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Abstract—Recent advances in convex optimization have led to
super-resolution algorithms that provide exact frequency local-
ization in multitone signals from limited time-domain samples.
Such localization is accomplished by minimizing a certain atomic
norm, which can be implemented in a semidefinite program. In
this work, we consider the identification of multiband signals,
which are comprised of multiple, unknown narrow bands of
frequency content at multiple carrier frequencies. Integrating a
basis of modulated discrete prolate spheroidal sequences (DPSS’s)
into the atomic norm minimization framework, we introduce a
technique for estimating the unknown band positions based on
limited time-domain samples of the signal.

Index Terms—Atomic norm, discrete prolate spheroidal se-
quences, multiband identification, super-resolution

I. INTRODUCTION

Super-resolution refers to the problem of identifying signal
parameters with high resolution from limited measurements.
The conventional super-resolution problem considers a multi-
tone analog signal that can be expressed as a sum of J complex
exponentials of various frequencies:

x(t) =

J∑
j=1

θje
i2πFjt.

Suppose such a multitone signal x(t) is bandlimited with
bandlimit Bnyq

2 Hz, i.e., that maxj |Fj | ≤ Bnyq

2 . Let x denote
the length-N vector obtained by uniformly sampling x(t) over
the time interval [0, NTs) with sampling period Ts ≤ 1

Bnyq
:

x[n] =

J∑
j=1

θje
i2πfjn, n = 0, 1, . . . , N − 1,

where fj = FjTs. This model arises in problems such
as radar signal processing with point targets [1], [2], line
spectral estimation [3]–[5], and spike detection for neural
recordings [6].

We consider a more realistic model in which x(t) has a
continuous-time Fourier transform (CTFT) supported on a
union of several narrow bands

F =

J⋃
j=1

[Fj −Bbandj/2, Fj +Bbandj/2],

i.e.,

x(t) =

∫
F
X(F )ej2πFtdF. (1)

Here X(F ) denotes the CTFT of x(t). The band centers
are given by the frequencies {Fj}j∈[J] and the band widths
are denoted by {Bbandj}j∈[J], where [J ] denotes the set
{1, 2, . . . , J}. Such multiband signal models arise in com-
munications [7], radar signal processing with non-point tar-
gets [8], [9], and mitigation of narrowband interference [10],
[11]. Our goal is to identify the band centers {Fj}j∈[J] from
the finite-length samples (see (2)) of x(t).

In [12], the authors consider recovering the finite-length
samples of a multiband signal x(t) from compressive mea-
surements with a dictionary of multiband modulated discrete
prolate spheroidal sequences (DPSS’s) [13] dictionary. The
representation ability of the multiband modulated DPSS dic-
tionary for sampled multiband signals is further analyzed
in [14]. However, the works [12], [14] assume that either the
band centers are known or the bands are located in certain
predefined grids. Instead, we attempt to identify the band
centers which are assumed to be located arbitrarily as long
as they satisfy a certain separation condition. In this paper,
we apply atomic norm techniques to invert the parameters
in (1) from finite-length samples. The atomic norm is utilized
to promote group sparsity and has an equivalent semidefinite
programming (SDP) characterization. Thus the problem can be
solved efficiently using an off-the-shelf solver [15]. Our work
differs from previous works on line spectral estimation [3], [4],
[16] in that we assume that the CTFT of the corresponding
analog signal occupies certain bandwidths, rather than that it
is composed of several spikes.

The outline of this paper is as follows. The main problem is
illustrated in Section II. Our approach based on atomic norm
minimization is discussed in Section III. Section IV discusses
the development of a recovery guarantee for the atomic norm
minimization approach. Section V presents some simulations
to support our proposed method.

II. PROBLEM SETUP

To begin, we define

ef =
[
1 ei2πf1 · · · ei2πf(N−1)

]T ∈ CN

as a length-N sampled complex sinusoid of normalized fre-
quency f ∈ [− 1

2 ,
1
2 ]. We assume each band has the same

bandwidth, i.e., Bbandj = Bband for all j ∈ [J ]. Consider a
signal vector x that arises by sampling the analog signal x(t)
over the time interval [0, NTs) with sampling period Ts. We



assume Ts is chosen to satisfy the minimum Nyquist sampling
rate, which means

Ts ≤
1

Bnyq
:=

1

2 maxj∈[J] {|Fj ±Bband/2|}
.

