Q: Roll a fair die.

(a) What is the expected number of different faces after rolling \(n \) times?

(b) What is the expected number of rolls to get all the faces from “1” to “6”?

(c) What is the probability of getting all the faces from “1” to “6” after rolling \(n \) times?

(d) Roll \(x \) times until getting all the faces from “1” to “6”, what’s the distribution of \(x \)?

A:

(a)

Let \(X_i \) be number of different faces after rolling \(n \) times. Let \(X_i = 1 \) if face \(i \) appears at least once; \(X_i = 0 \) otherwise. Then \(X = \sum_{i=1}^{6} X_i \). Hence the desired quantity is

\[
E(X) = E(\sum_{i=1}^{6} X_i)
\]

\[
= \sum_{i=1}^{6} E(X_i) = \sum_{i=1}^{6} P(X_i = 1) = \sum_{i=1}^{6} \left(1 - \left(\frac{5}{6}\right)^n \right) = 6 \left(1 - \left(\frac{5}{6}\right)^n \right).
\]

(b)

Let \(Y \) be number of rolls to get all the faces from “1” to “6”. Let \(Y_i = \) additional number rolls until the \(i \)-th different face appear. Then \(Y = \sum_{i=1}^{6} Y_i \).

\(Y_1 = 1 \). Deterministic.

\[
P(Y_2 = k) = \left(\frac{1}{6}\right)^{k-1} \cdot \frac{5}{6}, \text{ i.e. } Y_2 \text{ follows geometric distribution with parameter } p_2 = \frac{5}{6}.
\]

We can observe that for \(i = 2, 3, ..., 6 \),

\[
P(Y_i = k) = \left(\frac{5}{6}\right)^{k-1} \cdot \frac{1}{6} = \frac{6}{7-i}, \text{ i.e. } Y_i \text{ follows geometric distribution with parameter } p_2 = \frac{7-i}{6}.
\]

Then \(E(Y_i) = \frac{1}{p_2} = \frac{6}{7-i} \) for \(i = 2, 3, ..., 6 \).

Note that this formula is also true for \(i = 1 \). Hence the desired quantity is

\[
E(Y) = E(\sum_{i=1}^{6} Y_i)
\]

\[
= \sum_{i=1}^{6} E(Y_i) = \sum_{i=1}^{6} \frac{6}{7-i} = 6 \sum_{i=1}^{6} \frac{1}{7-i} = 6 \left(\frac{1}{6} + \frac{1}{5} + \cdots + 1 \right) = 14.7.
\]

(c)

Let \(P_n(E) \) be the desired probability, where \(E \) denotes the event that “all faces show up”. Obviously,

\[
P_n(E) = 0 \text{ if } n < 6.
\]

For \(n \geq 6, E = \bigcap_{i=1}^{6} A_i \), where \(A_i \) denotes the event that face \(i \) shows up.
\[P_n(E) = P_n\left(\bigcap_{i=1}^{6} A_i \right) = 1 - P_n\left(\left(\bigcap_{i=1}^{6} A_i \right)^c \right) = 1 - P_n\left(\bigcup_{i=1}^{6} A_i^c \right). \]

\[P_n\left(\bigcup_{i=1}^{6} A_i^c \right) = \binom{6}{1} P_n(A_1^c) - \binom{6}{2} P_n(A_1^c A_2^c) + \binom{6}{3} P_n(A_1^c A_2^c A_3^c) - \binom{6}{4} P_n(A_1^c A_2^c A_3^c A_4^c) + \binom{6}{5} P_n(A_1^c A_2^c A_3^c A_4^c A_5^c) \]

\[= 6 \left(\frac{5}{6} \right)^n - \binom{6}{2} \left(\frac{4}{6} \right)^n + \binom{6}{3} \left(\frac{3}{6} \right)^n - \binom{6}{4} \left(\frac{2}{6} \right)^n + \binom{6}{5} \left(\frac{1}{6} \right)^n \]

