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1 FULL DESCRIPTION OF SIMULATION STUDY

We assess the performance of our learned models using synthetic data. We sample from

a known model and attempt to recover both the joint probability distribution and the

underlying graph structure. We compare our method with several alternatives from the

literature, some designed only for learning graphs.

1.1 Analysis of the Learning Procedure

The first set of experiments is designed to measure the effect of sample size, number of

variables and search strategy in the ideal case in which the true model, Q, belongs to

our model class F∗. The steps are:

(1) Generate at random an almost-balanced binary forest, F , on the set D = {1, . . . , d}.

(2) Randomly select parameters, θ0, to build a ground truth distribution Q. These

parameters are chosen in such a way that all the primitives in the graph have

associated ρ-values (computed analytically using θ0) above a threshold η0 (which is

obtained using Eq. (13) from the main paper and a reference sample size n0 = 500).
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(3) Sample n d-dimensional binary vectors from Q.

(4) Using our CAM approach, induce a distribution P̂ ∈ F∗ from the training data and

compute its KL divergence from the ground truth

KL := EQ

[
log

Q

P̂

]
The divergence can be computed exactly since the ground truth distribution is

known.

This process is repeated 1,000 times for each experimental setting (choice of d, n, ϵ in

the selection procedure), and the results are averaged to provide the curves in Figs. S.1

and S.2.

Fig. S.1 shows the average KL divergence for fixed ϵ = 1 as a function of the sample

size, n, ranging from n = 16 to n = 2, 048. This, and all the other plots shown in our

paper, show error bars that extend for a distance equal to one standard deviation above

and below each average value. Different curves correspond to different choices of model

dimension, d, and search strategy. Naturally, the divergence between P̂ and Q decreases

with sample size. For a fixed number of samples, the KL divergence increases with d.

For this kind of relatively simple models, with small values of d, we observe that the

ILP solution and the greedy search alternative provide very similar results, with a very

slight improvement from ILP. From here on we shall only show results obtained with

the ILP solution.

In Fig. S.2, we fix d = 10, and consider the effect of varying the selection threshold,

ϵ, on the quality of estimation, again using KL divergence. We also evaluate the impact

of knowing the true structure F , but still estimating the parameters, θ. Top left panel

shows how choosing a very large selection threshold results in model overfitting. In

cases like this, where the number of variables is relatively small, the ILP search method

always finds the optimal solution (i.e. the one that maximizes the global sum of ρ-

values), hence minimizes the KL divergence to the empirical distribution P ∗. However,

when the number of observed samples is small and ϵ is too large, this is not necessarily

the same as finding the best approximation to the true distribution Q that generated

the data. Similarly, when the number of observed samples is small, the true structure

that generated the data may not be the one that leads to the best approximation to the
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Fig. S.1. Evolution of KL divergence as a function of the sample size (in log2 scale) for fixed ϵ = 1 and different

choices of the number of variables: d = 5 (blue, cross); d = 10 (red, circle); d = 15 (green, diamond). Solid lines

correspond to the ILP solution and dotted lines correspond to greedy search. The average value of the entropy H(Q) is

equal to 2.97 bits, 4.90 bits and 9.00 bits for d = 5 ,d = 10 and d = 15 respectively. Each curve represents an average

over 1,000 random choices of Q and error bars show one standard deviation below and above the mean.

true generating distribution (hence the negative values of the curves in the top right

panel for sufficiently small values of ϵ and n).

Fig. S.2 also shows how larger sample sizes lead to improved edgewise network

reconstruction accuracy. Our edge comparison is based on the extended undirected

graph in which an edge is added between sibling nodes (since our model does not

assume that they are conditionally independent given their parent). We measure the

recall or true positive rate (TPR), which is the fraction of edges in the ground truth

networks that appear in the (undirected) learned graph; the false positive rate (FPR),

which is the fraction of non-edges in the ground truth that appear in the learned graph;

and the precision (fraction of recovered edges which are true). We provide both ROC

and precision-recall (PR) curves.

1.2 Comparison with Other Methods

We now compare the performance of our CAM algorithm to other methods from the

literature on reverse engineering networks using the two criteria considered above. We

will do this both in the favorable case in which Q ∈ F∗ and the unfavorable case in
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Fig. S.2. Top left: evolution of the KL divergence for d = 10 as a function of log(ϵ) for different sample sizes (n = 25

in blue and cross marker, n = 50 in red and circular marker, n = 100 in green and diamond marker, n = 200 in magenta

and square marker). Top right: difference between the estimated KL divergence using full model estimation and the KL

divergence obtained assuming that the true structure F is known. Bottom: ROC (left) and PR (right) curves for structure

estimation. Each curve represents an average over 1,000 random choices of Q.

which it does not, and our method cannot learn a graph structure as rich as F . We will

make comparisons with Bayesian networks [1], relevance networks (RN) [2], ARACNE

[3] and CLR [4].

RN, ARACNE and CLR learn network topologies only, i.e., they do not induce a

probability distribution over the variables of interest. Consequently, our comparison

is limited to the accuracy of edge reconstruction. Moreover, these methods do not
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learn directed edges, so all comparisons will be made using the underlying undirected

graphs for all the approaches. From the structure learning point of view, RN can be

seen as a simplified version of our primitive selection method, where only binary

primitives are considered and all the topological constraints on the graph structure

are ignored. ARACNE goes one step further by inspecting all the three-cliques and

using the triangular information inequality to prune spurious edges. CLR also prunes

relevance networks by scoring each edge based on its z-score relative to the mutual

information of edges with which it shares at least one node. Experiments with CLR

used the code from [4].