Under these assumptions, the sampled multiband signal x
can be expressed as an integral of sampled pure tones (i.e.,
discrete-time sinusoids)

x =

∫
W
x̃(f)ef df, (2)

where the digital frequency f is integrated over a union of
intervals

W := TsF =

J⋃
j=1

[fj −W, fj +W ] ⊆
[
−1

2
,

1

2

]
.

Here, W = BbandTs

2 , fj = TsFj and the weighting function
x̃(f) = 1

Ts
X(f/Ts) equals the scaled CTFT of the analog

signal and corresponds to the discrete-time Fourier transform
(DTFT) of its infinite sample sequence. However, we stress
that our interest concerns the finite-length sample vector x
and not the infinite sample sequence. Spectral analysis of x
is complicated by its finite nature: conventional frequency
analysis based on the discrete Fourier transform (DFT) will
suffer from familiar “leakage” artifacts, making it difficult,
for example, to reliably identify the band centers fj . However,
taking each efj to act as a modulator to the center frequency
fj and viewing each gj as samples of a baseband signal
formed by integrating over a collection of sinusoids ef with
f ∈ [−W,W ], we can express the vector x:

x =

J∑
j=1

(∫ fj+W

fj−W
x̃(f)ef df

)
=

J∑
j=1

efj � gj (3)

with

gj =

∫ W

−W
x̃(f + fj)ef df. (4)

Here � represents the elementwise (Hadamard) product be-
tween two length-N vectors. On its surface, the observation
model in (3) describes a collection of sinusoids with unknown
frequencies fj modulated by different unknown waveforms
gj [17], [18]. Our goal is to identify the frequencies Ω =
{f1, . . . , fJ} and the unknowns waveforms g1, . . . , gJ .

III. OUR APPROACH

A. DPSS basis

It is known [12], [14] that vectors gj formed from integrat-
ing sinusoids over a narrow range of frequencies (as in (4)) can
be approximated—to a very high degree of accuracy—using a
basis constructed from the DPSS’s [13] from time-frequency
analysis. Given W ∈ (0, 12 ), the DPSS vectors {s(`)N,W }`∈[N ]

are length-N vectors whose DTFT have a certain concentration
in the digital frequency band [−W,W ]. Now define

S :=
[
s
(1)
N,W · · · s

(L)
N,W

]
(5)

to contain the first L DPSS vectors for some value of L ∈
{1, 2, . . . , N} that we can choose as desired. The columns of
S are orthonormal. Throughout the paper, for any matrix S
with orthonormal columns, we use

PS := IN − SSH

to denote an orthogonal projection from CN to the orthogonal
complement of the subspace formed by the columns of S.
Taking L ≈ 2NW , the dictionary S provides very accurate
approximations (in a mean square error (MSE) sense) for all
sampled sinusoids in the targeted band [14], [19], [20].

Theorem 1. [14], [19], [20] Fix W ∈ (0, 12 ). Let S be an
N × L orthobasis defined in (5).

• (Asymptotic guarantee) For fixed η ∈ (0, 12 ). choose L =
2NW (1 + η). Then there exist positive constants C1, C2

(where C1, C2 may depend on W and ε) such that for all
N ≥ N0

||PSef ||2 ≤ C1N
5/4e−C2N , ∀ f ∈ [−W,W ].

• (Nonasymptotic guarantee) For any ε ∈ (0, 12 ), the
orthobasis S satisfies

‖PSef‖22
‖ef‖22

≤ ε

for all f ∈ [−W,W ] with

L =

⌈
CN log

(
60πCN
ε2

)⌉
+ 1,

and ∫ W

−W

‖PSef‖22
‖ef‖22

df ≤ ε

with

L =

⌈
CN log

(
15CN
Nε

)⌉
+ 1.

Here CN = 4
π2 log(8N) + 6.

It follows that, with L ≈ 2NW DPSS vectors (which can
be much smaller than N ), one obtains an efficient basis S ∈
RN×L for representing most sampled baseband signals such
as gj in (4).

B. Atoms and Atomic Norm

Utilizing the fact that each gj ≈ Sσj for some σj ∈ CL,
we can rewrite (3) as

x ≈
J∑
j=1

(Sσj)� efj =

J∑
j=1

‖σj‖2(S sign(σj))� efj ,

where sign(a) = a
‖a‖2 denotes the sign of a vector. Thus, x

can be viewed as a sparse combination of elements from the
atomic set

A :=
{
a(f,α) = (Sα)� ef ,α ∈ CL, ‖α‖2 = 1

}
.



