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Abstract—In this paper, we investigate parametric estima-
tion of complex exponentials from modulations with known
waveforms. This problem arises naturally in radar systems
and wireless communications, especially in applications which
suffer from multipath effects. Viewing the problem as a group
sparse recovery, we recast it naturally into an atomic norm
minimization, which has an equivalent semidefinite program
(SDP) characterization and thus can be solved efficiently. We
experimentally demonstrate the advantage of our approach when
compared with a super-resolution method that does not consider
multipath effects.

Keywords—Atomic norm, super-resolution, group sparsity, mul-
tipath exploitation, semidefinite programming

I. INTRODUCTION

We consider an acquired signal consisting of a superposi-
tion of the same point source convolved with different point
spread functions. Mathematically, we consider the following
parametric superpositon model for the acquired signal

x(t) =

L∑
l=1

(h(t)ξl(t)) ? gl(t) (1)

where ? denotes the circular convolution operator, the signal of
interest h(t) =

∑K
k=1 σ̃kδ(t− tk) is a weighted superposition

of spikes, ξl(t) is an unknown (nonlinear) function which acts
as an amplifier or attenuator, and gl(t) is a known point spread
function. Our goal is to identify the spike locations {tk} and
coefficients {σ̃k} from low-frequency measurements of x(t)
(which are described formally in Section II). This model arises
in applications such as radar imaging, DNA microarrays, and
spike detection. A particular area that motivates this work
is multipath exploitation in radar systems [1] and wireless
communication [2]. We list two stylized applications below.

Multipath exploitation for urban radar imaging: The in-
direct multipath reflections of electromagnetic waves off of
targets (in conjunction with the walls, floors, etc.) present a
challenge in synthetic aperture radar (SAR) imaging [1, 3–6].
They result in ghost artifacts that can clutter the reconstructed
image. Let σ̃k and tk respectively represent the complex
reflectivity and locations of the k-th target. In this case, l = 1
corresponds to the direct path and ξ1(t) = 1, g1(t) = δ(t),
i.e, there is no attenuator and convolution. The point spread
function gl(t) corresponding to the l-th (l ≥ 2) path is δ(t−τl)
where τl is the additive two-way travel time of the l-th path
compared to the direct path. With prior information about the
room geometry, the point spread function gl(t) (or τl) can

be parametrized by the front and interior walls [1, 3]. The
attenuator ξl(t) is determined by the material of the wall and
other factors and is usually modeled as unknown [1].

Spike detection for neural recording: Neuron spikes (action
potentials) are often captured with a microelectrode tip which
is surrounded by many neurons, and therefore, receives a mix-
ture of neurons’ electrical activities [7]. The neural recording—
obtained through wireless neural recording systems—can be
modeled as a superposition of returns due to radio signal
reflection from surrounding materials [8], as in (1).

When there is only a single component with L = 1, (1)
reduces to

x(t) = (h(t)ξ1(t)) ? gl(t).

Without loss of generality, suppose ξ1(t) = 1, g1(t) = δ(t).
Otherwise we can deconvolve x(t) with g1(t) and ξ1(t) can
be absorbed into h(t). Identifying the parameters in (1) from
low-frequency measurements reduces to the super-resolution
problem or line spectrum estimation (if we exchange the time
and frequency domains), where one can apply conventional
approaches for parameter estimation such as matrix pencil [9]
and MUSIC [10]. Chandrasekaran et al. [11] propose to use
the atomic norm, induced by the convex hull of a set of
atoms, as the general convex penalty function for linear inverse
problems. The atomic norm generates the l1 norm for sparse
recovery problems and the nuclear norm for low rank matrix
recovery. Importantly, it provides a powerful framework to
handle a dictionary with an infinite number of atoms. For
super-resolution or line spectrum estimation, the atomic norm
minimization approach exactly inverts the parameters when
there is no noise [12–15] and a certain minimum separation
condition is met. Recently, Zhu et al. [16] investigated SAR
imaging via sparse atomic norm reconstruction. Atomic norm
minimization has also been utilized for modal analysis [17].
Chi [18] and Yang et al. [19] utilized atomic norm minimiza-
tion to exactly recover parameters of complex exponentials
from their modulations with unknown waveforms via a lifting
trick. Li and Chi [20] applied atomic norm minimization to
simultaneously identify multiple sets of spikes from a superpo-
sition of their modulations with known point spread functions.
In [21–23], the authors solved blind deconvolution problems
with nuclear norm minimization by assuming the signals live
in known subspaces or are observed using random masks.
Our problem differs from [21–23] in that the modulations are
known but the target signal is parameterized (by t).

