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ABSTRACT

This paper considers the minimization of a general objec-
tive function f(X) over the set of non-square n X m ma-
trices where the optimal solution X * is low-rank. To reduce
the computational burden, we factorize the variable X into
a product of two smaller matrices and optimize over these
two matrices instead of X. We analyze the global geome-
try for a general and yet well-conditioned objective function
f(X) whose restricted strong convexity and restricted strong
smoothness constants are comparable. In particular, we show
that the reformulated objective function has no spurious local
minima and obeys the strict saddle property. These geomet-
ric properties imply that a number of iterative optimization
algorithms (such as gradient descent) can provably solve the
factored problem with global convergence.

Index Terms— Low-rank matrix optimization, matrix
sensing, nonconvex optimization, optimization geometry,
strict saddle

1. INTRODUCTION

Consider the minimization of a general objective function
f(X) over all n x m matrices:

minimize f(X), (1)
XGRnXm,

which we suppose admits a low-rank solution X* € R"*™
with rank(X ™) = r*. Low-rank matrix optimizations of the
form (1) appear in a wide variety of applications, including
quantum tomography [1], projection matrix design for com-
pressive sensing [2], collaborative filtering [3], low-rank ma-
trix recovery from compressive measurements [4], and matrix
completion [5]. In order to find a low-rank solution, the nu-
clear norm is widely used in matrix inverse problems [4] aris-
ing in machine learning [6], signal processing [7], and con-
trol [8]. Although nuclear norm minimization enjoys strong
statistical guarantees [5], its computational complexity is very
high (as most algorithms require performing an expensive sin-
gular value decomposition (SVD) in each iteration), prohibit-
ing it from scaling to practical problems.
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To relieve the computational bottleneck, recent stud-
ies propose to factorize the matrix variable into the Burer-
Monteiro type decomposition [9, 10] with X = UV, and
optimize over the n X r and m X r (r > r*) matrices U and
V. With this parameterization of X, we can recast (1) into
the following program:

minimize  h(U,V) := f(UV"). 2)

UGCR™XT, V ERmXT
The bilinear nature of the parameterization renders the objec-
tive function of (2) nonconvex even when f(X) is a convex
function. Hence, the objective function in (2) can potentially
have spurious local minima (i.e., local minimizers that are not
global minimizers) or “bad” saddle points that prevent a num-
ber of iterative algorithms from converging to the global solu-
tion. By analyzing the landscape of nonconvex functions, sev-
eral recent works have shown that with an exact factorization
(r = 1), the factored objective function h(U, V') in matrix
inverse problems has no spurious local minima [11-17].

We generalize this line of work by focusing on a general
objective function f(X) in the optimization (1), not neces-
sarily a quadratic loss function coming from a matrix inverse
problem. We provide a geometric analysis for the factored
program (2) and show that all the critical points of the the ob-
jective function are well-behaved. Our characterization of the
geometry of the objective function ensures a number of itera-
tive optimization algorithms converge to a global minimum.

This paper continues in Section 2 with formal definitions
for strict saddles and the strict saddle property. We present
the main results in Section 3 and their implications in matrix
recovery in Section 4.

2. PRELIMINARIES

2.1. Notation

To begin, we first briefly introduce some notation used
throughout the paper. The symbols I and O respectively
represent the identity matrix and zero matrix with appropriate
sizes. The set of r X r orthonormal matrices is denoted by
O, == {R € R™*" : R"R = I}. If a function h(U, V)
has two arguments, U € R"*" and V' € R™*", we oc-
casionally use the notation h(W') when we put these two
. For a scalar func-

. U
arguments into a new one as W = Vv



tion f(Z) with a matrix variable Z € R™*™, its gradient is
an n X m matrix whose (¢, j)-th entry is [V f(Z)];; = aafz(f)
foralli € {1,2,...,n},5 € {1,2,...,m}. The Hessiain
of f(Z) can be represented with a bilinear form defined
via [V2f(Z))(A,B) = ¥, s om
A,B ¢ R™*™,

A;; By, for any

2.2, Strict Saddle Property

Suppose h : R™ — R is a twice continuously differentiable
objective function. We begin with the notion of strict saddles
and the strict saddle property.