The atomic norm of x is then defined as

‖x‖A = inf
cj≥0,
‖αj‖2=1

fj∈[− 1
2 ,

1
2 )

∑
j

cj : x =
∑
j

cja(fj ,αj)

 , (6)

which can be used as a regularizer for promoting a certain no-
tion of simplicity or sparsity of x, in particular by representing
x using as few items as possible from the atomic set A. The
atomic norm (6) has the following equivalent form [17], [18]

‖x‖A = inf
u∈CN

C,X

{
1

2N
trace(Toep(u)) +

1

2
trace(C)

∣∣
x = S(X),

[
Toep(u) X

XH C

]
� 0

}
.

(7)

Here S(X) =
∑
` s

(`)
N,W � x` with x` being the `-th column

of X .

C. Localizing the band centers

As we explain below, the SDP formulation (7) can be
used to recover the band centers {fj}j∈[J]. Suppose u is an
optimal solution to (7). Then the Vandermonde decomposition
of Toep(u) characterizes the band centers.

The dual norm of ‖p‖A is defined as

‖p‖∗A = sup
‖y‖A≤1

〈p,y〉R = sup
f∈[− 1

2 ,
1
2 ]

∥∥∥SH(e−f � p)
∥∥∥
2
.

The dual problem of computing the atomic norm (6) can be
written as

maximize
p∈CN

〈x,p〉R , subject to ‖p‖∗A ≤ 1 (8)

which also has an equivalent SDP formulation.
The band locations can alternatively be identified from p̂,

the optimal solution to (8). To be precise, consider the vector
valued dual polynomial

q̂(f) = SH(e−f � p̂). (9)

The set of frequencies can be obtained by finding the peaks
of ‖q̂(f)‖2:

Ω̂ = {f : ‖q̂(f)‖2 = 1}.

IV. RECOVERY GUARANTEE

We can certify the optimality of computing the atomic
norm defined in (6) using the following proposition. Let
Ef := diag(ef ) denote an N × N diagonal matrix for any
f ∈ [− 1

2 ,
1
2 ).

Proposition 1. Suppose x =
∑
j(Sσj) � efj with

‖σj‖ > 0, j = 1, 2, . . . , J . Also suppose the columns{
Efjs

(`)
N,W , j = 1, . . . , J, ` = 1, . . . , L

}
are linearly indepen-

dent. If there is a vector p ∈ CN such that the corresponding
vector-valued dual polynomial q(f) = SH(e−f � p) satisfies

q(fj) = sign(σj), fj ∈ Ω,

‖q(f)‖2 < 1, f /∈ Ω,
(10)

then x =
∑
j(Sσj)�efj is the unique atomic decomposition

satisfying ‖x‖A =
∑
j ‖σj‖2.

The above optimality conditions are derived from the facts
that the atomic norm minimization is convex, strong duality
holds, and thus both primal and dual optimal values are
attainable. Inspired by [3], [4], where the dual polynomial is
constructed with the square of the Fejér kernel, [17] and [18]
construct a dual polynomial q(f) that satisfies (10) when the
orthobasis S is populated from certain random distributions.

However, here the DPSS basis S is not a random orthobasis
and it has particular structural properties. The following result
establishes that the DPSS vectors are approximately orthogo-
nal to the modulated ones.

Lemma 1. [12, Lemma 5.1] Fix ε ∈ (0, 1). Let L =
b2NW (1− ε)c, and let S be the orthobasis as defined in (5).
Then there exist constants C1, C2 (where C1, C2 may depend
on W and ε) such that for all N ≥ N0 and |f | ≥ 2W∣∣∣〈s(`)N,W ,Efs

(`′)
N,W 〉

∣∣∣ ≤ 3
√
C1e

−C2
2 N ,∀`, `′ ∈ [L]

and ∥∥∥SHEfS
∥∥∥
2
≤ 3N

√
C1e

−C2N
2 .

Rather than utilizing the Fejér kernel as in [3], [4], we
construct a pre-certificate by simply solving the following
problem:

minimize
1

2
‖p‖22

subject to q(fj) = sign(σj), j ∈ [J ].
(11)

With this, we can rewrite ef � p = Efp. Now the equality
constraints in (11) can be written as a linear system of
equations: S

HEH
f1

...
SHEH

fJ


︸ ︷︷ ︸

A

p =

sign(σ1)
...

sign(σJ)


︸ ︷︷ ︸

λ

The optimality condition ensures that the optimal p has the
form

p = AHα =

J∑
j=1

EfjSαj

for some α =
[
αH

1 · · · αH
J

]H
with αj ∈ CL satisfying

the normal equation

AAHα = λ

which gives (when AAH is invertible)

α = (AAH)−1λ,

p = AHα = AH(AAH)−1λ.

