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Abstract—We present a new method for mitigating wall return
and a new greedy algorithm for detecting stationary targets after
wall clutter has been cancelled. Given limited measurements of a
stepped-frequency radar signal consisting of both wall and target
return, our objective is to detect and localize the potential targets.
Modulated Discrete Prolate Spheroidal Sequences (DPSS’s) form
an efficient basis for sampled bandpass signals. We mitigate
the wall clutter efficiently within the compressive measurements
through the use of a bandpass modulated DPSS basis. Then,
in each step of an iterative algorithm for detecting the target
positions, we use a modulated DPSS basis to cancel nearly all
of the target return corresponding to previously selected targets.
With this basis, we improve upon the target detection sensitivity
of a Fourier-based technique.

Keywords—radar imaging, wall clutter mitigation, target detec-
tion, Compressive Sensing, Discrete Prolate Spheroidal Sequences

I. INTRODUCTION

An important challenge when detecting stationary targets
through walls using electromagnetic (EM) waves is to locate
the targets in the presence of wall EM reflections, which are
relatively strong compared to behind-the-wall target return [1–
5]. Therefore, it is necessary to mitigate the wall reflections
prior to revealing the target positions.

There are several approaches for removing wall EM re-
flections from a signal. By estimating the parameters of the
front wall, Dehmollaian and Sarabandi [1] modeled the EM
wall return, which was then subtracted from the received data.
Yoon and Amin [2] used a spatial filtering method to remove
the direct current component corresponding to the wall return.
Tivive et al. [3] mitigated the wall clutter by projecting the full
data onto the subspace orthogonal to the wall-return subspace,
which was estimated using a singular value decomposition
(SVD).

Compressive sensing (CS), introduced at the early part
of this century [6], has emerged as a new framework for
signal acquisition using reduced numbers of measurements.
Recently, CS has been used in radar systems to efficiently
reduce acquisition cost [7, 8]. Lagunas et al. [4] considered
applying both a spatial filtering method and an SVD-based
subspace projection method to mitigate the wall return in
compressive measurements. However, both methods require
each antenna in a synthetic aperture array (SAR) to obtain
the measurements with the same subset of frequencies. In the
general case, when different frequency measurements are ob-
served at different antenna locations, one needs to recover the

full frequency measurements for each available antenna (using
sparse recovery algorithms such as l1-relaxation methods and
iterative greedy methods) in order to employ conventional
wall mitigation methods [4]. When using the Fourier basis to
recover the full data, the corresponding “DFT leakage” results
in the dispersion of wall clutter and worse target detection.
To overcome this shortcoming, Ahmad et al. [5] utilized a
dictionary of multiband modulated Discrete Prolate Spheroidal
Sequences (DPSS’s) [9, 10] to efficiently represent the wall
return. In a recent paper [11], Ahmad et al. cancelled the
wall clutter directly in the compressive domain by applying
an orthogonal projection matrix (which relates to a Fourier
basis) to the measurement vectors. Danvenport et al. [12] have
provided theoretical results as well as experiments to support
such a general framework of compressive signal processing.

In this paper, we provide an alternative way to [5] to
use a modulated DPSS basis to cancel the wall return in the
compressive domain. Only involving a subspace projection
operator, our proposed method is much easier to implement
compared to the method in [5], which involves a sparse
recovery method. Furthermore, we show how the modulated
DPSS basis can be applied to help detect stationary targets
after the wall clutter has been mitigated.

The outline of this paper is as follows. In Section II, the
main problem is illustrated. Our main approaches to cancel the
wall return and detect the targets are in Section III. Section IV
presents some simulations to support our proposed methods.
Finally, some conclusions are given in Section V.

II. PROBLEM SETUP

Let [N ] denote the set {0, 1, . . . , N − 1} for any N ∈ N.
Suppose measurements are obtained by an M -element linear
array of transceivers. Each transceiver receives a stepped-
frequency signal consisting of N frequencies equispaced over
the band [f0, fN−1]; that is

fn = f0 + n∆F, n ∈ [N ],

where ∆F := fN−1−f0
N−1 is the frequency step size.

