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Abstract—In this paper, we investigate the synthetic aperture
radar (SAR) imaging problem via sparse atomic norm reconstruc-
tion. A stepped-frequency radar operation and a side looking
radar is assumed. However, the analysis presented is general,
and extensions to other SAR types, scenes and other radar wave-
forms are straightforward. The atomic norm is formulated and
employed as a penalizer for SAR denoising and reconstruction,
as a convex problem. The target positions are readily estimated
through the peaks of the dual polynomial. Furthermore, due to
strong duality in our convex formulation, we show that the target
positions are obtained from either the primal or dual problem
solution. Through simulations, we demonstrate the advantages of
our approach when compared with traditional back-projection
imaging and recent sparse reconstruction techniques.
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I. INTRODUCTION

In the ever changing modern battlefield, intelligence
surveillance, and reconnaissance centric technologies are ex-
tremely useful. Synthetic aperture radar (SAR) is such a
technology which enables imaging wide scenes from a long
range by synthetically generating an aperture through radar
motion.

Synthetic aperture and stepped-frequency radars have been
widely used in a variety of civil and military applications [1, 2],
landmine detection [3] and geo imaging environments [4].
In this paper, we consider a multiple target imaging scene
using stepped-frequency measurements from synthetic aperture
radar (SAR). Target estimation or localization is one of the
fundamental problems in radar signal processing. In a SAR
setting, the conventional imaging method based on back-
projection directly uses the measurements to create the target
image by applying matched filtering with the impulse response
of the data acquisition process to form the images. The peaks
of this image can be used to estimate the target locations.
Alternatively, recent developments in compressive sensing [5–
7] inspire forming the radar image by solving an inverse
sparse problem either through convex optimization or greedy
algorithms [8].

The general approach for estimation using sparse modeling
is to first divide the target space in crossrange and downrange
uniformly to reduce the continuous parameter space into a
finite set of grid points. Then one constructs a dictionary

based on these grid points and formulates the radar imaging
problem as a dictionary selection problem, which can be solved
via a variety of sparse recovery algorithms. Options for such
algorithms include the least absolute shrinkage and selection
operator (Lasso) [9] and matching pursuit (MP) [10]. However,
due to the discretization process, these methods suffer from
several severe drawbacks. Firstly, the dictionary will spread
out the energy of the target return if its position does not fall
onto a regular grid, creating smearing and possible false alarms
in the SAR images. Secondly, as one increases the number of
grid points, performance guarantees through standard sparse
recovery analysis fail since the dictionary becomes highly
coherent. Lastly, finer grid points lead to high computational
complexity and numerical instability issues, both of which are
non-starters in practical SAR.

Chandrasekaran et.al. [11] propose to use the atomic norm,
induced by the convex hull of the atoms, as the general convex
penalty function for linear inverse problems. The atomic norm
generalizes the l1 norm for sparse recovery problems and more
importantly, it provides a framework to handle a dictionary
with an infinite number of atoms. In the case of line spectrum
estimation (or super-resolution [12] if we exchange the time
and frequency domains), the atomic norm minimization ap-
proach achieves nearly optimal recovery performance [13, 14]
and recovers the frequencies exactly under moderate conditions
when there is no noise [15]. In this case, the atomic norm
minimization can be rewritten as a semidefinite program,
which can be solved efficiently using off-the-shelf solvers such
as SDPT3 [16] and SeDuMi [17]. Alternatively, some non-
convex approaches considering the off-grid problem in line
spectrum estimation are presented in [18, 19].

In this paper, we propose a convex relaxation approach
to target estimation for stepped-frequency radar. In consid-
eration of noise in real applications, we apply the atomic
norm penalty function and formulate the denoising problem
as atomic norm soft thresholding (AST), which also provides
an efficient method to localize the targets without having to
discretize the target space. Moreover, we show that AST can
be approximately solved using semidefinite programming. We
compare our proposed approach with classical radar imaging
algorithms including back-projection and Lasso. The outline
of this paper is as follows. In Section II, the main problem
is illustrated. Our main approaches to denoise the radar signal
and estimate the target locations are in Section III. Section IV
presents a computational method to solve the AST. Section V



Fig. 1. Illustration of the scene layout.

presents some simulations to support our proposed methods
and Section VI concludes the paper.

II. PROBLEM SETUP

Let [N ] denote the set {0, 1, . . . , N − 1} for any natural
number N ∈ N. An M -element synthetic linear aperture
(located along the x-axis) is used to transmit waveforms and
receive the return signals. Let (xam, y

a
m) denote the position

of the m-th antenna for all m ∈ [M ]. We assume that each
transceiver receives a stepped-frequency signal consisting of
N frequencies equispaced over the band [F0, FN−1]; that is

Fn = F0 + n∆F, n ∈ [N ],

where ∆F := FN−1−F0

N−1 is the frequency step size. Further, we
assume that the measurements at each transceiver do not have
any interfering component from the other transceivers.

