c0 ð�0Þ � ½G�;cð�Þ�s; ð12Þ

respectively, where, for any set F � Z, we define the
expanded version Fs ¼ fz : z 2 z0 þNs for some z0 2 Fg,
where Ns is a neighborhood of the origin. These regions
are illustrated in Fig. 9.

9.3 Competition between Interpretations

This pairwise competition is performed only on detections
with similar poses �; �0. It makes no sense to apply it to
detections with overlapping regions where there are large
nonoverlapping areas, in which case the two detections are
really not “explaining” the same data. In the event of such an
overlap, it is necessary, as indicated above, to perform a
competition between admissible interpretations with the
same support. The competition between two such sequences
y ¼ ðc1; �1; . . . ; ck; �kÞandy0 ¼ ðc01; �01; . . . ; c0m; �0mÞ isperformed
using the same log likelihood ratio test as for two individual
detections. For edge type � and each interpretation, let

G�;y ¼ [k
i¼1G�;cið�iÞ:

The two sums in (11) are now performed on G�;y � ½G�;y0 �s
andG�;y0 � ½G�;y�s, respectively. These regions are illustrated
in Fig. 10.

The number of such subinterpretation comparisons can
grow very quickly if there are large chains of partially
overlapping detections. In particular, this occurs when
detections are found that straddle two real shapes. This
does not occur very frequently in the experiments reported
below and various simple pruning mechanisms can be
employed to reduce such instances.

10 READING LICENSE PLATES

Starting from a photograph of the rear of a car, we seek to
identify the characters in the license plate. Only one font is
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Fig. 5. (a) and (b) The subimages extracted from the images in Fig. 1 using a coarse detector for a sequence of characters. (c) Vertical edges from
(a). (d) Horizontal edges from (b). (e) Spread vertical edges on (a). (f) Spread horizontal edges on (b).



modeled—all licenseplates in thedata set are from the state of
Massachusetts—and all images are taken from more or less
the same distance, although the location of the plate in the
image can vary significantly. Two typical photographs are
shown in Fig. 1, illustrating some of the challenges. Due to
different illuminations, the characters in the two images have
very different stroke widths despite having the same
template. Also, different contrast settings and physical
conditions of the license plates produce varying degrees of
background clutter in the local neighborhood of the char-
acters, as observed in the left panel. Other variations result
fromsmall rotations of theplates and small deformationsdue
toperspectiveprojection. For example, theplateon the right is
somewhatwarped at themiddle and the size of the characters
is about 25 percent smaller than the size of those on the left.
For additional plate images, together with the resulting
detections, see Fig. 11.

The plate in the original photograph is detected using a
very coarse, edge-based model for a set of six generic
characters arranged on a horizontal line and surrounded by
a dark frame, at the expected scale, but at 1/4 of the original
image resolution.A subimage is extracted around the highest
scoring region and processed using the CTF algorithm. If no
characters are detected in this subimage, the next highest
scoring plate detection is processed, etc. In almost all images,
the highest scoring region was the actual plate. In a few
images, some other rectangular structure scored highest, but
then no characters were actually detected so that the region
was rejected and the next best detection was the actual plate.
We omit further details because this is not the limiting factor
for this application. Subimages extracted fromthe two images
of Fig. 1 are shown in Figs. 5a and 5b.

The mean spatial density of edges in the subimage then
serves as an estimate for q, the background edge probability,
andwe estimate qs� in (10) by sq. In this way, the thresholds �B
for thebin tests are adapted to thedata, i.e., image-dependent.

The edges and spread edges on the extracted images in
Figs. 5a and 5b are shown in Figs. 5c, 5d, 5e, and 5f.

10.1 The CTF Hierarchy

Since the scale is roughly known and the rotation is generally
small, we can take �0 ¼ �cent, defined as follows:
0:8 � �ð�Þ � 1:2; j�ð�Þj � 10 degrees; jzð�Þj � � ¼ 2 (i.e., con-
fined to a 5� 5window). There are 37 classes defined by the
prototypes (bit maps), shown in Fig. 6. Bottom-up, binary
clustering yields the pure-class hierarchy. Starting from the
edge maps of the prototypes, at every level of the hierarchy
each cluster is merged with the nearest one still available,
where the distance between two clusters is measured as the
average Hamming distance between any two of their
elements. The hierarchy is shown in Fig. 6 without the root
(all classes together) and the leaves (individual classes).