According to [5], we can model the wall return at the m-th
antenna corresponding to the n-th frequency as

rwm[n] :=

L∑
l=0

ϑle
−j2πfntl,m , ∀ m ∈ [M ], n ∈ [N ]. (1)



Here, ϑ0 is the complex reflectivity of the wall; ϑl, l ≥ 1
represents the complex reflectivity corresponding to the l-th
wall reverberation and decreases with l; L denotes the number
of wall reverberations; t0,m is the direct two-way travel time
between the wall and the m-th antenna; and tl,m, l ≥ 1 is the
delay associated with the l-th wall return to the m-th antenna.
Note that tl,m are the same for all m ∈ [M ] when the sensor
array is parallel to the wall, which is a requirement in [4].

Suppose there are K targets behind the wall. The target
return observed by the m-th antenna corresponding to the n-
th frequency can be expressed as

rtm[n] :=

K∑
k=1

∫ τmax
k,m

τmin
k,m

σke
−j2πfnτdτ,∀m ∈ [M ], n ∈ [N ].

(2)
Here, σk is the complex reflectivity of the k-th target (we
assume the target reflectivity is independent of frequency),
and τmin

k,m and τmax
k,m are the minimum and maximum two-way

travel times between the k-th target and the m-th antenna,
respectively. Note that, when we model each target as a point,
the target return degenerates to

rtm[n] =

K∑
k=1

σke
−j2πfnτk,m , (3)

where τk,m is the two-way travel time between the k-th point
target and the m-th antenna [5].

The measurement ym received by m-th antenna is the sum
of rwm and rtm; that is

ym := rwm + rtm (4)

for all m ∈ [M ].

In order to decrease the data size, CS techniques can be
utilized to reduce the number of measurements [4, 5, 11].
Let Γ ⊂ [M ] denote the indices of the (randomly) selected
antennas for collecting data, and assume M1 := #(Γ) antennas
are used. Let Φm denote an N1 ×N (often random) sensing
matrix which is used at the m-th antenna to further reduce
the sensing cost. A sensing matrix Φm widely used for target
detection applications is generated by randomly selecting N1

rows from the N ×N identity matrix [4, 5, 11]. In this case,
computing Φmym simply involves picking N1 entries from
ym. We adopt this sensing strategy in this paper. Thus, our goal
is to detect or localize the potential targets from compressive
measurements {zm := Φmym}m∈Γ.

III. OUR APPROACH

A. A bandpass modulated DPSS basis

The DPSS’s are the bandlimited discrete-time sequences
whose energies are most concentrated in a given time sup-
port [9]. Because we are primarily dealing with finite-length
vectors in this paper, it is useful to consider the DPSS
vectors, which can be obtained by restricting the DPSS’s to
their entries on the time indices {0, 1, . . . , N − 1}. Let IN
denote the index-limiting operator that restricts a sequence
to its entries on {0, 1 . . . , N − 1} (and produces a vector
of length N ), I∗N be the adjoint operator of IN , and BW
represent a bandlimiting operator that bandlimits the Discrete-
Time Fourier Transform (DTFT) of a discrete-time signal to

the frequency range [−W,W ] (and returns the corresponding
signal in the time domain). Given N and W ∈ (0, 1

2 ),
the DPSS vectors s(0)

N,W , s
(1)
N,W , . . . , s

(N−1)
N,W (which form an

orthobasis for CN ) along with the corresponding eigenvalues
1 > λ

(0)
N,W > λ

(1)
N,W > · · · > λ

(N−1)
N,W > 0, satisfy

IN (BW (I∗N (s
(κ)
N,W ))) = λ

(κ)
N,Ws

(κ)
N,W for all κ ∈ [N ].