Suppose there are K point targets in the field I. Without
loss of generality, we denote such region by

I = {(x, y) : xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}. (1)

Let (xtk, y
t
k) denote the position of the k-th target for all k ∈

[K]. The antennas are parallel to the x-axis with yam = 0 for
all m ∈ [M ].

The measurement observed by the m-th antenna corre-
sponding to the n-th frequency can be expressed as

z̃m[n] := z\m[n] +wm[n],

where

z\m[n] =

K−1∑
k=0

σke
−j2πFnτm(xt

k,y
t
k) (2)

is the cumulative return from all the targets and wm[n] is
the additive noise. Here, σk is the complex reflectivity of the
k-th target (we assume the target reflectivity is independent
of frequency), and τm(xtk, y

t
k) is the two-way travel time

between the k-th point target and the m-th antenna. Fig-
ure 1 illustrates the geometric model of the radar system.
If we assume the scattering and refraction are negligible,
τm(xtk, y

t
k) = 2‖(xtk, ytk)− (xam, y

a
m)‖2/c, where the constant

c is the speed of light in meters per second.

Without loss of generality, we assume F0 = 0. We then
rewrite the target return in (2) as

z\m[n] =

K−1∑
k=0

σke
−j2πn∆Fτm(xt

k,y
t
k)

=

K−1∑
k=0

σke
−j2πnθm(xt

k,y
t
k),

with θm(xtk, y
t
k) = ∆Fτm(xtk, y

t
k), ∀m ∈ [M ], n ∈ [N ].

Arrange the set of measurements {z̃m}m∈[M ] and target return
{z\m}m∈[M ] into N ×M matrices as

Z̃ = [z̃0 z̃1 · · · z̃M−1],

Z\ = [z\0 z
\
1 · · · z

\
M−1].

Note that the frequency step size ∆F determines the size
of the region I that the radar system can image. To be precise,
we consider the region I such that

max
(x,y)∈I

θm(x, y)− min
(x,y)∈I

θm(x, y) < 1

for all m ∈ [M ].

We use Ω =
{

(xt0, y
t
0), . . . , (xtK−1, y

t
K−1)

}
to denote the

unknown set of target positions. Our goal is to estimate the
potential target locations from the measurements Z̃.

III. OUR APPROACH

A. Atoms and Atomic Norm

We can model the target return Z\ as a sparse combination
of observations due to single point targets. Define the matrix
A(x, y) ∈ CN×M for any (x, y) ∈ I with elements

[A(x, y)][n,m] = e−j2πnθm(x,y),∀ m ∈ [M ], n ∈ [N ]

where

θm(x, y) = ∆Fτm(x, y) = 2∆F‖(x, y)− (xam, y
a
m)‖2/c

represents the two-way travel time between the the m-th
antenna and the point at position (x, y). Then, we rewrite the
target return as follows:

Z\ =

K−1∑
k=0

σkA(xtk, y
t
k).

Thus the target return Z\ can be viewed as a sparse combina-
tion of elements from the atomic set

A = {A(x, y) ∈ CN×M : (x, y) ∈ I}.

The atomic set A can be viewed as an infinite dictionary
parameterized by the continuous variables (x, y).

For any Z ∈ CN×M , we define its atomic norm with
respect to A by

‖Z‖A = inf
(xk,yk)∈I

{∑
k

|ck| : Z =
∑
k

ckA(xk, yk)

}
,

which is the gauge function associated with the convex hull
of A. Define the inner product as 〈Q,Z〉 = trace(ZHQ).



Let 〈Q,Z〉R = Re (〈Q,Z〉) be the real inner product. By
definition, the dual norm of ‖ · ‖A is

‖Q‖∗A = sup
A∈A

〈Q,A〉R .

B. Atomic Norm Soft Thresholding (AST)

We obtain an estimate Ẑ that solves the atomic norm soft
thresholding (AST):

minimize
Z

λ‖Z‖A +
1

2

∥∥∥Z̃ −Z∥∥∥2

F
, (3)

where τ is an appropriately chosen regularization parameter.
In [13], the authors show that the choice of τ is governed by the
noise model and, if wm follows an i.i.d. Gaussian distribution
with mean 0 and variance ϑ2, a good choice for λ is

ϑ(1 +
1

log(NM)
)
√
NM log(NM) +NM log(4π log(NM)).