The class/pose hierarchy starts with the same struc-
ture—there is a bin B corresponding to each CB ��cent,
where CB is a set in the class hierarchy. Each bin in the last
layer is then of the form B ¼ fcg ��cent and is split into
2� 9 ¼ 18 subbins corresponding to two scale ranges (½:8; 1�
and ½1; 1:2�) and to nine (overlapping) 3� 3 windows inside
the 5� 5 determined by jzð�Þj � 2.

The spreading is determined as in Section 7 and the sets
G�;c are computed directly from the character templates.
The tests for bins B ¼ CB ��cent are constructed by taking
all edge/location pairs that belong to all classes in B at the
reference pose. The spread is not allowed under s ¼ 5
because we can anticipate the “width” of GB based on the
range of poses in �cent. A subsample of all edge/location
pairs is taken to ensure nonoverlapping spreading domains.
This provides the set FB described in Section 7. There is no
test for the root; the search commences with the four tests
corresponding to the four subnodes of the root because
merging any of these four with spread s ¼ 5 produced very
small sets FB. Perhaps this could be done more gradually.
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Fig. 6. Top: The 37 prototypes for characters in Massachusetts license plates. Bottom: The class hierarchy. Not shown is the root and the final split
into pure classes.

Fig. 7. The sparse subset FB of edge/location pairs for some of a few binsB in the hierarchy. (a) 45 degree edges on the cluster fA; 4; 6g. (b) 90 degree
edges on cluster fB;C;D;G;O;Q; 0; 8g. (c) 0 degree edges on cluster fJ; S; U; 5g. (d) 45 degree edges on cluster fG;Og. (e) 135 degree edges on
cluster fXg.



The subsets FB for several bins are depicted in Fig. 7. For
the subbins described above, which have a smaller range of
poses, the spread is set to s ¼ 3. Moreover, since this part of
the hierarchy is purely pose-based and the class is unique,
only the highest scoring detection is retained for D�.

10.2 The Indexing Stage

We have set � ¼ 2 (see Section 8.1) so that the image (i.e.,
subimage containing theplate) is scannedat the coarsest level
every 5 pixels, totaling approximately 4� 1; 000 tests for a
plate subimage of size 250� 110. The outcome for this stage is
shown in Fig. 8a; each white dot represents a 5� 5 window
forwhichoneof the four coarsest tests (seeFig. 6) is positive at
that shift. If the test for a coarse binBpasses at shift z, the tests
at the children B are performed at shift z and so on at their
children if the result is positive, until a leaf of the hierarchy is
reached.Note that, due to ourCTF strategy for evaluating the
tests in the hierarchy, if the data X do reach a leaf B, then,
necessarily, TAðXÞ ¼ 1 for every ancestor A 
 B in the
hierarchy; however, the condition TBðXÞ ¼ 1 by itself does
not imply that all ancestor tests are also positive. The set of all
leaf bins reached (equivalently, the set of all complete chains)
then constitutes D�. Each such detection has a unique class
label c (since leaves are pure in class), but the pose has only
been determined up to the resolution of the subbins of �cent.
Also, there can be several detections corresponding to
different classes at the same or nearby locations. The set of
locations inD� is shown in Fig. 8b. The pose of each detection
in D� is refined by looping over a small range of scales,
rotations, and shifts and selecting the c; � with the highest
likelihood, that is, the highest score under Tc;�.

10.3 Interpretation: Prior Information and
Competition

The index set D� consists of several tens to several hundred
detections depending on the complexity of the background
and the type of clutter in the image. At this point, we can
take advantage of the a priori knowledge that the characters

appear on a straight line by clustering the vertical
coordinates of the detected locations and using the largest
cluster to estimate this global pose parameter (see Fig. 8c.)
This eliminates some false positives created by combining
part of a real character with part of the background, for
example part of the small characters in the word “Massa-
chusetts” at the top of the plate; see Fig. 8b.