The K2 algorithm [5] learns a Bayesian network. It is a heuristic structure-search

method based on the use of the Bayesian score. Its main drawback is that it assumes

that an ordering of the variables is known, {X(1), ..., X(d)}, such that X(i) cannot be

a parent of X(j) if i > j. Of course, in practice the causal ordering of the variables

is typically unknown, which is a very important handicap. On the other hand, this

method is relatively easy to implement and scales well to a reasonably large number of

variables. Here, we used it just for benchmarking purposes as a generic representative

of the Bayesian networks general family of models, and we used the ordering of the

ground truth. We worked with the Matlab implementation by Guangdi Li (update of

August 2009), available through the Mathworks File Exchange website.

1.2.1 Comparison for Binary Tree Models

First, the ground truth is generated as in the previous simulations. In order to provide a

fair comparison, we assume that the true causal ordering of the variables is known, both

for K2 and our algorithm; this information is not applicable to RN, CLR and ARACNE

because they learn undirected graphs. We avoid the need to fine-tune the thresholds

used by these last three approaches by ensuring that they always learn roughly the same

number of edges as our tree models. For example, if the graph we learn for a given

choice of our selection threshold, ϵ, contains k edges, we will learn the corresponding

RN by keeping the top k edges in terms of pairwise mutual information (and similarly

for CLR and ARACNE).
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Fig. S.3 shows the average KL divergence between the learned joint probability dis-

tribution and the ground truth distribution for both K2 and CAM. The approximation

obtained using CAM is clearly better. This is particularly evident for small sample sizes

(in fact, when sample sizes are small enough, our approximation is better than the one

learned using the true structure F ).
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Fig. S.3. Evolution of KL divergence for small sample sizes (linear scale) between the true distribution Q and the

distributions learned using CAM (solid, blue, cross), using K2 (dotted, red, circle) and using the true generating graph

and simply estimating parameters (dashed, green, diamond). Each curve represents an average over 1,000 random

choices of Q.

Fig. S.4 compares network reconstruction accuracy for the same simulation. In this

case, we fixed d = 10 and n = 100 and the curves were drawn by choosing different

values for the statistical threshold used by each approach. Results for K2 were averaged

and shown as a single point (with vertical and horizontal error bars showing one

standard deviation at each side of the mean in each dimension), since there were not

any parameters to tune. The performance of CAM is comparable to that of RN, CLR

and ARACNE. For small enough values of the threshold, CAM actually outperforms

these alternatives (which is not surprising, since we are in the favorable case where the

ground truth belongs to our constrained family of models). K2 always learns a relatively

large number of edges, which results in a high average level of recall, but also in an

average level of precision which is below the range of values observed for CAM.
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Fig. S.4. Comparison of (undirected) edge recovery accuracy. Curves correspond to CAM (blue,cross), relevance

networks (green, diamond), CLR (magenta, square) and ARACNE (cyan, triangle). Results for K2 are shown as a

single encircled red dot. The black dashed line on the left panel corresponds to random guessing. Results are shown

for d = 10, n = 100 and were averaged over 1,000 replicates.

1.2.2 Comparison for a Generic Bayesian Network

We now assess performance when the data are generated from a more general Bayesian

network. The ground truth network has d = 14 variables and is shown in Fig. S.5. The

parametrization of the corresponding distribution is as follows.

• For the two root nodes, we fix P (X1 = 1) = 0.4 and P (X2 = 1) = 0.6.

• For each non-root node s with parent set s−,

P (Xs = 1|Xt = xt, t ∈ s−) =
exp

(
α ·

∑
t∈s− xt

)
1 + exp

(
α ·

∑
t∈s− xt

)
Evidently, small values of α correspond to weak dependence (with complete decoupling

for α = 0) whereas as α becomes large, nodes with any “on” parent are likely to be

“on” themselves.

We considered a range of sample sizes from 20 to 2,000 and we fixed ϵ = 1. Fig.

S.6 shows the number of edges in the final learned structures (averaged over 100

replicates). As expected, the structures learned by CAM contain fewer edges than their

K2 counterparts. Indeed, CAM cannot learn more edges than variables (the slightly
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Fig. S.5. Graph structure for Bayesian network experiment.
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Fig. S.6. Average number of edges learned as a function of sample size. The black dashed line is the number of

edges (32) in the true Bayesian network. Results are shown for different degrees of model dependence: α = 0 (blue,

cross), α = 0.5 (red, circle) and α = 1 (green, diamond). Solid lines correspond to CAM and dotted lines correspond to

K2.

higher values seen in the figure are due to our use of the extended graph, where an

edge is added between sibling nodes, for comparison purposes). For small sample sizes

CAM learns a small number of edges, eventually saturating at the maximum number

that can be learned. In contrast, K2 returns more complex structures (which do not

necessarily correspond to the true one). For complete mutual independence (α = 0), K2

stabilizes at around 14 edges, whereas CAM correctly learns nearly none.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

n

K
L

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

K
L

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

n

K
L

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

K
L

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

n

K
L

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n

K
L

Fig. S.7. KL divergence between the Bayesian network ground truth distribution and the distributions learned using

CAM (solid, blue, cross), K2 (dotted, red, circle) and the true generating graph with MLE parameters (dashed, green,

diamond). Results are presented for α = 0 (left column), α = 0.5 (center column) and α = 1 (right column). Results

were averaged over 100 replicates.

Fig. S.7 shows the KL divergence to the Bayesian network ground truth distribution

for both methods. In all cases, CAM offers the best performance when sample sizes are

small by favoring bias over variance. For larger sample sizes, and aside from the case

of weak dependence, CAM performs worse than the alternatives. This was expected:

when data are plentiful and the dependency structure is rich, learning models more

complex than ours becomes feasible.

Figure S.8 shows a precision-recall analysis of the results from the same simulation,

but this time we include a comparison with the graphs learned using RN, CLR and

ARACNE.
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Fig. S.8. Precision-recall curves for the generic Bayesian network simulation. Curves correspond to CAM (blue line,

cross marker), K2 (red dotted line, circle marker), RN (green line, diamond marker), CLR (magenta line, square marker)

and ARACNE (cyan line, triangle marker). Results are presented for α = 0 (left), α = 0.5 (middle) and α = 1 (right).