Definition 1 (Strict saddles). A critical point x is a strict sad-
dle if the Hessian matrix evaluated at this point has a strictly
negative eigenvalue, i.e., Apin(V2h(x)) < 0.

Definition 2 (Strict saddle property [18]). A twice differen-
tiable function satisfies the strict saddle property if each crit-
ical point either corresponds to a local minimum or is a strict
saddle.

Intuitively, the strict saddle property requires a function to
have a directional negative curvature at all the critical points
but local minima. This property allows a number of iterative
algorithms such as noisy gradient descent [18] and the trust
region method [19] to further decrease the function value at
all the strict saddles and thus converge to a local minimum.

Theorem 1. [18,20,21] (informal) For a twice continuously
differentiable objective function satisfying the strict saddle
property, a number of iterative optimization algorithms (such
as gradient descent and the the trust region method) can find
a local minimum.

3. PROBLEM FORMULATION AND MAIN RESULTS

3.1. Problem Formulation

This paper considers the problem (1) of minimizing a gen-
eral function f(X) admitting a low-rank solution X* with
rank(X*) = r* < r. We factorize the variable X = UV"
with U € R*"*". V € R™*" and transform (1) into its fac-
tored counterpart (2). Throughout the paper, X, W and w
are matrices depending on U and V:

U Ix7 U T
W = {V}’W_ [_V},X—UV .
Although the new variable W has much smaller size than X
when r < min{n, m}, the objective function in the factored
problem (2) may have a much more complicated landscape
due to the bilinear form about U and V. The reformulated ob-
jective function A(U, V') could introduce spurious local min-
ima or degenerate saddle points even when f(X) is convex.
Our goal is to guarantee that this does not happen.

Let X* = Qu+X*Q% denote an SVD of X*, where
Qu~ € R and Qy,» € R™*" are orthonormal matrices
of appropriate sizes, and ¥* € R"*" is a diagonal matrix
with non-negative diagonals (but with some zero diagonals if
r > r* = rank(X™)). We denote

U* — QU*E*l/Q, V* — QV*2*1/27

where X* = U*V*T forms a balanced factorization of X*
since U™ and V'* have the same singular values. Throughout
the paper, we utilize the following two ways to stack U™ and
V™ together:
. U* s U*
el w15

Before moving on, we note that for any solution (U, V)
to (2), (UY,V®) is also a solution to (2) for any ¥, ® €
R™" such that U¥®T VT = UV™. In order to address this
ambiguity (i.e., to reduce the search space of W for (2)), we
utilize the trick in [13,22, 23] by introducing a regularizer

9(U,V) = LIUTU - VTV 3
and solving the following problem

p(U,V):=fUV") +g(U,V), &

minimize
UERmX",V gRmxr
where 1 > 0 controls the weight for the term |[UTU —
VTV| % which will be discussed soon.

We remark that W™ is still a global minimizer to the
factored problem (4) since f(X) and g(W) achieve their
global minimum at X* and W™, respectively. The regular-
izer g(W) is applied to force the difference between the two
Gram matrices of U and V' to be as small as possible. The
global minimum of g(W) is 0, which is achieved when U
and V' have the same Gram matrices, i.e., when W belongs
to

£ = {W: [ﬂ :UTU—VTV:O}. (5)
Informally, we can view (4) as finding a point from & that also
minimizes f(UV™"). This is formally established in Theo-
rem 2.

3.2. Main Results

Before presenting our main results, we lay out the necessary
assumptions on the objective function f(X). As is known,
without any assumptions on the problem, even minimizing
traditional quadratic objective functions is challenging. For
this purpose, we focus on the model where f(X) is (2r,4r)-
restricted strongly convex and smooth, i.e., for any n x m
matrices X, G with rank(X) < 2r and rank(G) < 4r, the
Hessian of f(X) satisfies

o|GlF < [VPAX)(G, G) < BIG|F (6)



for some positive « and 5. A similar assumption is also uti-
lized in [23, Conditions 5.3 and 5.4]. With this assumption on
f(X), we now summarize our main results.

