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- 'TF-gene interactions can be used to learn TF-TF interactions.

- Assumption: if TF ‘A’ regulates TF ‘B’ then it is more likely
that TF ‘A’ and TF ‘B’ will regulate similar sets of non-TF genes.

- Idea: Represent each TF as a vector of TH-gene interactions.
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- When TF-gene edges are not known in advance, these vectors can
be estimated by regressing gene expression on 1'F expression.

Learning TF-TF Interactions from TF-
Gene Interactions

- Many algorithms for learning gene regulatory networks (such as

relevance networks 1], ARACNE

2] and CLR [3]) compute pair-

wise measurements of similarity between random variables (typi-

cally, mutual information).
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. The

usual

approach consists in

working with a matrix of microarray
data where columns correspond to
TFs and rows correspond to different

samples.

c={xD,...

» When

T'F-gene

: X("’)}, Vi, x € RY

Interactions are

known, we propose to use an alterna-

tive data matrix where Y;(j ) —

1 if

TE 2 regulates gene 7, and Y;-(j ) =0

otherwise.
E* — {y(l) :

I y(m)}, Vi, y(i) € {0, 1}d

- When TF-gene interactions are un-
known, they can be estimated from

microarray
oet ¢, solve

where x(®)

data. For each gene tar-

€ R"™ is the expression

data for gene t, X € M, «q1s the ma-
trix of TF expression and B € R4,
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Transcriptional Networks in E. colz

» Ground truth network trom
RegulonDB  database [4],

which contains 106 TF-
TEF interactions and 2,109
TF-gene interactions in-

volving d = 126 TFs and
m = 984 genes.

- Expression data from the
Many Microbe Microarrays
Database (M3D) |5|, which
contains . = 466 micro-
array samples.

TF-TF ground truth network from RegulonDB

- We measured ROC performance for edgewise network reconstruc-
tion accuracy using the three types of data matrix representation.

- For the regression coeflicients case, we simply ranked all pairwise
Fuclidean distances between columns.
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Discussion

- New approach intended to improve (not replace) existing TF-TF
network reconstruction algorithms.

- By estimating TF-gene edges, we look jointly at microarray data
for TFs and non-TF target genes (as opposed to alternatives that
learn TF-TF networks using TF expression alone).

- Non-penalized linear regression was used only for illustration pur-
poses. oparse regression techniques may lead to better results,
possibly closing the gap between the green and red ROC curves.

- Basis for two-phase network learning strategy: first, learn TEF-gene
edges using regression and then learn TE-TFEF edges as graphical
models using the vectors of regression coeflicients.
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