Results were averaged over 100 replicates.

The points on each curve were drawn by using different sample sizes (actually, the

same as in the horizontal axes of Fig. S.7) instead of the traditional approach where

different points are obtained by varying some learning threshold. This is why they may

appear counterintuitive at first sight: as the sample size increases, we may learn more

edges and a larger percentage of all the learned edges may be correct, so precision and

recall may increase simultaneously.

For α = 0, the curves are rather chaotic and the points do not show a clear spatial

trend. This is not surprising, since this choice of parametrization implies complete joint

independence among the variables and no structure can be recovered. As α grows, the

curves exhibit a better defined monotone increasing pattern. In all cases, we observe that

for similar levels of recall, the K2 approach achieves the smallest edgewise precision.

RN, CLR and particularly ARACNE seem to offer the best precision-recall performances.

For very small samples, which include the first few points in the curves starting from

the left, CAM offers a precision-recall performance that is competitive with that of RN,

CLR and ARACNE. For larger sample sizes (over 100 samples), CAM exhibits a lower

level of precision than RN/CLR/ARACNE (always for a same level of recall), although

it consistently outperforms K2 (when remaining within CAM’s strongly limited range

of recall).
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2 SIZE OF ENCODING AND EMPIRICAL RUNTIMES FOR THE ILP SOLUTION

TO STRUCTURE SEARCH

The sets of constraints that we had described in Section 5.2 of our paper to define the

ILP search procedure can be summarized as follows:

(C1) ∀e ∈ E ,
∑

t∈Te xt = ye

(C2) ∀ψ ∈ T0, (|ψ| − 1)xψ ≤
∑

e∈ψ ye

(C3) ∀e ∈ E , ye + yē ≤ 1

(C4) ∀v ∈ V ,
∑

(v′,v)∈E y(v′,v) ≤ 1 and
∑

(v,v′)∈E y(v,v′) ≤ 2.

(C5) ∀v ∈ V ,
∑

ψ∈Ψv
xψ ≤ 1

(C6) ∀e ∈ E , −C(1− ye) + ye +
∑

e′→e fe′ ≤ fe ≤ ye +
∑

e′→e fe′

0 ≤ fe ≤ Cye

(C7) ∀e ∈ E , 

0 ≤ he ≤ ye

he ≤ 1− ye′ if e→ e′

he ≥ 1−
∑

e→e′ ye′ − C(1− ye)

−C(1− ye) +
∑

e→e′ ge′ ≤ ge ≤ he +
∑

e→e′ ge′

ye ≤ ge ≤ Cye

∀ψ ∈ T0,T , |ge(ψ) − ge′(ψ)| ≤ 1 + C(1− xψ)

In the last constraint, T0,T refers to the subset of primitives with cardinality three (i.e.

the subset of triplets in T0).

Note that, as mentioned in the main paper, our choice of ILP solver for all the synthetic

simulations and real-data data experiments presented here was the Gurobi optimizer

(version 4.5).

2.1 Size of ILP Encoding

Tables 1 and 2 show the number of variables in the ILP problem and the number of

linear constraints associated to each of the conditions above, respectively. Note that, as
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we had explained in Section 5.2, condition C3 is made redundant by condition C6 and

can therefore be omitted, although in practice we have observed that it helps to speed

up the solver.

Name Description Cardinality

xt Primitive selector |T0|

ye Edge selector |E|

fe Acyclic flow |E|

he Terminal edge indicator (used in balance flow) |E|

ge Counter of terminal edge descendants (used in balance flow) |E|

TABLE 1

Size of ILP encoding: number of variables.

The total number of variables in the ILP problem is a linear combination of |E| and

|T0| of the form:

4 · |E|+ |T0|

Condition Motivation # constraints

C1 Every selected edge must appear in exactly one selected primitive |E|

C2 All edges in each selected primitive must be selected |T0|

C3 No edge and its reversal can be simultaneously selected |E|

C4 No vertex can have more than one parent and two children 2|V |

C5 No α-node overlap for binary primitives |V |

C6 Graph must be acyclic 4|E|

C7 Graph must be almost-balanced at triplets 7|E|+ |E|∗ + 2|T0,T |

TABLE 2

Size of ILP encoding: number of constraints.
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The total number of constraints in the ILP problem depends on a combination of |E|,

|V |, and |T0| of the form:

13 · |E|+ |E|∗ + 3|V |+ |T0|+ 2|T0,T |

where the term |E|∗ is used to represent the number of constraints associated to the

second inequality in C7. For each edge e = (a, b) ∈ E , this inequality introduces a linear

constraint for every edge e′ = (b, c) ∈ E . Therefore, the actual number of constraints

will depend on the number of overlapping edges contained in E . The following upper

bound is always valid as a “worst case scenario”:

|E|∗ ≤ |E| · (|V | − 1)

Notice that |E| is also an upper bound for the constraints associated to C3, since in

practice it is only necessary to impose this constraint for edges (a, b) ∈ E such that

(b, a) ∈ E , and not for every edge in E . Similarly, V is an upper bound for the number

of constraints in C5, since there may be nodes that do not appear as α-nodes in any of

the primitives contained in T0 (or that appear in only one of them).