\[P_n(E) = 1 - 6 \left(\frac{5}{6} \right)^n + 15 \left(\frac{4}{6} \right)^n - 20 \left(\frac{3}{6} \right)^n + 15 \left(\frac{2}{6} \right)^n - 6 \left(\frac{1}{6} \right)^n \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(P_6(E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0154321</td>
</tr>
<tr>
<td>2</td>
<td>0.05401235</td>
</tr>
<tr>
<td>3</td>
<td>0.11202064</td>
</tr>
<tr>
<td>4</td>
<td>0.1890432</td>
</tr>
<tr>
<td>5</td>
<td>0.285828453</td>
</tr>
<tr>
<td>6</td>
<td>0.4462127</td>
</tr>
<tr>
<td>7</td>
<td>0.6980444</td>
</tr>
<tr>
<td>8</td>
<td>0.946325</td>
</tr>
<tr>
<td>9</td>
<td>0.7847071</td>
</tr>
<tr>
<td>10</td>
<td>0.819231</td>
</tr>
<tr>
<td>11</td>
<td>0.8479875</td>
</tr>
<tr>
<td>12</td>
<td>0.8725775</td>
</tr>
<tr>
<td>13</td>
<td>0.8933165</td>
</tr>
<tr>
<td>14</td>
<td>0.9107646</td>
</tr>
<tr>
<td>15</td>
<td>0.9254152</td>
</tr>
<tr>
<td>16</td>
<td>0.9376979</td>
</tr>
<tr>
<td>17</td>
<td>0.9565864</td>
</tr>
<tr>
<td>18</td>
<td>0.9749827</td>
</tr>
<tr>
<td>19</td>
<td>0.9831892</td>
</tr>
<tr>
<td>20</td>
<td>0.98649875</td>
</tr>
<tr>
<td>21</td>
<td>0.9866775</td>
</tr>
<tr>
<td>22</td>
<td>0.9863165</td>
</tr>
<tr>
<td>23</td>
<td>0.9867646</td>
</tr>
<tr>
<td>24</td>
<td>0.9865152</td>
</tr>
<tr>
<td>25</td>
<td>0.986979</td>
</tr>
<tr>
<td>26</td>
<td>0.98749827</td>
</tr>
<tr>
<td>27</td>
<td>0.9900000</td>
</tr>
</tbody>
</table>

Specially, we can look at the case in which \(n = 6 \). The question is what’s the probability of seeing all the six faces when the die is tossed 6 times. If we don’t use the above formula, we can directly calculate

\[P_6(E) = \frac{6!}{6^6} = 0.0154321. \]

From the numerical results, we can see that if we want to have at least 95% probability of seeing all 6 faces, we need to roll at least 27 times.

(d) Simulation method

R-code:
deltap = 1.0/6;
n = 3000; # Number of experiments
x = rep(0,n);
for (k in 1:n) # For the k-th experiment
{
 # Roll the fair die x times until all six faces show up
 xk = 0;
 iface = rep(0,6);
 sum_iface = 0;
 while (sum_iface < 6) # While number of faces < 6
 {
 # Rolling
 U = runif(1,0,1); xk = xk + 1;
 p_sum = deltap;j = 1;
 while (p_sum < U)
 {
 p_sum = p_sum + deltap; j = j + 1;
 }
 if (iface[j] == 0)
 {
 iface[j] = 1;
 sum_iface = sum_iface + 1;
 }
 } # Rolling
 x[k] = xk;
}
hist(x);
print(mean(x));
summary(x)

Analytical method

Let $P_x(E)$ denote the desired probability, where E denotes the event that the sixth different face shows up. Then $P_x(E) = 0$ if $x < 6$. For $x \geq 6$, we have

$$P_x(E) = \sum_{i=1}^{6} P_x(E|R_x = i)P(R_x = i) = \sum_{i=1}^{6} P_x(E|R_x = i) \frac{1}{6} = \frac{1}{6} \sum_{i=1}^{6} P_x(E|R_x = i),$$

where R_x is the result of last roll.