The eigenvalues λ(0)
N,W , λ

(1)
N,W , . . . , λ

(N−1)
N,W have a strong

concentration behavior: the first 2NW eigenvalues are close to
1, while the remaining eigenvalues are close to 0. This behavior
enables us to use the first slightly more than 2NW modulated
DPSS vectors to represent sampled bandpass signals [9, 10].
Define ef := [ej2πf0 ej2πf1 · · · ej2πf(N−1)]T for all f ∈
[− 1

2 ,
1
2 ) as the sampled exponentials, where T represents the

transpose operator. Let Efc := diag(efc) denote an N × N
diagonal matrix for any fc ∈ [− 1

2 ,
1
2 ). Also let SN,W denote

an N × N matrix that consists of all the DPSS vectors of
length N and bandwidth W , that is

SN,W := [s
(0)
N,W s

(1)
N,W · · · s(N−1)

N,W ]. (5)

Now define Q := [EfcSN,W ]J to be the first J modulated
DPSS vectors for some value of J ∈ {1, 2, . . . , N} that we
can choose as desired. The columns of Q are orthonormal.
Let PQ := IN −QQH denote an orthogonal projection from
CN to the orthogonal complement of the subspace formed by
the columns of Q. It is shown in [10] that when J ≈ 2NW
the dictionary Q provides very accurate approximations (in
an MSE sense) for finite-length sample vectors arising from
sampling random bandpass signals.

Theorem III.1. ([10] Theorem 4.2.) Suppose x(t) is a
continuous-time, zero-mean, wide sense stationary random
process with power spectrum

Px(F ) =

{
1

Bband
, F ∈ [Fc − Bband

2 , Fc + Bband
2 ],

0, otherwise.

Let x = [x(0) x(Ts) . . . x((N − 1)Ts)]
T ∈ CN de-

note a finite vector of samples acquired from x(t) with a
sampling interval of Ts ≤ 1/(2 max{|Fc ± Bband

2 |}). Define
Q := [EfcSN,W ]J , where fc = FcTs and W = BbandTs

2 . For
fixed ε ∈ (0, 1), choose J = 2NW (1 + ε). Then there exist
constants C1, C2, C3, C4 and an integer N0 (where C2, C4, N0

may depend on W, ε) such that

E
[
||PQx||22

]
=

1

2W

∫ fc+W

fc−W
||PQef ||22df

≤ N min

(
ε+ C1e

−C2N ,
C3

2W
e−C4N

)
,

(6)

for all N ≥ N0. For comparison, E
[
||x||22

]
= ||ef ||22 = N .

In fact we are also guaranteed such accuracy uniformly
over all sampled sinusoids in the targeted bands by the
following result.

Theorem III.2. With the same setup as in Theorem III.1, there
exist constants C5, C6 (where C5, C6 may depend on W and
ε) such that

||PQef ||22 ≤ C5N
5/2e−C6N , ∀ f ∈ [fc −W, fc +W ] (7)

for all N ≥ N0.



Proof. We refer the reader to [13] due to limited space.

B. Wall clutter mitigation

Suppose the wall clutter rwm is well-approximated by a
dictionary Dm, which we discuss below. We cancel the wall
return by constructing an operator P(ΦmDm) that operates on
the measurement vector zm.

Ignoring the wall reverberations, the wall return defined
in (1) reduces to rwm[n] := ϑ0e

−j2πfnt0,m . In this case,
we can construct Dm as a vector with entries Dm[n] =
e−j2πfnt0,m ,∀n ∈ [N ], which was used in [11]. However,
because of the wall reverberations, such a dictionary may not
be able to represent the wall return well.

Suppose the parameters tL,m defined in (1) are known or
can be estimated by knowing the wall material and building
geometry. Define

Dm := [E−t0,m∆FSN,(tL,m−t0,m)∆F ]Jm (8)

to be the first Jm modulated (by frequency −t0,m∆F ) DPSS
vectors of length N and bandwidth (tL,m − t0,m)∆F with
some value of Jm ∈ {1, 2, . . . , N} for all m ∈ Γ.

We can rewrite the wall return in (1) as

rwm[n] =

L∑
l=0

ϑle
−j2πf0tl,me−j2πntl,m∆F . (9)

By noting that the wall return is a finite-length sample
vector arising from sampling a bandpass signal in the band
[−tL,m∆F,−t0,m∆F ], from Theorems III.1 and III.2, we
expect that the wall return will be well-approximated by the
dictionary Dm.