The approach for estimating the spikes using sparse model-



ing in [3] (where the spikes correspond to the target locations)
is to first divide the range of t uniformly to reduce the
continuous parameter space into a finite set of grid points;
then construct a dictionary for each component based on these
grid points; and finally recover the spikes via sparse recovery
algorithms. This approach suffers from the basis mismatch
problem and has no theoretical guarantees. In this paper,
we apply atomic norm techniques to invert the parameters
in (1) from low-frequency measurements. The atomic norm is
utilized to promote group sparsity and has an equivalent SDP
characterization. Thus the problem can be solved efficiently
using an off-the-shelf solver [24]. The outline of this paper is
as follows. In Section II, the main problem is illustrated. Our
approach is discussed in Section III. Section IV presents some
simulations to support our proposed methods.

II. PROBLEM SETUP

Suppose tk ∈ [0, 1] and x(t) and gl(t) are supported on
[0, 1] for all k = 1, 2, . . . ,K and l = 1, 2, . . . , L. We rewrite
(1) as

x(t) =

L∑
l=1

(h(t)ξl(t)) ? gl(t) =

L∑
l=1

(
K∑
k=1

σlkgl(t	 tk)

)
,

where σlk = σ̃kξl(tk) and 	 denotes the subtraction operator
on the unit circle [0, 1]. Taking the Fourier series of x(t), we
obtain the measurements

x[n] =

L∑
l=1

(
K∑
k=1

σlkgl[n]e−j2πtkn

)
(2)

for n = −2M,−2M + 1, . . . , 2M . Thus x only contains low-
frequency information about x since we only observe the 4M+
1 lowest Fourier series coefficients. Denote N = 4M+1. Here
gl ∈ CN contains the lowest N Fourier series coefficients of
gl(t) with elements

gl[n] =

∫ 1

0

gl(t)e
−j2πtndt

for n = −2M,−2M + 1, . . . , 2M .

We use Ω = {t1, . . . , tK} to denote the unknown set of
spike locations. Our goal is to estimate the spike locations Ω
and {σlk, l = 1, . . . , L, k = 1, . . . ,K} from x.

III. OUR APPROACH

A. Atoms and Atomic Norm

Let Bl := diag(gl) denote an N×N diagonal matrix with
diagonal gl. Also let

et :=

 e−j2πt(−2M)

...
e−j2πt(2M)

 ∈ CN , t ∈ [0, 1]

denote a length-N vector of samples from a discrete-time com-
plex exponential signal with digital frequency t. We rewrite the
measurements x in (2) with matrix notation

x =

K∑
k=1

L∑
l=1

σlkBletk =

K∑
k=1

ck

(
L∑
l=1

αk[l]Bletk

)
, (3)

where ck =:
√∑

l |σlk|
2 and αk ∈ CL with elements αk[l] :=

σkl

ck
for all k = 1, . . . ,K and l = 1, . . . , L. By definition, we

have ‖αk‖2 = 1. So x can be viewed as a sparse combination
of elements from the atomic set

A :=

{
a(t,α) =

L∑
l=1

α[l]Blet,α ∈ CL, ‖α‖2 = 1

}
,

which can be viewed as an infinite dictionary governed by the
parameters t and α. Note that the diagonal matrices Bl are
fixed and known. The atomic norm of x is then defined as

‖x‖A = inf
ck≥0,
‖αk‖2=1
tk∈[0,1]

{∑
k

ck
∣∣ x =

∑
k

cka(tk,αk)

}
,

(4)

which can be viewed as a penalty for promoting group sparsity
of x, i.e., representing x by picking as few items as possible
from the group set

{{Blet, l = 1, . . . , L} , t ∈ [0, 1]} .

B. Semidefinite Program Characterization

The following result indicates that the atomic norm ‖x‖A
admits an equivalent SDP characterization.

Theorem 1. The atomic norm ‖x‖A can be written equiva-
lently as

‖x‖A = inf
u∈CN ,c

{
1

2N
trace(Toep(u)) +

1

2
c
∣∣

Toep(u) � 0,[ ∑
lBl Toep(u)BH

l x
xH c

]
� 0

}
.

(5)

Proof of Theorem 1: Denote the value of the right hand
side as SDP(x). Suppose x =

∑
k cka(fk,αk) with ck > 0.

Define u =
∑
k cketk and c =

∑
k ck. We have Toep(u) =∑

k cketke
H
tk
� 0. Note that[ ∑

lBl Toep(u)BH
l x

xH t

]
=

∑
k

ck

[
[B1etk · · · BLetk ]

αH
k

]
 eHtkB

H
1

...
eHtkB

H
L

 αk

 � 0

and
1

2N
trace(Toep(u)) +

1

2
t =

∑
k

ck.

Therefore, SDP(x) ≤ ‖x‖A.