The expressions above for the number of variables and the number of constraints

show that the complexity of the ILP problem depends mainly on the properties of the

set of candidate primitives that survive the initial stepwise selection process. On the

one hand, |T0| will be large when there is a large number of significant dependencies

among the variables. It is possible to encounter situations where |V | = d is relatively

small and yet |T0| is relatively large (e.g. the dataset contains few variables but the target

network of dependencies is very dense, as is the case for our 20newsgroups experiment)

and viceversa (e.g. the dataset contains many variables but the target network of de-

pendencies is very sparse, as might well be the case for our TP53 experiment). On the

other hand, |E| will be large when those dependencies involve many different edges

(i.e. oriented pairs). Again, note that |E| is not necessarily a monotone function of |T0|,

since there can be relatively large sets of primitives built by reusing a relatively small

set of edges. Similarly, |E|∗ needs not be a monotone function of |E|, since there can be

large sets of edges with very few overlaps or even no overlaps at all.
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2.2 Empirical ILP Runtimes from Synthetic Simulations

We carried out an empirical evaluation of the runtimes for our ILP search approach and

we compared it to several alternatives based on our synthetic data simulations. Results

are shown in Fig. S.9.
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Fig. S.9. Average runtime results for synthetic data simulations. Left panel shows average runtimes as a function of

|T0| for random choices of structure and parameterization (learned as in the experiment from Fig. S.2, for a fixed choice

of d = 10, n = 10, and averaged over 20e3 replicates). Results are shown for greedy search (yellow, diamond marker)

and ILP search (blue, circle marker). Right panels show average runtimes for the generic Bayesian network experiment

described in Section 1.2 of this supplemental material. Results are shown for ILP search (blue), K2 search (red) and

RN (green). The values on the horizontal axis correspond to different samplesizes.

Left panel shows average runtimes as a function of |T0| for greedy search versus ILP

search. Within the same experimental setting that we had used to generate the results

shown in Fig. S.2, we generated random structures with random parameterizations

involving d = 10 variables and for each of them we generated n = 100 samples. By

varying the selection threshold, we obtained in each case |T0| of different cardinalities.

We applied greedy search and ILP search to look for the best structure and we measured

the runtimes for each approach as a function of |T0| (the averages were computed using

bins of size 100 primitives). In this experiment, ILP was always run to convergence. The

plot shows how greedy search runtimes grow faster for small sets of primitives and then

tend to stabilize, while ILP runtimes exhibit a more linear behavior. This confirms what
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we had observed in practice: when the number of candidate primitives is relatively

small, ILP search is competitive with greedy search in terms of speed, sometimes it is

even faster. For large numbers of primitives, the computational cost of ILP continues to

grow linearly while the cost of greedy search stabilizes, which results in ILP needing

much runtimes.

Finally, the last two panels on the right side of Figure S.9 show the time averages

for the second experiment of Section 1.2 of this supplemental material (for the case

α = 0.5), where we compared our CAM-ILP approach to K2 and RN/ARACNE/CLR

using a generic Bayesian network. Since the dimension of the problem was relatively

small (d = 14), the runtimes for ARACNE and CLR were almost identical to the runtimes

for RN, which roughly corresponded to the time required to compute and sort all the

pairwise values of mutual information. These are shown in green in the figure. Of

course, these average runtimes for RN are much smaller than the runtimes for K2 and

ILP search. Once again, we observe that ILP runs faster than K2 for small samples,

although their time requirements tend to equalize as the observed sample size grows.

2.3 Performance Analysis of the ILP Solution for our Real Data Experiments

Table 3 presents the actual values of |V |, |T0| and |E0| for our 20newsgroups and TP53

experiments. It also includes the number of variables in the dataset (d) and our choice

of selection threshold (ϵ).

Problem d ϵ |V | |T0| |T0,T | |E0| |E0|∗

20newsgroups 66 10−6 66 13,820 12,994 1,753 57,586

TP53 2,000 1 76 760 626 290 1,940

TABLE 3

Size of ILP encoding for the 20newsgroups and the TP53 experiments.

The numbers of rows, columns and nonzero variables in each ILP problem, as well

as the final values for the objective function, best bound and dual gap are shown in

Table 4.
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Problem Rows Columns NonZeros Final Score BestBound Gap

20newsgroups 88,164 20,327 543,712 0.72267 0.78455 8.56 %

TP53 5,288 1,680 35,811 0.04345 0.04345 0.0046 %

TABLE 4

Size of encoding (continued) and final results of ILP search for the 20newsgroups and

the TP53 experiments. These are the values reported by the Gurobi optimizer after the

initial presolve step, which typically carries out some problem reductions.

As we had explained in Section 8.1 of the main paper, global optimality of the solution

shown in Fig. 5 cannot be guaranteed because the final dual gap reached by the solver

was non-negligible. The solution itself was first reached after approximately three and

a half days of computation. At that point, the gap was 8.58%. The result appeared to

be stable after extensive computation, meaning that no improvement in terms of the

objective function for the primal problem was observed after running the Gurobi solver

for several additional days on a 16 core machine. There was a small reduction of the

bound based on the solution to the dual problem, which pushed the gap down to

the 8.56% reported. The fact that this reduction was so small for such a large amount

of additional computation suggests that, in situations like this, where the number of

rows/columns/nonzeros is large, the gap may indeed be difficult to close. Note that

this does not mean that this solution is not optimal, but only that its global optimality

cannot be guaranteed based on the dual gap. In fact, in practice it may be possible

to find a very good, possibly optimal or near-optimal solution relatively fast. Table 5

illustrates this point.

On the other hand, in Section 8.1, we had also mentioned that the final network that

we had learned (shown in Fig. 5) is componentwise optimal. This means that, after

learning the global network, we revisited each of the five independent components one

by one and we run a separate ILP search restricted to the variables contained in that

component. The difficulty of these problems varied a lot from one to another (from the

0.4 seconds required to solve the one for the cars category, to the more than 5 days



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

required to solve the one for the computers category) but they were all much more

computationally affordable than the original global problem. Some additional details

are provided in Table 6. For every one of these ILP subproblems, the solver reached a

guaranteed optimal solution (for a gap threshold of 0.01%) which coincided in all cases

with the structure that we had learned as a part of the global network.