Among the remaining detections we perform, the
pairwise competitions as described in Section 9. This is
illustrated in Fig. 9 showing a region in a plate where both a
“3” and a “5” were detected. For one type of edge—
vertical—the regions Gvert;c1ð�1Þ and Gvert;c2ð�2Þ are shown in
gray (Figs. 9a and 9b). The white areas illustrate a
“spreading” of these regions as defined in Section 9.
Figs. 9c and 9d show in white the locations in Gvert;c1ð�1Þ n
½Gvert;c2ð�2Þ�

s (Gvert;c2ð�2Þ n ½Gvert;c1ð�1Þ�
s), where an edge is

detected.
After the pairwise competitions, there are sometimes

unresolved chains of overlapping detections. It is then necessary
to perform competitions, as described in Section 9, between
valid candidate subsequences of the chain. A valid subse-
quence is one which does not have overlapping characters,
and is not a subsequence of a valid subsequence. This last
criterion follows simply from (5). In Fig. 10a, we show a
region in a plate where a chain of overlapping detectionswas
found. The regionsG�;y; G

s
�;y for one competing subsequence

(“RW”) are shown in Fig. 10b, for another (“jKj”) in Fig. 10c,
and the resulting symmetric difference in Fig. 10d.

10.4 Performance Measures

10.4.1 Classification Rate

We have tested the algorithm on 520 plates. The correct
character string is foundonall but 17plates. The classification
rate per symbol is much higher—over 99 percent. Most of the
errors involve confusions between I and j and betweenO and
D. Some detections are shown in Fig. 11. However, there are
also false positives, about 30 in all the plates combined,
including a small number in the correctly labeled plates,
usuallydue todetecting the symbol “j”near the borders of the
plate. Other false positives are due to pairs of smaller
characters as in the last rowof Fig. 11.We have not attempted
to deal separately with these in the sense of designing
dedicated procedures for eliminating them.

10.4.2 Computation Time

The average classification time is 3.5 seconds per photograph
on a Pentium 3 1Mghz laptop. Approximately 1.6 seconds is
needed to obtain the setD� via theCTF search. The remaining
1.9 seconds isdevoted to refining thepose andperforming the
competitions.

Of interest is the average number of detections per bin in
the tree hierarchy as a function of the level, of which there
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Fig. 8. (a) Coarse level detections. (b) Fine level detections. (c) Detections after pruning based on vertical alignment.

Fig. 9. Competition between c1 ¼ 3 and c2 ¼ 5 at a location on the plate.
(a) In gray Gvert;c1 ð�1Þ, in white ½Gvert;c1 ð�1Þ�

s. (b) Same for class c2.
(c) Locations in Gvert;c1 ð�1Þ n ½Gvert;c2 ð�2Þ�

s, where an edge is detected.
(d) Locations in Gvert;c2 ð�2Þ n ½Gvert;c1 ð�1Þ�

s, where an edge is detected.



are five, not including the root. For the coarsest level (which
has four bins), there are, on average, 183 detections per bin
per plate, then 37, 29, and 18 for the next three levels, and,
finally, four for the finest level. On average, the CTF search
yields about 150 detections per plate.

If the CTF search is initiated with the leaves of the
hierarchy in Fig. 6, i.e., with the pairwise clusters, the
classification results are almost the same, but the computa-
tion time doubles and detection takes about 5 seconds.
Therefore, approximately the same amount of time is
devoted to the postdetection processing (since the resulting
D� is about the same). This clearly demonstrates the
advantage of the CTF computation.

11 DISCUSSION

Wehavepresented anapproach tomulticlass shapedetection
which focuses on the computational process, dividing it into
two rather distinct phases: a search for instances of shapes
from multiple classes which is CTF, context-independent,

and constrained byminimizing false negative error, followed
by arranging subsets of detections into global interpretations
using structural constraints andmodel-based competitions to
resolve ambiguities. Spread edges are the key to producing
efficient tests for subsets of classes and poses in the CTF
hierarchy; they are reusable and, hence, efficient, common on
shape instantiations, and yet sufficiently discriminating
against background to limit the number of false detections.
Spreading also serves as a means to stabilize likelihood ratio
tests in the competition phase.

The experiments involve reading license plates. In this
special scenario, there is exactly one prototype shape for
each object class, but the problem is extremely challenging
due to the multiplicity of poses, extensive background
clutter, and large variations in illumination.