Before moving on, we note that different bandpass mod-
ulated DPSS dictionaries could be constructed using different
DPSS bandwidths and modulating frequencies from those
suggested in (8). For example, one could also employ a dic-
tionary such as Dm = [E

−
t0,m+tL,m

2 ∆F
S
N,

(tL,m−t0,m)

2 ∆F
]Jm

to mitigate the wall return modeled in (1). However, EM
simulations show that there also exists antenna ringing before
the wall, which in addition to the wall reverberations can affect
the detection of targets [5]. In consideration of the possible
antenna ringing, we choose the bandpass modulated DPSS
dictionary defined in (8).

It is also important to note that tL,m is directly determined
by the wall material, whose electrical properties may not be
known in advance. The dictionary Dm may also capture the
energy in the target return located far behind the wall if tL,m
is chosen to be too large, whereas a value of tL,m too small
may result in a dictionary Dm that cannot capture the wall
return completely. Simulations have shown that almost all
walls have dominant reverberations up to 1.5m behind the
wall [5]. Therefore, we use the same strategy as [5] in that we
mitigate the wall reverberations up to 1.5m behind the wall
and detect only the targets located more than 1.5m beyond the
wall. That is, the basis defined in (8) turns out to be

Dm := [E−t0,m∆FSN, 3c∆F ]Jm (10)

where the constant c is the speed of light in meters per second.

We know rwm is approximately within the column space
of Dm. It follows that Φmr

w
m is mostly concentrated in the

column space of ΦmDm. Now define an orthogonal projection
matrix P(ΦmDm) := IN1 −ΦmDm(ΦmDm)†, where IN1 is
an N1 ×N1 identity matrix and † denotes the pseudo-inverse
operator. Applying PΦmDm to the signal zm yields

z̃m := P(ΦmDm)zm = P(ΦmDm)Φmr
t
m + P(ΦmDm)Φmr

w
m.

Since P(ΦmDm)Φmr
w
m ≈ 0, we get z̃m ≈ P(ΦmDm)Φmr

t
m.

Now the projected measurements {z̃m}m∈Γ can be used
to detect the targets.

C. Target detection

Like the general approach for radar imaging [5], we
divide the target space into Lx × Ly pixels in crossrange and
downrange uniformly. We arrange the pixels of the image into
an LxLy × 1 vector α. If we were to assume the targets were
points and located precisely on the grid, then using the point
target model in (3), the target return could be written as

rtm = Θmα, ∀ m ∈ Γ, (11)

where Θm is an N × LxLy matrix with entries given
by Θm[n, q] := e−j2πfnτq,m for n ∈ [N ] and q ∈
{0, 1, . . . , LxLy − 1}. Here τq,m denotes the two-way travel
time between the q-th potential target position in the grid and
the m-th transceiver. Note that in this model α is a sparse
vector: the value of q-th pixel equals the target reflectivity if
there is a target at this pixel, and otherwise it is 0. Therefore,

z̃m ≈ P(ΦmDm)ΦmΘmα =: Θ̃mα. (12)

The processed measurements {z̃m}m∈Γ are arranged into
an M1N1 × 1 vector z̃ as

z̃ = [z̃Hm0
z̃Hm1

· · · z̃HmM1−1
]H , (13)

where m0,m1, . . . ,mM1−1 ∈ Γ and H represents the conju-
gate transpose. The measurements can be expressed as

z̃ ≈ Θα, (14)

where
Θ := [Θ̃H

m0
Θ̃H
m1
· · · Θ̃H

mM1−1
]H . (15)

It is known that we can recover the sparse vector α from the
projected measurements z̃ provided that the matrix Θ satisfies
certain properties.

However, if the target does not fall precisely on the grid,
or in the more general case, if the target is not a point and the
target return is as defined in (2), then α will not be sparse.
Especially when the dynamic range of the target reflectivities is
large, then the target return corresponding to the largest target
reflectivity may dominate and sparse solvers may fail to detect
the other targets.