Time Objective Function Best Bound Gap

36 seconds 0.69141 -0.84677 22.5 %

∼ 1 minute 0.70386 0.81512 15.8 %

∼ 1 hour 0.71686 0.78854 10.0 %

∼ 10 hours 0.72076 0.78589 9.04 %

∼ 3.5 days 0.72267 0.78470 8.58 %

∼ 6 days 0.72267 0.78455 8.56 %

TABLE 5

Temporal evolution of the global ILP search for the 20newsgroups dataset. Greedy

search reached a final objective function value of 0.6475 after 13.17 seconds.

Subproblem Variables Rows Columns NonZeros Final Score Time

Cars 5 340 129 1,379 0.0255 0.40

Sports 9 2,077 745 10,593 0.11552 4.80

Health 11 2,206 755 11,348 0.07160 7.33

Space and religion 18 6,711 2,238 31,722 0.26189 564

Computers 23 27,787 8,327 141,309 0.24817 436,292

TABLE 6

Size of ILP encoding for each of the five componentwise ILP search problems.

The solution for the ILP search problem in the TP53 case (which corresponds to the

network shown in Fig. 6 and Fig. S.12) was found in 441.96 seconds. The solution is

guaranteed to be optimal for a dual gap threshold of 0.01% (the solver stopped when

an actual gap of 0.0046% was reached). As we had explained above, the fact that the
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TP53 search problem is solved much faster than the 20newsgroups case might seem

counterintuitive at first sight, since d = 2, 000 for TP53 and d = 66 for 20newsgroups.

However, the actual complexity of the search problem is determined by T0. Since there

are many more primitives that survive the stepwise selection process for 20newsgroups,

the associated ILP problem becomes much harder to solve.

Finally, please note that, as we had explained at the end of Section 5 in the main

paper, the ILP solution may improve upon greedy search even without running to

convergence. This claim is supported by the following empirical evidence:

• For the 20newsgroups dataset, our greedy search algorithm got a final score of 0.6475

after 13.17 seconds. The first ILP solution that improved this result was obtained

after approximately 36 seconds and had a score of 0.6914 (with a gap of 22.5 %).

• For the TP53 experiment, our greedy search algorithm got a final score of 0.0395

after 12.43 seconds. The first ILP solution that improved this result was obtained

in approximately 1 second and had a score of 0.4246 (with a gap of 12.2 %).

These results also show that the runtimes needed to find an ILP solution that improves

the one obtained by greedy search are competitive with the empirical runtimes measured

for the greedy search algorithm.
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3 EXTENDED DISCUSSION OF OUR EXPERIMENTS USING THE 20newsgroups

DATASET

In this section, we present an experiment based on the 20newsgroups dataset where

we show that, within small-sample regimes, the probability distributions learned using

CAM provide better predictions on holdout samples than the distributions learned

using the K2 algorithm and a baseline edgeless Bayesian network. We also present

a comparison between the semantic network learned using CAM on the 20newsgroups

dataset and two networks learned using the relevance networks approach.

3.1 Quantitative Evaluation of the Predictive Performance of CAM Models on Hold-

out Samples

We work with the 20newsgroups dataset and we consider the same set of 66 variables

and 16,242 samples that we had used to learn the network shown in Fig. 5. In this

case, however, we will split the data into a training set and a learning set. We will use

our family of CAM models to learn the joint probability distribution of the 66 variables

using the training set and we will evaluate its performance at predicting the holdout

samples by computing the average log-likelihood of the test set.

We will compare our results with the ones obtained using K2, since none of the other

methods for network reconstruction discussed in our paper is designed to learn the

underlying joint probability distribution. We will also compare our results with those

associated to a baseline model (BL) consisting of an edgeless Bayesian network (i.e.

a model which assumes full independence, so that the joint is simply computed as a

product of all the individual marginals).

3.1.1 Experimental Setting

We want to evaluate the performance of the three methods mentioned in the previous

paragraph as a function of the available sample size, n. For this, we propose the

following procedure:
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• At replicate i, do:

1) Randomly choose a subset of N samples from the original set of 16, 242 obser-

vations. This will be our training set L(i). All the remaining 16, 242−N samples

will be used as the test set H(i) (or “holdout set”) for replicate i.

2) Index the N samples in the training set L(i), so that L(i) = {x(i)
1 , . . . ,x

(i)
N } (where

each x ∈ Rd).

3) For Nj from N0 to N in increments of ∆N , do:

a) Let the current partial training set L(i,j) contain the first Nj samples in the

training set L(i), i.e. L(i,j) = {x(i)
1 , . . . ,x

(i)
Nj
}.

b) Learn the joint probability distribution of X using BL, K2 and CAM.

c) Compute the average log likelihood of the samples in the test set H(i) under

the joint distributions learned with each of the previous models:

LL(L(i,j),H(i)) =
∑

xk∈H(i)

logPL(i,j)(xk)

|H(i)| · d

where |H(i)| = 16, 242−N is the number of holdout samples.

We repeated the steps above for a total of 100 replicates and averaged the final results

in order to evaluate the performance associated to BL, K2 and CAM. The results are

shown in Fig. S.10.

The K2 algorithm assumes knowledge of the causal ordering of the variables, i.e. it

needs to be told which variables can be parents of which variables in the final structure.

Of course, the true causal ordering in the current problem is unknown. We decided to

run the K2 algorithm using a frequency (or, equivalently, entropy) ordering, according to

which a variable can only be a parent of another one if the word associated to the parent

appears in more documents than the word associated to the child. Note that, since all

the frequencies are relatively small in this example (and far below 0.5), entropy is a

monotone function of frequency and therefore the entropy and the frequency orderings

coincide. In order to provide a fair comparison with CAM, we also restricted the space

of candidate CAM structures to enforce the same constraint, i.e. we discarded all the

primitives where the frequency of parents was not larger than the frequency of their

children. Once again, we do not claim that this is a “true” causal ordering, but we can

guarantee that the same ordering was enforced for the two approaches.
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Fig. S.10. Average log-likelihood over holdout samples as a function of observed sample size. Results are shown

for BL (green, diamond), K2 (red, circle) and CAM (cross marker). CAM results are shown for ϵ = 1 (cyan), ϵ = 10−3

(blue), ϵ = 10−6 (magenta) and ϵ = 10−9 (black). The three panels cover different ranges of sample sizes. On the left

panel, the green and the black lines overlap because the results for BL and CAM(ϵ = 10−9) are very similar (identical

for most sample sizes).