The CTF recognition strategy can be extended in various
directions, for instance tomultiple prototypes per class, (e.g.,
multiple fonts in OCR), to situations in which templates do
not exist (e.g., faces) and the tests for class/pose bins are
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Fig. 10. Sequence competition. (a) Detected classes on a subimage—a chain with labels j;R; j;K; j;R; j; I. (b) The sets Gvert;y and Gs
vert;y for the

subsequence “RW .” (c) Gvert;y; G
s
vert;y for the subsequence “jKj.” (d) The symmetric difference Gvert;y nGs

vert;y0 [Gvert;y0 nGs
vert;y.

Fig. 11. Examples of detections on a variety of plates. The last row illustrates false positives.



learned directly from sample images, and perhaps to three-
dimensional and deformable objects.

Furthermore, the framework can be extended from edges
to more complex features having much lower background
probabilities. Indeed it seems imperative to adopt more
discriminating features in order to cope with more challen-
gingclutter andawider rangeofobjectswithmorevariability.
Even in the present context, it is possible that the number of
indexed instantiations could be significantly reduced using
more complex features; some evidence for this with a single
class can be found in [2]. This is a direction we are currently
exploring, along with several others, including hypothesis
tests against specific alternatives (rather than “background”),
inducing CTF decompositions directly from data in order to
generalize to cases where templates are not available, and
sequential learning techniques such as incrementally updat-
ing CTF hierarchies, and refining the tests, as additional
classes and samples are encountered.

APPENDIX

Recall from Section 6.4 that our goal is to determine the
optimal domain of ORing for a bin of the form B ¼ fcg ��0

under our statistical edge model.

A.1 Simplifying Assumptions

To simplify the analysis, suppose the class c is a square. In
this case, there are two edge types � of interest—horizontal
and vertical—and a corresponding set of model edge
locations G�ðBÞ for each one. Suppose also that �0 captures
only translation in an ‘� ‘ neighborhood of the origin; scale
and orientation are fixed. This is illustrated in Fig. 12. The
regions Ws;k

i ¼ zi þ V s;k
� are k� s rectangles, for 1 � s � ‘

and k ¼ 1; 2; . . . . When k ¼ 1, a detected edge is spread to a
strip oriented perpendicular to the direction of the edge; for
instance, for a vertical edge, an edge detected at z is spread
to a horizontal strip of width 1 and length s centered at z.
See Figs. 12c and 12d for two different region shapes
corresponding to s ¼ ‘; k ¼ 1 and s ¼ ‘=2; k ¼ 2.

We restrict the analysis to a single �, say vertical, and
drop the dependence on �; the general result, combining
edge types, is then straightforward. Define

Js;k
B ¼

Xn
i¼1

Xs;k
i ; where : Xs;k

i ¼ max
z02Ws;k

i

X�ðz0Þ:

The thresholds are chosen to insure a null type I error and
we wish to compare the type II errors, 	s;k, for different
values of s and k. Note that Jsum

B ¼ J1;1
B and Jspr

B ¼ J‘;1
B .

The Ws;k
i are taken to be disjoint and, for any choice of s

and k, their union is a fixed set ĜGðBÞ � GðBÞ; see Fig. 12.
Thus, the smaller s or k, the larger the number of regions.
We also assume that the image either contains no shape or it
contains one instance of the shape c at some pose � 2 �0.

Fix s and k and let n denote the number of regions Ws;k
i

in ĜGðBÞ. Since ‘ is the width of the region FB, we have
n � M=k � ‘=s, where M is the number of regions used
when s ¼ ‘; k ¼ 1. Let m ¼ M=k and � ¼ ‘=s. Note that we
assume each pose hits the same number, m, of regions.

Conditioning on �, we have

P ðXs;k
i ¼ 1jc; �Þ ¼

1� ð1� pÞkð1� qÞðs�1Þk¼: P if Gð�Þ \Ws;k
i 6¼ ;

1� ð1� qÞsk¼: Q if Gð�Þ \Ws;k
i ¼ ;;

(

andP ðXs;k
i ¼ 1jH;Þ ¼ Q:This implies thatP ðXs;k

i ¼ 1jHBÞ ¼
�P þ ð1� �ÞQ, but the Xs;k

i variables are not independent
givenHB. Furthermore,

E

�Xn
i¼1

Xs;k
i jc; �

�
¼ mP þ ðn�mÞQ;

V ar

�Xn
i¼1

Xs;k
i jc; �

�
¼ mP ð1� P Þ þ ðn�mÞQð1�QÞ:

Since the conditional expectation does not depend on �, we
have

EB;s;k¼:

E
Xn
i¼1

Xs;k
i jHB

 !
¼ mP þ ðn�mÞQ ¼ nð�P þ ð1� �ÞQÞ:

The conditional variance is also independent of � and, since
the variance of the conditional expectation is 0:

VB;s;k¼
:
V ar

Xn
i¼1

Xs;k
i jHB

 !
¼ nð�P ð1�P Þþð1� �ÞQð1�QÞÞ:

On background, the test is binomial Bðn;QÞ and we have
E;;s;k ¼ nQ, and V;;s;k ¼ nQð1�QÞ.