On the other hand, suppose for some u and x,[ ∑
lBl Toep(u)BH

l x
xH c

]
� 0, Toep(u) � 0.

By the Vandermonde decomposition lemma [14], we have

Toep(u) = V DV H =
∑
k

dketke
H
tk



with D = diag(dK), dk > 0. It follows that x is in the range
of BlV , i.e., x =

∑
lBlV wl. Let γ = c∑

l ‖wl‖22
. Now we

have [ ∑
lBl Toep(u)BH

l x
xH c

]
= AΣAH � 0,

where

A =

[
[ B1V · · · BLV ] 0

0
[
wH

1 · · · wH
L

] ] ,
Σ =


 D

. . .
D

 I

I γI

 .
This implies Σ � 0. It follows from the Schur complement
lemma that

γI ≥

 D
. . .

D


−1

.

Thus, we have

c =

(∑
l

‖wl‖22

)
γ ≥

∑
k

∑
l |wl[k]|2

dk
.

It follows from the fact 1
N trace(Toep(u)) = trace(D) that

1

2N
trace(Toep(u)) +

1

2
c ≥ 1

2

∑
k

dk +
1

2

∑
k

∑
l |wl[k]|2

dk

≥

√√√√(∑
k

dk

)(∑
k

∑
l |wl[k]|2

dk

)
≥ ‖x‖A,

where the last line follows from the Cauchy-Schwartz inequal-
ity.

Rewrite the measurements x in (3) as

x =

L∑
l=1

Bl

(
K∑
k=1

ckαk[l]etk

)
=

L∑
l=1

Blx̃l

with x̃l =
∑K
k=1 ckαk[l]etk . Denote X̃ = [x̃1 · · · x̃L] =∑K

k=1 cketkα
T
k , where T represents the nonconjugate trans-

pose operator. This is the lifting scheme utilized in [18, 19],
where a different atomic norm induced by a different atomic
set is applied for the augmented matrix X̃ . Note that the
atomic norm utilized in [18, 19] for X̃ is equivalent to ‖x‖A,
the atomic norm utilized for x. Thus the SDP characteriza-
tion for solving the corresponding atomic norm minimization
in [18, 19] is also equivalent to ‖x‖A.

Proposition 1. The SDP characterization in (5) has the
following equivalent form

‖x‖A = inf
u∈CN

C,X

{
1

2N
trace(Toep(u)) +

1

2
trace(C)

∣∣
x = X (X),

[
Toep(u) X
XH C

]
� 0

}
.

Here X (X) =
∑
lBlxl with xl being the l-th column of X .

C. Recovery Guarantee

We can certify the optimality of minimizing the atomic
norm defined in (4) using the following proposition.

Proposition 2. Suppose x# =
∑
k cka(tk,αk) with ck > 0,

k = 1, 2, . . . ,K and {Bletk , l = 1, . . . L, k = 1, . . . ,K} are
linearly independent. If there is a vector p ∈ CN such that
the corresponding vector-valued dual polynomial q(t)[l] =
eHt B

H
l p satisfies

q(tk)[l] = αk[l], tk ∈ Ω,

‖q(t)‖2 < 1, t /∈ Ω,
(6)

then x# =
∑
k cka(fk,αk) is the unique atomic decomposi-

tion satisfying ‖x#‖A =
∑
k ck.

The above optimality conditions are derived from the facts
that the atomic norm minimization is convex with strong
duality holding and that both primal and dual optimal values
are attained. We omit the proof due to space limitations.
We note that the construction of such a dual polynomial
heavily depends on gl. Inspired by [12, 14], where the dual
polynomial is constructed with the square of the Fejér kernel,
we can construct a dual polynomial q(t) that satisfies (6) as
long as gl is populated from certain distributions.

Theorem 2. [19] Suppose x# =
∑
k cka(tk,αk) with ck >

0, k = 1, 2, . . . ,K. Suppose

gm := [ g1[m] g2[m] · · · gL[m] ]

for m = −2M, . . . , 2M are i.i.d. samples from a distribution
F that satisfies the following two conditions

EfHf = IL, max
1≤l≤L

|f [l]|2 ≤ µ(F), f ∼ F . (7)

Also assume ∆(Ω) := mink 6=k′ |tk − tk′ |, the smallest wrap-
around distance between any pair of the spikes, is greater
than 1

M and M ≥ 64. Additionally, assume that αk are
i.i.d. randomly generated from the uniform distribution on the
complex unit sphere CSL−1. Then, there exists a numerical
constant C such that

M ≥ Cµ(F)KL log

(
MKL

δ

)
log

(
ML

δ

)
is sufficient to guarantee that x# =

∑
k cka(fk,αk) is the

unique atomic decomposition satisfying ‖x#‖A =
∑
k ck with

probability at least 1− δ.