When it comes to our CAM models, attempting to find a guaranteed optimal solution

for the ILP search problem may be computationally prohibitive for this given dataset,

depending on the available sample size (which will influence the actual cardinality of

T0, for more details see the discussion in Section 2.3 of this supplemental material). Still,

a good solution can typically be found in a relatively short time. In order to illustrate

this point, we imposed an upper bound of five minutes for each run of the ILP solver,

meaning that a solution is accepted if either it is guaranteed to be optimal or if the time

limit of 300 seconds is reached. In most cases, particularly those corresponding to small

samples, the optimal solution was found for runtimes far below the five minute limit.

3.1.2 Discussion

Our results support our claim of the fact that CAM models perform well within small

sample scenarios.

For sample sizes between 100 and 500 samples, the performance of CAM is compa-

rable to that of BL. This makes sense: since the available sample size is so small relative

to the number of variables, the model with the best generalization properties is the

edgeless graph (let us keep in mind the fact that we are attempting to learn a distribution

with a state space of 266 configurations from just a few hundreds of observations). For
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sufficiently small values of ϵ, CAM will simply ”refrain” itself from learning any edges

and thus the results are identical to those obtained with BL. A large choice of ϵ may

lead to overfitting, as is the case for the cyan line in the figure. K2, however, always

learns a relatively complex graph and therefore always ends up severely overfitting the

data within this range of samples.

For sample sizes between 500 and 5,000, CAM clearly outperforms the other two

approaches. BL is too simple to achieve a good performance. The performance of K2

improves as sample size grows, so that it does better than BL after approximately 2,000

samples. However, K2 still performs worse that CAM because the observed sample

size is not enough to support the complexity of the models that it is attempting to

learn. We remark that, for this range of sample sizes, CAM consistently outperforms its

alternatives over a very wide range of choices of ϵ (from ϵ = 1 to ϵ = 10−9).

Finally, when a sufficiently large set of samples is observed, K2 will overpass CAM

(as shown in the third panel of Fig. S.10). This was expected and is the type of result that

agrees with the conclusions that we had reached from our synthetic data simulations:

when the number of samples in the training set is large enough, models that are more

complex than CAM exhibit better learning performance.

3.2 Comparison with Relevance Networks

Fig. 5 in Section 8.1 shows the final network learned using CAM models for the whole

20newsgroups dataset. For comparison purposes, we also looked at the kind of graphs

that would be learned using standard relevance networks. Results are shown in Figure

S.11.

We considered two different network building strategies in order to provide a fair

comparison. On the one hand, the threshold for the mutual information was chosen to

be the same as the one used to select binary primitives for the network in Fig. 5. On

the other hand, we sorted all the pairwise mutual information values and only kept

the top scorers, in order to learn a graph with the same number of edges as the one

that we had learned using CAM. In the first case, all the variables appeared in the

graph as members of a unique connected component. The large number of pairs that

survived thresholding led to a very crowded network representation with lots of nodes



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 23

Fig. S.11. Two graphs learned by relevance networks using the 20newsgroups dataset. Left panel: the mutual

information threshold is the same as the threshold that was used for selecting binary primitives in the network shown

in Figure 5 of the main paper. Right panel: the threshold is chosen so that the learned relevance network has the same

number of edges as the network shown in Figure 5.

of high degree. Although the words are certainly clustered by semantic categories in

terms of their proximity within the network, the large number of detected interactions

makes it difficult to further interpret the results. In the case where only the top edges

were kept, a total of 20 variables (out of the original 66) were left out of the final

structure and treated as singletons (they were not linked to any others). This means that

many meaningful interactions remained undiscovered, even if the multiple independent

components seem to correspond well to different semantic categories. In either case,

we must not forget that, unlike relevance networks, our balanced compositional trees

provide a truly generative model based on an efficient parametrization of the target

global joint probability distribution and this offers advantages that go beyond those

associated to a merely more attractive visual representation.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 24

4 ANALYSIS OF RESULTS FOR THE TP53 EXPERIMENT

The final network learned using our CAM approach on the full IARC TP53 dataset con-

tained a total of 68 different mutations structured in several independent components.

It is shown in Fig. S.12.

Fig. S.12. Network of interactions among somatic mutations for the IARC TP53 dataset learned using CAM models.

Dashed lines are used to link siblings that belong to the same triplet primitive. For each node, we provide the unique

mutation identifier in the IARC Database and the (standard) mutation description at the protein level, where p.XzY

represents the substitution of amino acid X by amino acid Y at codon number z; for example, p.R248W represents

substitution of Arg by Trp at codon 248. Components labeled with a capital letter contain enriched annotations which

are detailed in Table 7.
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As we had explained in Section 8.2, each somatic mutation in the IARC Database

is annotated with biochemical details about the actual nucleotide variation, as well

as clinical information for the patient and tissue where the mutation was observed.

The IARC Database also provides a unique nucleotide position for each mutation. The

average distance between nodes within the same connected component in our network

is 486.8 nucleotides, whereas the average distance among unconnected nodes (including

singletons) is 1,436.5 nucleotides.

We first work with two types of annotation: topography and morphology. Topography

refers to the site of the tumor in which the mutation was observed, as defined by organ

or group of organs; there are 74 distinct labels and examples include breast, brain, prostate

or colon. Morphology refers to the tumor type; there are 323 distinct labels and examples

include adenoma, malignant lymphoma or leukemia.