Our main argument is that the objective function p(W')
has no spurious local minima and satisfies the strict saddle
property. This is equivalent to categorizing all the critical
points into two types: 1) the global minima which correspond
to the global solution of the original convex problem (1) and
2) strict saddles such that the Hessian matrix V2p(W) eval-
uated at these points has a strictly negative eigenvalue. We
formally establish this in the following theorem, whose proof
is omitted due to space limitations.

Theorem 2. For any p > 0, each critical point W = [g}
of p(W) defined in (4) satisfies
v'v-v'v=o. @)

Furthermore, suppose the function f(X) satisfies the (2r, 4r)-
restricted strong convexity and smoothness condition (6) with
positive constants o and [ satisfying g < 1.5 Setp < 5
for the factored problem (4). Then p(W) has no spurious
local minimum, i.e., any local minimum of p(W') is a global
minimum corresponding to the global solution of the original
convex problem (1): UV'T = X*. In addition, p(W') obeys
the strict saddle property that any critical point not being a
local minimum is a strict saddle with

Arni]rl (VQ (p(W))) S

—0.08a0,-(X™), r=r* ®)
—0.05 - min {02 (W), 207+ (X*)}, 7 >71*
—0.1ao,+ (X™), re =20,

where ¢ < 1 is the rank of W, Amin(+) represents the small-
est eigenvalue, and o(-) denotes the (-th largest singular
value.

Remark 1. The above result implies that we can recover the
rank-r* global minimizer X* of (1) by many iterative algo-
rithms (such as the trust region method [24] and stochastic
gradient descent [18]) even from a random initialization. This
is because 1) as guaranteed by Theorem 1, the strict saddle
property ensures local search algorithms converge to a local
minimum, and 2) there are no spurious local minima.

Remark 2. Since our main result only requires the (2r, 4r)-
restricted strong convexity and smoothness property (6),
aside from low-rank matrix recovery [25], it can also be
applied to many other low-rank matrix optimization prob-
lems [26] which do not necessarily involve quadratic loss
functions. Typical examples include robust PCA [27], 1-bit
matrix completion [28] and Possion principal component
analysis (PCA) [29].

Remark 3. Equation (7) shows that any critical point W be-
longs to & for the objective function in the factored prob-
lem (4) with any positive p. This demonstrates the reason

for adding the regularizer g(U, V'). Thus, any iterative opti-
mization algorithm converging to some critical point of p(W)
results in a solution within £.

Remark 4. For any critical point W & R™+™)X" byt not
being a local minimum, the right hand side of (8) is strictly
negative, implying W is a strict saddle. We also note that
Theorem 2 not only covers exact parameterization where r =
r*, but also includes over-parameterization where r > r*.

Remark 5. The constants appearing in Theorem 2 are not op-
timized. We use p < - simply to include p = ;- which
is utilized for the matrix sensing problem in [22, p.3]. If the
ratio between the restricted strong convexity and smoothness
constants g < 1.4, then we can show p(W) has no spu-
rious local minima and obeys the strict saddle property for
any 1 < ta (where p = 1 is utilized for the matrix sens-
ing problem in [13, p.3]). In all cases, a smaller x yields a
more negative constant in (8). This implies that when the re-
stricted strong convexity constant « is not provided a priori,
one can always choose a small i to ensure the strict saddle
property holds, and hence guarantee the global convergence
of many iterative optimization algorithms. We finally note
that the regularizer g(W) is added mostly to avoid bad iter-
ates W. If we apply local search algorithms with a random
initialization, then it is possible to drop the regularizer (i.e.,
set . = 0) for practical implementation; see the experiments
in Section 4.1.

4. STYLIZED APPLICATION: MATRIX RECOVERY

We first consider the implication of Theorem 2 in the matrix
sensing problem where

FX) = 5 IA X~ XM,

Here A : R™*™ — RP is a known measurement operator
satisfying the following restricted isometry property.