In order to detect and localize the targets in this general
case, we modify the iterative, greedy matching pursuit (MP)
algorithm [14] (which is identical to the CLEAN algori-
thm [15]) so that the energy of exponentials with two-way
traveling time within ς seconds to that of each selected point
is cancelled by using a modulated DPSS basis. For each



q ∈ {0, 1, . . . , LxLy − 1} and m ∈ Γ, define a compressive
bandpass modulated DPSS basis as

Ψq,m := Φm[E−τq,m∆FSN,∆Fς ]Jt (16)

with J t slightly larger than 2N∆Fς . Next define the orthog-
onal projection matrix

PΨq
:=

 PΨq,m0

. . .
PΨq,mM1−1

 , (17)

where PΨq,mι
:= IN1

− PΦmιDmι
Ψq,mι

(
PΦmιDmι

Ψq,mι

)†
for all ι ∈ [M1]. By applying PΨq

to the vector z̃, and by judi-
ciously choosing ς (which we discuss below), we can remove
essentially all the target return corresponding to the spatial
region near grid point q. This is the main difference between
our proposed algorithm and the conventional MP algorithm.
The full DPSS-aided MP algorithm for target detection is
shown in Algorithm 1.

Algorithm 1 DPSS-Aided Matching Pursuit.
input: Θ with columns θj , z̃, number of iterations I
initialize: r0 = z̃, α̂ = 0, i = 0,Λ0 = ∅

1: while i < I do
2: identify: j0 = arg maxj |θHj ri|/||θj ||2
3: merge: Λi+1 = Λi ∪ {j0}
4: update: α̂[j0] = α̂[j0] + θHj0r

i/||θj0 ||2
ri+1 = PΨj0

ri

i = i+ 1
5: end while
6: return α̂

IV. SIMULATIONS

With a similar scene layout to that in [5], we simulate
three 0.35m × 0.28m targets located at (−0.29m, 5.38m),
(1.55m, 6.38m), and (−1.69m, 6.53m), with relative complex
reflectivities of 5, 1, and 1, respectively. A 93-element syn-
thetic linear aperture (located along the x-axis) with interele-
ment spacing of 0.04m is used. A stepped-frequency signal
consisting of N = 641 frequencies from 1GHz to 4GHz is
utilized to obtain measurements. We simulate with only a front
wall, which is located 3.13m away from the antennas. The
scene layout is illustrated in Fig. 1(a). 30% of the antennas are
randomly selected to acquire measurements. We then randomly
choose 30% of the frequencies for each available antenna.

The 4m × 5.5m region centered at (0m, 4.75m) is chosen
to be imaged, and it is divided into a grid of 33 × 77 pixels.
The target return is generated according to (2). On the basis
of (1), we generate L = 5 wall reverberations equally spaced
between the wall and 1.5m behind the wall with ϑ0 = 30 and
ϑl = 1

1+lϑ0 for all l = 1, . . . , L.

The number Jm for the bandpass modulated DPSS dictio-
nary Dm is chosen to be 70. We construct Ψq,m defined in
(16) with ς = 2ns and J t = 20 so that we can cancel the
target return corresponding to the area with two-way travel
time within 2ns to that of any selected point.

We compare our wall mitigation method using a bandpass
modulated DPSS basis to the one using a Fourier basis in [11]

and the one based on a multiband modulated DPSS dictionary
in [5]. The construction of the multiband modulated DPSS
dictionary is the same as that used in [5], which includes
choosing 5.5ns ·∆F as the bandwidth for the DPSS vectors.

Figures 2(a-c) show the sparsity-based target image recon-
struction with 15 iterations of the OMP algorithm (assuming
target sparsity in a Fourier basis of complex exponentials),
whereas Fig. 2(d) displays the target reconstruction result with
3 iterations of the DPSS-aided matching pursuit algorithm.
Fig. 2(e) shows the average result over 50 trials of the DPSS-
aided matching pursuit algorithm. A Fourier basis used in [11],
a multiband modulated DPSS dictionary used in [5], and a
bandpass modulated DPSS dictionary are applied for mitigat-
ing the wall return in Figs. 2(a), (b) and (c-d), respectively.