$$P_x(E|R_x = i) = P(\text{First } x-1 \text{ rolls have all faces but } i)$$

$$= P(\text{First } x-1 \text{ rolls have all faces but 6}).$$

Hence,

$$P_x(E) = \frac{1}{6} \cdot 6 \cdot P(\text{First } x-1 \text{ rolls have all faces but 6})$$

$$= P(\text{First } x-1 \text{ rolls have all faces but 6})$$

$$= P_{x-1}(\cap_{i=1}^{5} A_i \cap A_6^c)$$

$$= P_{x-1}(\cap_{i=1}^{5} A_i | A_6^c) P_{x-1}(A_6^c)$$

$$= P_{x-1}(\cap_{i=1}^{5} A_i | A_6^c) \left(\frac{5}{6}\right)^{x-1},$$

where A_i denotes the event that face i appears and A_i^c is its complementary event. Note that
\[P_{x-1}(\bigcap_{i=1}^{5} A_i | A_6^c) \]
\[= 1 - P_{x-1}\left((\bigcap_{i=1}^{5} A_i)^c | A_6^c\right) \]
\[= 1 - P_{x-1}\left(\bigcup_{i=1}^{5} A_i^c | A_6^c\right) \]
\[= 1 - \left(\frac{5}{1}\right) P_{x-1}(A_1^c | A_6^c) + \left(\frac{5}{2}\right) P_{x-1}(A_1^c A_2^c | A_6^c) - \left(\frac{5}{3}\right) P_{x-1}(A_1^c A_2^c A_3^c | A_6^c) + \left(\frac{5}{4}\right) P_{x-1}(A_1^c A_2^c A_3^c A_4^c | A_6^c) \]
\[= 1 - 5\left(\frac{4}{5}\right)^{x-1} + 10\left(\frac{3}{5}\right)^{x-1} - 10\left(\frac{2}{5}\right)^{x-1} + 5\left(\frac{1}{5}\right)^{x-1} . \]

Therefore,
\[P_x(E) = \left(1 - 5\left(\frac{4}{5}\right)^{x-1} + 10\left(\frac{3}{5}\right)^{x-1} - 10\left(\frac{2}{5}\right)^{x-1} + 5\left(\frac{1}{5}\right)^{x-1}\right) \cdot \left(\frac{5}{6}\right)^{x-1} \]
\[= \left(\frac{5}{6}\right)^{x-1} - 5\left(\frac{1}{6}\right)^{x-1} + 10\left(\frac{3}{6}\right)^{x-1} - 10\left(\frac{2}{6}\right)^{x-1} + 5\left(\frac{1}{6}\right)^{x-1} . \]

\[e_i = \sum_{x=6}^{\infty} x \left(\frac{i}{6}\right)^{x-1} . \] Let \(y = x - 5 \), then
\[e_i = \sum_{y=1}^{\infty} (y + 5) \left(\frac{i}{6}\right)^{y+4} \]
\[= \sum_{y=1}^{\infty} y \left(\frac{i}{6}\right)^{y+4} + \sum_{y=1}^{\infty} 5 \left(\frac{i}{6}\right)^{y+4} \]
\[= \left(\frac{i}{6}\right)^5 \sum_{y=1}^{\infty} y \left(\frac{i}{6}\right)^{y-1} + 5 \left(\frac{i}{6}\right)^5 \sum_{y=1}^{\infty} \left(\frac{i}{6}\right)^{y-1} \]
\[= \left(\frac{i}{6}\right)^5 \frac{6}{6-i} \sum_{y=1}^{\infty} y \left(\frac{i}{6}\right)^{y-1} + \frac{5}{6}\left(\frac{i}{6}\right)^5 \sum_{y=1}^{\infty} \left(\frac{i}{6}\right)^{y-1} \]
\[= \left(\frac{i}{6}\right)^5 \left(\frac{6}{6-i}\right) \frac{2}{1-i} + 5 \left(\frac{i}{6}\right)^5 \frac{1}{1-i}. \]
\[= \left(\frac{i}{6}\right)^5 \left(\frac{6}{6-i}\right)^2 + 5 \left(\frac{i}{6}\right)^5 \frac{6}{6-i}\]

\[= \left(\frac{i}{6}\right)^5 \frac{6}{6-i} \left(\frac{6}{6-i} + 5\right) = \left(\frac{i}{6}\right)^5 \frac{6}{6-i} \left(\frac{36-5i}{6-i}\right)\]

We can use this to calculate the mean, that is \(e_5 - 5e_4 + 10e_3 - 10e_2 + 5e_1 = 14.7\).