The main idea is to construct a dual polynomial q(t) (which
is similar to what is used in [19]) that satisfies (6).
Remark 1. The two conditions in (7) are referred as the
isotropy and incoherence properties of F [18, 19]. We note
that not all components need to be random. Without loss of
generality, we suppose f [1] = 1, f ∼ F . Such a distribution
F also satisfies (7) as long as the distribution of the other
components satisfies certain conditions. In this case, g1[m] = 1
for all m which corresponds to the direct path in many
applications that involve multipath. Theorem 2 guarantees that
the spikes can be recoverd from x (a superpostion of signals
from all paths) as long as the modulations gl corresponding
to the l-th path for all l ≥ 2 jointly satisfy (7).



D. Localizing the spikes

The SDP formulation (5) can be used to recover the spikes.
Suppose u is an optimal solution to (5). Then the Vandermonde
decomposition of Toep(u) characterizes the spikes.

The dual norm of ‖x‖A can be defined as

‖p‖∗A = sup
‖x‖A

〈p,x〉R = sup
t∈[0,1]

√∑
l

∣∣∣eHt BH
l p
∣∣∣2.

The dual problem of minimizing the atomic norm (4) can be
written as

maximize 〈x,p〉R , subject to ‖p‖∗A ≤ 1 (8)

which also has an equivalent SDP formulation.

The spike locations can alternatively be identified from p̂,
the optimal solution to (8). To be precise, consider the vector
valued dual polynomial

q̂(t)[l] = eHfB
H
l p̂.

The set of frequencies can be obtained by finding the peaks
of

‖q̂(t)‖2 : Ω̂ = {t : ‖q̂(t)‖2 = 1}.

E. Revisiting the case L = 1

When L = 1, (1) reduces to x(t) = h(t). Then the
measurements in (3) simplify to x =

∑
k σ1ketk . Recovering

the spikes from x is the super-resolution [12] or line spectrum
estimation problem [14]. One can define an atomic set A′ =
{et, t ∈ [0, 1]} and obtain an equivalent SDP characterization
(which is similar to (5), see [12, 14]) for the corresponding
atomic norm. The dual norm is given by

‖p‖∗A′ = sup
t∈[0,1]

∣∣eHt p∣∣ .
Let p̃ denote the optimal solution to the dual problem

maximize 〈x,p〉R , subject to ‖p‖∗A′ ≤ 1.

The spikes can be localized by finding the peaks of q̃(t) =
eHt p̃ [12, 14].

F. Atomic Norm Soft Thresholding (AST)

We conclude this section with a discussion about the
presence of noise in the measurements:

y[n] = x[n] +w[n]

for n = −2M,−2M+1, . . . , 2M . Here w[n] is additive noise.
In this case, we can obtain an estimate x̂ that solves the atomic
norm soft thresholding (AST):

minimize
x̃∈CN

λ‖x‖A +
1

2
‖x̃− y‖2

where λ is an appropriately chosen regularization parameter
that depends on the noise level [13, 16].
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Figure 1. Illustration of dual polynomials. Left: ‖q̂(t)‖2; Right: |q̃(t)|. The
dashed red lines represent the locations of spikes.

IV. NUMERICAL SIMULATIONS

We present a synthetic experiment arising in [3] to support
the proposed approach. Let N = 64. Without loss of generality,
we set the measurement index n ∈ {0, . . . , N − 1} instead
of n ∈ {−2M, . . . , 2M}. We generate K = 5 spikes with
spike locations uniformly at random satisfying the minimum
separation ∆(Ω) > 1/N and coefficients generated with
dynamic range of 10 and uniform phase. We generate L = 2
modulations with g1[n] = 1 and g2[n] = ej2πnτ , where
τ = 0.013 ≈ 1

N , i.e., the corresponding g1(t) = δ(t) and
g2(t) = δ(t − τ). We choose ξ1(t) = 1 and ξ2(tk) with i.i.d.
standard Gaussian entries for k = 1, . . . ,K. Note that in this
case

(h(t)ξ1(t)) ? g1(t) =

K∑
k=1

σ1kδ(t− tk)

and

(h(t)ξ2(t)) ? g2(t) =

K∑
k=1

σ2kδ(t− tk − τ),

which implies we can alternatively apply a super-resolution
algorithm [12] (also see Section III-E) to recover all the spikes
{tk, tk + τ}Kk=1. Figure 1 illustrates the dual polynomials of
‖q̂(t)‖2 and |q̃(t)| (see Sections III-D and III-E, respectively).
We observe that the spikes can be localized correctly from the
peaks of the dual polynomial ‖q̂(t)‖2, while |q̃(t)| provides
many spurious spikes.
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