With this form of p, we obtain the dual polynomial

q(f) = SHEH
f p = SHEH

fA
H(AAH)−1λ. (12)



To certify the optimality of computing the atomic norm (6), it
remains to show ‖q(f)‖2 < 1, f /∈ {f1, f2, . . . , fJ}.

A. Simple case: SHEfS = 0 if |f | ≥ 2W

Lemma (1) shows that S is nearly orthogonal to EfS for
any |f | ≥ 2W . To simplify analysis, we could hypothetically
assume S is exactly orthogonal to EfS, i.e., SHEfS = 0 for
any |f | ≥ 2W . Under this case, the following result establishes
conditions under which the dual polynomial obtained by (11)
certifies the success of the atomic norm minimization.

Proposition 2. Let x =
∑
j(Sσj) � efj with ‖σj‖ > 0.

Additionally, assume sign(σj) are drawn independently and
identically (i.i.d.) from the uniform distribution on the complex
unit circle and

∆f := min
j 6=j′

dist(fj − fj′) ≥ 4W,

where the distance dist(fj − fj′) is understood as the warp-
around distance on the unit circle. Also suppose SHEfS = 0
when |f | ≥ 2W . Then with high probability, x =

∑
j(Sσj)�

efj is the unique atomic decomposition of x.

Proof: Note that when SHEfS = 0 if |f | ≥ 2W and
∆f ≥ 4W , we have

AAH = I

and the dual polynomial (12) becomes

q(f) = SHEH
fA

H(AAH)−1λ =
∑
j

SHEH
f−fjSλj .

We first consider the case where f is away from the bands,
i.e., dist(f, fj) ≥ 2W for all j ∈ [J ]. Then

q(f) =
∑
j

SHEH
f−fjSλj = 0

since SHEH
f−fjS = 0.

Now consider the case where f is within one band; that is
dist(f − fj) ≤ 2W for some j ∈ {1, 2, . . . , J}. In this case,
we have

q(f) = SHEH
f−fjS sign(σj)

since dist(f, fj′) > 2W for all j′ 6= j. Without loss of
generality, let fj = 0. To show ‖q(f)‖2 < 1, we first show
that σmin(SHEH

f S) (the smallest singular value of SHEH
f S)

is strictly less than 1 for any f 6= 0. We prove this by
contradiction. Note that both S and EfS are orthonormal ma-
trices with L columns. This implies that σmin(SHEfS) < 1
as long as Range(S) 6= Range(EfS). Now we suppose
Range(S) = Range(EfS) for some f 6= 0, which indicates
that EfS = SR for some L×L orthonormal matrix R. Then
we have

Range(Ef (EfS)) = Range(EfSR) = Range(EfS)

= Range(S),
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Figure 1. Dual polynomial q̂(f) (see (9)) for multiband signal identification.
Here, the dashed red lines represent the true frequencies, which are correctly
localized by examining the peaks of the dual polynomial.

where the second equality follows because R is an orthonor-
mal matrix. Similarly, we have

Range(Ef (· · · (Ef︸ ︷︷ ︸
d 2Wf e

S))) = · · · = Range(S),

which contradicts to the fact SHEH
fd 2Wf e

S = 0. The proof is
completed by noting that

‖q(f)‖ = ‖SHEH
f−fjS sign(σj)‖ < 1

with high probability if sign(σj) is drawn i.i.d. from the
uniform distribution on the complex unit circle {σ ∈ CL :
‖σ‖ = 1}.

We note that Proposition 2 is premised on the idealized
assumption that SHEfS = 0 for any |f | ≥ 2W , which holds
only approximately, not exactly. Thus, we save for future work
the task of formalizing Proposition 2 using the DPSS basis
properties outlined in Lemma 1.

V. NUMERICAL SIMULATIONS

As an illustration, we test on a time-limited vector x
obtained by setting N = 256 and sampling an analog signal
that has a multiband spectrum. In this multiband spectrum,
the range of active digital frequencies W is a finite union
of J = 4 small intervals of width W = 1

32 within the
interval

[
− 1

2 ,
1
2

)
. We randomly generate each vector gj as a

linear combination of the first L = 5 DPSS vectors. Figure 1
displays the dual polynomial obtained by solving the atomic
norm minimization problem. We observe that the band centers
are correctly localized by the peaks of the dual polynomial.
Figure 2 shows the pre-certificate dual polynomial obtained
by solving (11).
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Figure 2. Dual polynomial constructed by solving (11).
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