A.2 The Case p ¼ 1

This case, although unrealistic, is illuminating. Since P ¼ 1,
Js;k is a nonnegative random variable added to the
constant m. Thus, the largest possible zero false negative
threshold is �s;k ¼ m. For any fixed k, we have J‘;k � Js;k for
1 � s < ‘ since we are simply replacing parts of the sum by
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Fig. 12. (a) The model square with the region Gvert. (b) The range of translations of the square. (c) The model square with the region ĜGvertðBÞ tiled by
regions Wi with s ¼ ‘ and k ¼ 1, centered around points zi. (d) The same with s ¼ ‘=2 and k ¼ 2.



maxima. Since �s;k is independent of s, it follows that
	‘;k � 	s;k.

Proposition. For k � 2, assume 1) ‘q � 1
2 and

2) ð1� qÞk‘ � 1� ‘q. Then, 	1;1 < 	‘;k. As a result,

	‘;1 � 	1;1 < 	‘;k � 	1;k:

In particular, the test Jspr
B ðs ¼ ‘; k ¼ 1Þ is the most efficient.

Note. The assumptions are valid within reasonable

ranges for the parameters q; ‘, say 0:01 � q � 0:05 and

2 � ‘ � 10.

Proof. When s ¼ ‘, we have n ¼ m and, under H;, the

statistic J‘;k is binomial Bðm; 1� ð1� qÞ‘kÞ and the

statistic J1;1 is binomial BðM‘; qÞ. Using the normal

approximation to the binomial,

	1;1 
 1� �
M �Mlq

ðM‘qð1� qÞÞ1=2

" #
¼ 1� � M1=2 1� ‘q

ð‘qð1� qÞÞ1=2

" #

and, similarly,

	‘;k 
 1� �
m�mð1� ð1� qÞ‘kÞ

ð1� qÞ‘kð1� ð1� qÞ‘kÞ
� 	1=2
2
64

3
75

¼ 1� � m1=2 ð1� qÞk‘

ð1� ð1� qÞk‘Þ

 !1=2
2
4

3
5:

Now,

m
ð1� qÞk‘

ð1� ð1� qÞk‘Þ
� m

1� ‘q

‘q
� 2m

ð1� ‘qÞ2

‘q
� M

ð1� ‘qÞ2

‘qð1� qÞ;

where we have used 2) in the first inequality, 1) in the
second, and k � 2 in the third. The result follows directly
from this inequality. tu

A.3 The Case p < 1

For p < 1, we cannot guarantee no false negatives. Instead,

let �B;s;k ¼
ffiffiffiffiffiffiffiffiffiffiffi
VB;s;k

p
and choose �s;k ¼ EB;s;k � 3�B;s;k; , mak-

ing the event Js;k ¼ 0 very unlikely under HB. Again, using

the normal approximation, the error 	s;k is a decreasing

function of

Rðs; kÞ ¼ EB;s;k � 3�B;s;k �E;;s;k
�;;s;k

:

Forgeneral p,wedonot attempt analytical bounds.Rather,

we provide numerical results for the range of values of

interest:0:01 < q < 0:05,0:5 < p � 1,10 < M < 50,1 � k � 3,

and ‘ ¼ 10. In Fig. 13, we show plots for the values

M ¼ 20; k ¼ 1; p ¼ 0:8; 0:01 � q � 0:05, and k ¼ 1; 2; 3. The

conclusions are the same as for p ¼ 1:

. 	s;k is decreasing in s in the range 1 � s � ‘ and
increasing for s > ‘.

. 	1;1 < 	‘;k for any k > 1.

. The optimal test is JsprB , corresponding to s ¼ ‘; k ¼ 1.
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