C. Localizing the Target Position using the Dual Problem

The dual problem of AST is given by

maximize
Q

1

2
‖Z̃‖2F −

1

2
‖Z̃ − λQ‖2F

subject to ‖Q‖∗A ≤ 1
(4)

The optimal solution to (4) is denoted by Q̂, which can be
used to localize the target positions. To be precise, consider
the dual polynomial

q̂(x, y) =
〈
Q̂,A(x, y)

〉
. (5)

The target positions can be obtained by finding the peaks of
|q̂(x, y)|:

Ω̂ = {(x, y) : |q̂(x, y)| = 1} .

We note that strong duality holds and the primal solution
Ẑ and the dual solution Q̂ satisfy

Z̃ = Ẑ + λQ̂.

This indicates that we can obtain the dual optimal solution
Q̂ for free (i.e., Q̂ =

(
Z̃ − Ẑ

)
/λ) when solving the primal

problem (3).

IV. COMPUTATIONAL METHOD

In this section, we present a computational scheme that
approximately solves the AST (3).

The atomic norm ‖Z‖A is approximately equivalent to the
optimal value of the following problem:

minimize
U ,γ,ũ

1

2
γ +

1

2MN

M−1∑
m=0

trace(Toep(um)),

subject to[
Toep(um) zm
zHm γ

]
� 0,∀m ∈ [M ],

u0[0] = u1[0] = · · · = uM−1[0] = ũ,

(6)

where um denotes the m-th column of U , um[0] represents
the first element of um and Toep(um) denotes a Hermitian
Toeplitz matrix with um as its first row. Denote the optimal
value of (6) by SDP(Z). One can show that SDP(Z) is a lower
bound of ‖Z‖A, i.e., SDP(Z) ≤ ‖Z‖A.

Thus the AST problem (3) can be approximately rewritten
as a semidefinite program

minimize
U ,γ,ũ

λ

(
1

2
γ +

1

2
µ̃

)
+

1

2

∥∥∥Z̃ −Z∥∥∥2

F
,

subject to[
Toep(um) zm
zHm γ

]
� 0,∀m ∈ [M ],

u0[0] = u1[0] = · · · = uM−1[0] = ũ,

(7)

The SDP (7) can be solved efficiently using off-the-shelf
solvers such as SDPT3 [16].

V. SIMULATIONS

We present synthetic experiments to support the proposed
approach and to test the computational method. We consider
a 4m× 5.5m target space centered at (0m, 4.75m), i.e.,

I = [−2m : 2m]× [2m : 7.5m].

A 5-element synthetic linear aperture (located along the x-axis)
with interelement spacing of 1m is used. A stepped-frequency
signal consisting of N = 50 frequencies from −580 MHz to
580 MHz with 20 MHz frequency steps is utilized to obtain
measurements.

We compare the radar imaging performance of AST, the
discretized Lasso and the back-projection method. We solve (7)
with CVX [20] coupled with SDPT3. We divide the target
space I into a grid of Lx × Ly pixels with Lx = 50 and
Ly = 50. We arrange the pixels of the image into an LxLy×1
vector α. Let (xq, yq) denote the location of the q-th pixel
and let θq be the vectorization of the atom A(xq, yq), i.e.,
θq = vec(A(xq, yq)). We concatenate the θq into a matrix as

Θ := [θ0 θ1 · · · θLxLy−1].

The Lasso is a regularized l1 minimization problem

minimize
α

λ‖α‖1 +
1

2
‖vec(Z̃)−Θα‖22, (8)

which is a discretized version of AST (3). The vector α
indicates the location of the targets: the value of q-th pixel
equals the target reflectivity if there is a target at this pixel,
and otherwise it is 0. We solve Lasso with CVX software.

We simulate four point targets located at (−0.69m, 5.31m),
(0.31m, 5.81m), (−1.33m, 2.28m) and (−0.65m, 6.64m) with
relative complex refractivities of −0.77 + 1.47j, 0.41− 0.04j,
−0.04−0.42j and 0.80−0.73j, respectively. The actual target
positions are depicted in Figure 2 (a). The measurement z̃m is
produced by adding complex white noise wm with mean zero
and standard deviation ϑ = 0.1. Figure 2 (b) shows the radar
image reconstruction using back-projection, and Figure 2 (c)
shows the recovered target positions (i.e., the solution to (8))
by solving Lasso. Finally, the recovered target positions by the
proposed method are illustrated in Figure 2 (d). As can been
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Fig. 2. Reconstruction results with different methods: (a) ground truth; (b)
back-projection (the maximum intensity is normalized to 0dB); (c) Lasso (the
maximum intensity is normalized to 0dB); (d) proposed approach. The black
squares represent the original target positions.
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Fig. 3. Dual polynomials with different methods: (a) proposed approach; (b)
back-projection (the maximum intensity is normalized to 0dB). The dashed
blue lines represent the original target positions.

seen, the proposed method can correctly find all the targets
and their locations.

