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Set of n i.i.d. samples from P(X,,...,X,), typically n << d
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Our Method: Competitive Assembly of Marginals

*Motivation: Model selection in “small n, large d” settings.
- Need mechanisms to avoid model overfitting.

e Strategy: Learn graphical model from data (structure and parameters).
- Adapt model complexity to sample size.

- Enforce biases that restrict the set of admissible distributions.
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Small Samples
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Low-dimensional marginals selected from data (primitives)
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* T is a probability distribution on J(wt)cD.
Primitives are triplets | * A < J(r) is the set of a-nodes, A=J.

b=(m,A, &), where < ¢ N=J(n)\A is the set of neutral nodes.
_* &: D — Ris afunction to control primitive overlap.

* Stepwise primitive selection process.
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e Each increment of parametric complexity @
needs to be justified by likelihood gain. @

Parameter Estimation

Primitives can be merged into larger distributions, subject to some
compositional rules: ——— q connectors

1. Data 2. Primitives

Example: Somatic Mutations in Gene TP53
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The merged distribution is obtained by conditioning on a—nodes:

4. Learned 3. Model CIass ﬁ(xg)Z]I;I[Ek(xj(;;k))k];[lﬂk(xﬂxk)‘xAk)
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where ¢, =(m,,A,, &) for primitives (¢y,...,,) and S = U;=1J(7Zk ).
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YOLK SAC TUMOR, ASTROCYTOMA ANAPLASTIC
PROPERTY ALL MUTATIONS  NETWORK P-VALUE

CPG ASSOCIATION 213/2000 19/86 0.0012

Integer Linear Programming

AVERAGE MUTATION RATE 0.1381 0.2832 1.3.10*

DELETERIOUS (SIFT) 290/490 33/40 2.58-10%

DELETERIOUS (AGVGD) 279/490 33/40 8.6-10*
Loss oF FUNCTION 443/514 41/44 0.0402
GAIN OF FUNCTION 136/514 27/44

Validation using synthetic and real data

* Besides the local constraints enforced at
the primitive and merge levels, we allow
for global topological constraints.

Graphical model that estimates P(X,,...,X,) Legal sequence of merges <> Directed acyclic graph of primitiv
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a) Kullback-Leibler divergence
to the true distribution using
synthetic samples from a
known Bayesian network.
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