Definition 3. (Restricted Isometry Property (RIP) [4, p.11])
The map A : R™*™ — RP satisfies the r-RIP with constant

or if
(1=6) X[ < JAX)I* < L+ ) 1X[5 - ©)
holds for any n x m matrix X with rank(X) < r.

Note that in this case, the Hessian quadrature form
V2f(X)[Y,Y] for any n x m matrices X and Y is given
by

2
VXY, Y] =AY
If A satisfies the 4r-restricted isometry property with constant
O4r, then f(X) satisfies the (2r, 4r)-restricted strong convex-
ity and smoothness condition (6) with constants o = 1 — dy,
and 8 = 1 — 4, since

(1= 8) Y[ < JAX)I” < (1 +680) 1Y |17



for any rank-4r matrix Y. Now applying Theorem 2, we can
characterize the geometry for the following matrix sensing
problem with the factorization approach:
1
minimize = AUVT — X*)|3 +g(U,V), (10)
UER*", VERmXT 2

where g(U, V') is the added regularizer defined in (3).

Corollary 1. Suppose A satisfies the 4r-RIP with constant
Ogr < % and set | < %. Then the objective function
in (10) has no spurious local minima and satisfies the strict
saddle property.

This result follows directly from Theorem 2 by noting
that /j = 1+§z' < 15if 8 < 1. We remark that Park
et al. [13 Theorem 4.3] provided a similar geometric result
for (10). Compared to their result which requires d4, < 100,
our result has a much weaker requirement on the RIP of the

measurement operator.

4.1. Experiments

In this section, we present some experiments to illustrate the
performance of the factorization approach for matrix comple-
tion! where we want to recover a low-rank matrix X * from
incomplete measurements {X};}; jjeq, where @ C [n] x
[m]. We compare the performance of the matrix factorization
approach with SVP [30], the convex approach, and singular
value thresholding2 (SVT) [31]. Let Pg, denote the projection
onto the index set ). The convex approach (denoted by CVX)
attempts to use the nuclear norm as a convex relaxation of the
rankness and solves

mini}gnize | X ||, subject to Pa(X) =Po(X™). (1)

In the first set of experiments, we set n = m = 100 and
vary the rank r from 1 to 30. We generate a rank-r ran-
dom matrix and randomly obtain p entries, i.e., = p.
Figure 1 displays the phase transition for matrix factoriza-
tion (with 4 = 0) solved by gradient descent with a random
initialization, the SVP [30], the singular value thresholding
(SVT) [31], and the convex approach. As can been seen, the
matrix factorization approach has a similar phase transition to
SVP, and is slightly better than SVT and the convex approach
in terms of the number of measurements needed for success-
ful recovery. Similar phase transitions for matrix factorization
are also observed for different p > 0.

In the second set of experiments, we set r = 5 and p =
3r(2n — r) (3 times the number of degrees of freedom within

1Though Pq does not satisfy the r-RIP (9) for all low-rank matrices X,
it satisfies the RIP when restricted to low-rank incoherent matrices [30, The-
orem 4.2]. Thus, if the iterates of local search algorithms remain incoherent
(which is experimentally observed), then Theorem 2 guarantees the global
convergence of the matrix factorization approach with these algorithms.

2Software available at http://svt.stanford.edu/

arank-r n X n matrix), and vary n from 40 to 5120. We com-
pare the time needed for the four approaches in Figure 2; our
matrix factorization approach is much faster than the other
methods. The time savings for the matrix factorization ap-
proach comes from avoiding the SVD, which is needed both
for SVT and SVP in each iteration. We also observe that the
convex approach has highest computational complexity and is
not scalable (which is the reason that we only present its time
for n up to 640).
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Fig. 1. Rate of success for matrix completion by (a) the matrix
factorization approach with gradient descent; (b) SVP [30];
(c) solving the convex problem (11); (d) SVT [30]. 10 Monte
Carlo trials are carried out and for each trial, we claim matrix
recovery to be successful if the relative reconstruction error
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Fig. 2. Average computation time needed for different algo-
rithms solving matrix completion.
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