Comparing the bottom region in Fig. 2(a) to those in
Figs. 2(b-d), we find that the DPSS-based dictionary can
capture the wall return better than the Fourier basis. Both
the multiband modulated DPSS dictionary and the bandpass
modulated DPSS dictionary can be used to mitigate the wall
return well. However, the bandpass modulated DPSS dictio-
nary is much easier to implement compared to the multiband
modulated DPSS dictionary, which involves a sparse recovery
method such as orthogonal matching pursuit (OMP, which was
used in our simulation for Fig 2(b)) in [5]. Clearly, we observe
in Fig. 2 (d) that the proposed DPSS-aided MP algorithm can
find the top two targets, while the Fourier-based algorithm
misses these targets in Figs. 2(b-c). Note that the proposed
algorithm will miss the shape of targets. There is a tradeoff
between identifying the shapes of the targets and identifying
their locations. By changing ς , we can balance this tradeoff
depending on the particular application.

We point out that a modified Fourier-domain OMP algori-
thm may also be able to offer improved target detection. To
be precise, we modify OMP so that in each iteration when we
pick one pixel in the grid, we also choose its neighbors. For
example, when the red point in Fig. 1(b) is selected, the nearby
48 black points are chosen along with the red one. This sub-
Fourier basis corresponding to the 49 points can be viewed as a
surrogate basis for the subspace spanned by sampled bandpass
signals in this local band. This is closely related to the main
modification of our proposed DPSS-aided MP algorithm, in
which a bandpass modulated DPSS basis is used to represent
the sampled bandpass signals. Fig. 3 shows the singular values
of a sub-Fourier basis corresponding to the 49 points (where
the red point is randomly picked), which indicates that the
effective dimension of this sub-Fourier basis is smaller than
49. The target reconstruction result is shown in Fig. 2(e).

V. CONCLUSIONS

In this paper, we have explained how a modulated DPSS
basis can help in mitigating wall return and detecting stationary
targets after the wall clutter has been cancelled. This is possible
thanks to the remarkable efficiency of the bandpass modulated
DPSS dictionary in representing finite-length sample vectors
of bandpass signals. Experiments show the effectiveness of
the modulated DPSS basis in cancelling the wall return and
promoting target detection.

ACKNOWLEDGMENT

This work was supported by NSF grant CCF-1409261.



(a) (b)
Fig. 1. Illustration of (a) scene layout, and (b) point selection strategy used
in modified Fourier-domain OMP algorithm

Cross-range(m)

D
ow

n-
ra

ng
e(

m
)

 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
2

3

4

5

6

7

(a)
Cross-range(m)

D
ow

n-
ra

ng
e(

m
)

 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
2

3

4

5

6

7

(b)

Cross-range(m)

D
ow

n-
ra

ng
e(

m
)

 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
2

3

4

5

6

7

(c)
Cross-range(m)

D
ow

n-
ra

ng
e(

m
)

 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
2

3

4

5

6

7

(d)

Cross-range(m)

D
ow

n-
ra

ng
e(

m
)

 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
2

3

4

5

6

7

(e)
Cross-range(m)

D
ow

n-
ra

ng
e(

m
)

 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
2

3

4

5

6

7

-35

-30

-25

-20

-15

-10

-5

0

(f)
Fig. 2. Wall mitigation and sparse reconstruction results with different
methods (the maximum intensity value is normalized to 0dB). (a) Wall miti-
gation with Fourier basis and sparse reconstruction using OMP algorithm with
Fourier basis. (b) Wall mitigation with multiband modulated DPSS dictionary
and sparse reconstruction using OMP algorithm with Fourier basis. (c) Wall
mitigation with bandpass modulated DPSS basis and sparse reconstruction
using OMP algorithm with Fourier basis. (d) Wall mitigation with bandpass
modulated DPSS basis and sparse reconstruction using DPSS-aided MP
algorithm. (e) Average result over 50 trials for method presented in (d). (f) Wall
mitigation with bandpass modulated DPSS basis and sparse reconstruction
using modified Fourier-domain OMP algorithm with 3 iterations.

0 10 20 30 40 50
0

20

40

60

80

l

6l

Fig. 3. Singular values of a sub-Fourier basis constructed from 49 sampled
complex exponentials.
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