We hypothesize that mutations which are close in our network are more likely to be

functionally related. In particular, pairs of mutations linked by an edge should be more

likely to share annotation than pairs of mutations chosen at random. It is easy to show

that sharing at least 5 topography terms or at least 5 morphology terms has probability

less than 0.05 for a random pair. In the learned network, of the fifty-eight edges in the

graph, all connected pairs share at least one topography term and 14 share at least six.

Similarly, all share at least one morphology term, and 16 out of the 58 share at least six.

These are all rare events under random pairing.

We investigated enrichment of annotations at the component level, permuting muta-

tion IDs and computing hypergeometric p-values. These p-values represent the proba-

bilities of observing an equally large or larger number of mutations within a component

that are associated with a given term under the null hypothesis of independent labels

within a randomly-composed component of the same size. Using the fifth percentile for

significance, we found that several components in our network contained significantly

enriched annotations for topography and morphology. They are shown in Table 7, where

the labels in the first column correspond to the labels in Fig. S.12 and the numbers in

the second column correspond to the IARC mutation identifiers.
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COMPONENT MUTATIONS TOPOGRAPHY MORPHOLOGY

2143,2705,2821,

A 3236, 3294, 3297, 53 terms 98 terms

3327,3730,3737,

3879

2907,3251,3676,

B 3773,3787,3865, LUNG ADENOCARCINOMA

3889,4013,4221

C 3742,3991,4094, STOMACH -

4095,4120,4172

D 1809, 2168,2195 ADRENAL GLAND GERMINOMA, YOLK SAC TUMOR, ASTROCYTOMA

E 2010,2267 THYROID PAPILLARY CARCINOMA, MATURE T-CELL LYMPHOMA.

F 3909,5375 - HEMANGIOSARCOMA

G 3303,5466 - HEMANGIOSARCOMA

TABLE 7

Components with enriched topography and morphology annotations in TP53 network.

The component of size ten is significantly enriched for a large number of annota-

tions, both in terms of topography and morphology. Interestingly, it contains the nine

most frequent p53 mutations, which are well-known to be localized in seven mutation

hotspots [6], [7]. The top eight most frequent mutations belong to the DNA-binding

domain of the p53 protein (R248W, R248Q, R273C, R249S, R175H, R273H, G245S and

R282W). Mutations within this region can result in the removal of DNA contacts, or

can have a structural effect by destabilizing the local conformation or inducing global

denaturation. One of the other two mutations in the component, Y220C, is located in

the β-sandwich of the protein and is the most common cancer mutation outside the

DNA-binding surface, accounting for 1.4% of somatic missense mutations in p53 [8].

The remaining mutation, R213X, is of the nonsense type, which means that it introduces

a stop codon which leads to premature translational stop.
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PROPERTY ALL MUTATIONS MUTATIONS IN NETWORK P-VALUE

CPG ASSOCIATION 213/2000 13/68 0.0239

AVERAGE MUTATION RATE 0.1381 0.2935 4 · 10−4

DELETERIOUS(SIFT) 200/321 13/15 0.0368

DELETERIOUS(AVCVD) 196/321 13/15 0.0296

GAIN OF FUNCTION 136/514 11/22 0.0136

TABLE 8

Properties of the mutations in our TP53 network.

We also evaluated several properties of the variables in our network using additional

data from the same database. Results are shown in Table 8. Some details follow.

CpG islands are associated with methylation, which usually leads to failure in the

silencing of certain oncogenes and their corresponding over expression. This is a feature

found in many cancer cells [9]. Based on a hypergeometric null, CpG enrichment is

borderline significant in our network (p=0.024). In addition, mutation rates are available

for 1,348 out of the 2,000 variables in our model, and for 57 out of the 68 mutations in

our learned network. The average mutation rate over the whole set of 1,348 mutations

is 0.138, whereas it is 0.293 over the 57 mutations in our network (p = 4 · 10−4). The

functional impact of mutations is classified as “deleterious”, “neutral” or “unclassified”

using two different approaches, namely the Sorting Intolerant From Tolerant (SIFT)

program and the Average Graham Variation and Graham Deviation (AVGVD) indicator.

Another permutation test shows that the mutations in our connected components are

significantly more likely to be deleterious using either method (p = 0.0368 and p = 0.0296

respectively). Also known as “driver” mutations, these are known to have a negative

impact on the phenotype relative to “neutral” or “passenger” mutations. Finally, in

terms of protein descriptors, 514 out of the 2,000 mutations have functional annotations

and 136 of those have at least one associated gain of function (GoF) term. Within our

network, 22 out of the 68 mutations have functional annotations and 11 of them have

at least one associated GoF term. The corresponding hypergeometric p-value is, once

again, borderline significant (p = 0.0136).
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APPENDIX A

PROPOSITION S.1

If Ψ = {ψ1, . . . , ψN} ∈ T ∗
0 , then, letting ψk = (πk, Ak, Ok) and Jk = J(πk):

(i) For a given k, either Ak ∈ RΨ, or the collection of nonempty sets in Ak ∩ Ol, l ̸= k,

forms a partition of Ak. The set RΨ cannot be empty and is a singleton if Ψ ∈ T ∗
0 .

(ii) We have D = S ∪ (
∪
k∈RΨ

Ak)∪ (
∪N
k=1(Jk \Ak)) and Ψ specifies a unique probability

P ∈ F∗ given by

P (x) =
∏
j∈S

Pj(xj)
∏
k∈RΨ

πk(xAk
)
N∏
k=1

πk(xJk |xAk
). (1)

where variables indexed over S := D \
∪N
k=1 Jk are mutually independent under P

and correspond to singleton distributions in Eq. (2) from the main paper.

(iii) Define the directed graph G(Ψ) on {1, . . . , N} by drawing an edge from k to l if

and only if Al ⊂ Ok. Then G(Ψ) is acyclic.