To better illustrate the advantage of the proposed method
against back-projection, we simulate two closely spaced point
targets located at (3m, 4m) and (3m, 4.5m), with complex
reflectivities of 10 and 1, respectively. Figure 3 (a) shows the
dual polynomial q̂(x, y), defined in (5), at x = 3m. Figure 3
(b) shows the polynomial

q(x, y) :=
〈
Z̃,A(x, y)

〉
at x = 3m. As can been observed, the targets can be localized
by identifying points where the dual polynomial q̂(x, y) has
modulus one. In contrast, we may fail to localize the targets
by finding the peaks of the polynomial q(x, y) because of the
slow decay of the Dirichlet kernel.

VI. CONCLUSIONS

Motivated by recent work on atomic norms, we denoise the
stepped-frequency radar measurements in SAR by solving the
AST and thereby providing estimates of the target positions.
This is achieved by finding the peaks of the dual polynomial,
which can be easily obtained from the optimal solution of
AST. Compared to classical SAR imaging based on back-
projection, the proposed method can estimate the targets with
higher resolution. Unlike radar imaging based on traditional
sparse recovery solvers, which work on a finite set of grid
points, the atomic norm formulation works in the continuous
domain and therefore alleviates the basis mismatch issue. A
computational method based on semidefinite programming was
derived to solve AST. Numerical experiments demonstartes
that the proposed method outperforms the other two approach-
es.

ACKNOWLEDGMENT

Z. Zhu and M. B. Wakin were supported by NSF grant
CCF-1409261. G. Tang was supported by NSF grant CCF-
1464205. All views and opinions expressed here are the
authors own and does not constitute endorsement from the
Department of Defense.

REFERENCES

[1] P. Setlur, T. Negishi, N. Devroye, and D. Erricolo, “Mul-
tipath exploitation in non-los urban synthetic aperture
radar,” IEEE Jour. Selected Top. Sign. Proc., vol. 8,
pp. 137–152, Feb 2014.

[2] P. Setlur, G. Alli, and L. Nuzzo, “Multipath exploitation
in through-wall radar imaging via point spread functions,”
IEEE Trans. Image Process., vol. 22, pp. 4571–4586, Dec
2013.

[3] J. Groenenboom and A. Yarovoy, “Data processing and
imaging in gpr system dedicated for landmine detec-
tion,” Subsurface Sensing Technologies and Applications,
vol. 3, no. 4, pp. 387–402, 2002.

[4] H. M. Jol, Ground penetrating radar theory and appli-
cations. Elsevier, 2008.

[5] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty
principles: Exact signal reconstruction from highly in-
complete frequency information,” IEEE Trans. Inf. The-
ory, vol. 52, pp. 489–509, Feb 2006.

[6] E. Candès and M. Wakin, “An introduction to com-
pressive sampling,” IEEE Signal Process. Mag., vol. 25,
pp. 21–30, March 2008.

[7] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf.
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[8] R. Baraniuk and P. Steeghs, “Compressive radar imag-
ing,” in Proc. 2007 IEEE Radar Conference, pp. 128–
133, April 2007.

[9] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” J. R. Stat. Soc. Series B, pp. 267–288, 1996.

[10] S. G. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,” IEEE Trans. Signal Process.,
vol. 41, no. 12, pp. 3397–3415, 1993.

[11] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S.
Willsky, “The convex geometry of linear inverse problem-
s,” Foundations Comput. Math., vol. 12, no. 6, pp. 805–
849, 2012.



[12] E. J. Candès and C. Fernandez-Granda, “Towards a
mathematical theory of super-resolution,” Commm Pure
Appl. Math., vol. 67, no. 6, pp. 906–956, 2014.

[13] B. N. Bhaskar, G. Tang, and B. Recht, “Atomic norm
denoising with applications to line spectral estimation,”
IEEE. Tran. Signal Process., vol. 61, no. 23, pp. 5987–
5999, 2013.

[14] G. Tang, B. N. Bhaskar, and B. Recht, “Near minimax
line spectral estimation,” IEEE Trans. Inf. Theory, vol. 61,
no. 1, pp. 499–512, 2015.

[15] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Com-
pressed sensing off the grid,” IEEE Trans. Inf. Theory,
vol. 59, no. 11, pp. 7465–7490, 2013.

[16] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3 a
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