Proof. We prove (i) by induction on the number of merges. First, however, note that,

by construction, the α-sets of any ϕ ∈ TΨ must be one of the α-sets of the original

family, Ψ, since no new α-set is created by the merge operation. If Ψ is an atomic

decomposition, this α-set cannot overlap with any of the ω-sets of Ψ and the associated

primitive therefore provides a root. Conversely, the α-set of the connector is the only

α-set in the merge operation that does not intersect an ω-set, so that any root of an

atomic decomposition must coincide with it. This proves that any decomposition in T ∗
0

has exactly one root.

Let U (0) = Ψ and, for k ≥ 1, U (k) be the union of U (k−1) and of the set of results of

single merge operations involving elements of U (k−1). Assume that (i) is true for any

subset of Ψ providing an atomic decomposition of elements of U (k), and let us show that

it is true also for those associated to elements of U (k+1). Consider ϕ ∈ U (k+1)\U (k), which

therefore can be written as ϕ = Γ(ϕ0, . . . , ϕr) with each ϕj = (πj, Aj, Oj) ∈ U (k). Then, an

atomic decomposition of ϕ is obtained by taking the union of decompositions of ϕj’s by

elements of Ψ. Let Ψ0, . . . ,Ψr denote these decompositions and Ψ̃ their union. Since the

ϕj such that j ≥ 1 must have disjoint supports, with J(πj)∩J(π0) = Aj ⊂ O0, no non-root

α-set in Ψj (j ≥ 1) can intersect an ω-set from another decomposition and therefore (i)
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remains true for these α-sets. The only change happens with Aj such that j ≥ 1, which

were roots in Ψj , and now are included in O0. Since this ω-set is recursively defined as

disjoint unions of ω-sets of merges obtained from elements of Ψ̃, it is a disjoint union of

some ω-sets of elements of Ψ, and each Aj with j ≥ 1 is partitioned by its intersection

with these ω-sets.

This proves (i) for elements of T ∗
0 , and the corresponding statement for F∗

0 is straight-

forward. Statements (ii) and (iii), can be proved with similar induction arguments. For

(ii), this proceeds directly from the definition of Γ, and for (iii), the above discussion

shows that G(Ψ̃) is deduced from G(Ψ) by adding edges between the indices of the roots

of each G(Ψj), j ≥ 1 and some of the indices of the output sets in Ψ0. Since these edges

only allow to leave G(Ψ0) (but not to go back) and do not create any communication

between G(Ψj) and G(Ψj′) for j ̸= j′ and j, j′ ≥ 1, the resulting graph is acyclic if this

was the case for the original subcomponents, which is the induction assumption. �
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APPENDIX B

PROOF OF PROPOSITION 2

First, since single-variable distributions are explicitly maximized for Pj(λ) = P ∗
j (λ), and

due to Eq. (1) from Proposition S.1 in Appendix A, the problem with fixed Ψ reduces

to maximizing the following expression:

ℓ(σ1, τ1, . . . , σN , τN) =
∑
k∈RΨ

EP ∗ log πk(XAk
; σk) +

N∑
k=1

EP ∗ log πk(XJk |XAk
; τk)−

∑
j∈S

H(P ∗
j )

where H(P ) = −EP (logP ) is the entropy of P and S := D \
∪N
k=1 J(πk). Assuming, for

notational ease, that the maxima over individual parameters are achieved, the maximum

of ℓ is given by

ℓ̂ =
∑
k∈RΨ

max
σk

EP ∗ log πk(XAk
; σk) +

N∑
k=1

max
τk

EP ∗ log πk(XJk |XAk
; τk)−

∑
j∈S

H(P ∗
j )

=
∑
k∈RΨ

EP ∗ log
πk(XAk

; σ̂k)∏
j∈Ak

P ∗
j (Xj)

+
N∑
k=1

EP ∗ log
πk(XJk ; σ̂k, τ̂k)

πk(XAk
; σ̂k)

∏
j∈J(πk)\Ak

P ∗
j (Xj)

+
∑
k∈RΨ

EP ∗ log
∏
j∈Ak

P ∗
j (Xj) +

N∑
k=1

EP ∗ log
∏

j∈J(πk)\Ak

P ∗
j (Xj)−

∑
j∈S

H(P ∗
j )

=
∑
k∈RΨ

µ(ψk) +
N∑
k=1

ρ(ψk)−
∑
j∈D

H(P ∗
j )

�
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APPENDIX C

PROOF OF PROPOSITION 3

The “only if” part being obvious, we briefly discuss the proof of the “if” part, which

can go by induction on the number of elements in Ψ. The result is true if Ψ is empty,

or has a single element. Assume that it is true for any Ψ with cardinality N or less

and take a family Ψ = {ψ1, . . . , ψN+1} such that G(Ψ) is a union of balanced trees. Let

ψk = (πk, Ak, Ok) (with Jk = Ak ∪ Ok). Assume that ψj’s are ordered so that ψN+1 is a

root in Ψ and let Ψ′ = {ψ1, . . . , ψN}. Since the α-sets are singletons, the α-node of ψN+1

must also be a root of the connected component, say T , in G(Ψ) that contains it.

Since the definition of almost-balanced trees is recursive, removing the top component

either separates T into two balanced subtrees (when ψN+1 is a triplet with two nonempty

subtrees appended to its ω-nodes), or leaves a – possibly empty – single balanced tree

(in the other cases). The fact that α-nodes cannot be shared among ψk’s removes the

problematic case of two pairs sharing an α-node at the root of a tree.

In all cases, G(Ψ′) is a union of almost-balanced trees, and, since (i) and (ii) are

obviously inherited by the restriction, Ψ′ ∈ F∗
0 . Since putting ψN+1 back to its former

position is a legal merge operation, we find that Ψ ∈ F∗
0 also. �
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