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ABSTRACT

Frequency estimation is a classical problem in signal pro-
cessing, with applications ranging from sensor array process-
ing to wireless communications and structural health moni-
toring. Modern algorithms based on atomic norm minimiza-
tion can cope with missing data but incur a high computa-
tional cost. To recover missing data from an ensemble of
frequency-sparse signals, we propose a computationally ef-
ficient low-rank tensor completion algorithm that exploits the
fact that each signal in the ensemble can be associated with a
Toeplitz matrix. We name our algorithm JAZZ in the spirit of
the classical MUSIC algorithm for frequency estimation and
in tribute to the random, improvisational nature of jazz music.

Index Terms— low-rank, tensors, Toeplitz matrices, ar-
ray processing, structural health monitoring, JAZZ, MUSIC

1. INTRODUCTION

1.1. Motivation

Many tasks in signal processing involve estimating frequency
parameters of signals [1, 2, 3]. In applications such as nar-
rowband direction-of-arrival (DOA) estimation in sensor ar-
ray processing [4, 5, 6], wireless communications [7], and
structural health monitoring [8], signals are often assumed to
be a superposition of a few sinusoids. For example, in sen-
sor array processing, the received signal is a linear combi-
nation of sinusoids which correspond to a few pre-specified
signal point sources. Although many classical algorithms for
parameter estimation [9] have been developed in the signal
processing literature, they usually cannot handle some of the
new challenges in modern data collection. For instance, due
to anomalies such as sensor failure, the acquired signal may
be not only noisy but also incomplete. Therefore, new ap-
proaches for robust parameter estimation are needed.

Compressive sensing (CS) has been a powerful tool for
dealing with the recovery of sparse signals from compres-
sive measurements. Its success relies on a low-dimensional
prior for the underlying signal, namely, sparsity. Frequency-
domain models in CS typically assume sparsity on a discrete
frequency grid. However, frequency parameters in sensor ar-
rays are continuous and can be arbitrary. Therefore, tradi-

tional CS suffers from a possibly severe basis mismatch prob-
lem [10] and is not directly relevant to the frequency estima-
tion problems in sensor arrays. Based on this observation,
[11] proposes an atomic norm minimization framework for
frequency estimation from incomplete measurements, which
leads to state-of-the-art results. However, one of the main
drawbacks for the atomic norm formulation is that one has
to solve a computationally expensive semidefinite program
(SDP), which does not scale well for signals of large dimen-
sion. Furthermore, in many applications such as sensor arrays
and structural health monitoring, one has to perform param-
eter estimation from an ensemble of signals [12, 13], which
makes atomic norm minimization cumbersome.

1.2. Main contributions

In this work, we propose a scalable frequency estimation
framework that can be applied on an ensemble of signals,
each of which can be written as a linear combination of K
complex exponentials sharing a common set of frequencies.
Furthermore, the proposed method can cope with missing
data. Our method is based on the fact that, in the full data
case, each signal in the ensemble can be written as a low-rank
Toeplitz matrix. Hence, a low-rank Toeplitz tensor can be
formed when the full ensemble of signals is available. Thus,
when data is missing we seek to find a low-rank tensor that
supports a Toeplitz structure while obeying the measurement
constraint. Based on the proposed framework, we propose
a computationally efficient algorithm using alternating mini-
mization to solve the recovery problem, which scales to high
dimensional observations. Our framework can be considered
as a natural generalization of the recent work [14] from the
single measurement vector (SMV) case to multiple measure-
ment vectors (MMV).

After the signal ensemble has been recovered with our al-
gorithm, one can use a classical algorithm such as Prony’s
method [15] or MUSIC [16] to estimate the spectral parame-
ters. We name our algorithm JAZZ, as it thus provides a com-
panion to classical MUSIC and also in tribute to the random,
improvisational nature of jazz music.

The rest of the paper is organized as follows. In Section
2, we formulate frequency estimation from the ensemble of
signals, each of which is a superposition of K complex ex-



ponentials with missing data, as a low-rank Toeplitz tensor
recovery problem. Based on our formulation, in Section 3,
we propose to use an efficient alternating minimization pro-
cedure to solve the corresponding recovery problem. In Sec-
tion 4, a series of numerical simulations are conducted to sup-
port our proposed approach. These experiments show that our
MMV-based method outperforms the previous SMV-based al-
gorithm.

2. PROBLEM STATEMENT

We consider the following observation model:

x?m =

K∑
k=1

cmkefk

which is a superposition of K length-N sampled complex si-
nusoids, where ef = [ej2πf0 ej2πf1 · · · ej2πf(N−1)]> and
cmk are the corresponding coefficients. The superscript >

denotes the non-conjugate transpose. Here, each signal x?m,
m = 1, 2, . . . ,M , shares the same frequencies. Conceptually,
we can stack the signals x?m into an N ×M data matrix:

X? =
[
x?1 x?2 · · · x?M

]
,

which is known as the multiple measurement vector (MMV)
setup in the literature [12].

In the following, we assume that a subset entries of X?

are observed at random. Associate the set of observation in-
dices with an N ×M matrix Ω containing the value 1 at each
observed position and 0 at the unobserved positions. Then,
the partially observed data matrix can be written as the point-
wise product of the true data matrix X? and the random mask
Ω, i.e.,

Y = Ω�X?,

or, equivalently

Y = PΩ(X?),

where PΩ is a projection operator that zeros out entries that
are not in Ω. Our goal is to use an efficient algorithm to re-
cover the data matrix X? from the measurements Y , after
which classical algorithms may be used to estimate the fre-
quencies {fk}Kk=1.

The main idea of this work is to leverage the underlying
low-rank Toeplitz structure of the MMV problem and then
to exploit this special structure when recovering the data us-
ing a structured matrix completion algorithm. To reveal this
structure, suppose we rearrange each column x?m of the data
matrix X? into a Toeplitz matrix to get a third-order Toeplitz
tensor T ? ∈ CN×N×M with the m-th slice given by

T ?(:, :,m) =


x1m x∗2m · · · x∗Nm
x2m x1m · · · x∗(N−1)m

...
...

. . .
...

xNm x(N−1)m · · · x1m



with 1 ≤ m ≤ M . Here a∗ denotes the complex conjugate
of a. By combining the celebrated Vandermonde decompo-
sition theorem [11] and the fact that each column x?m shares
the same frequencies, we can see that each Toeplitz matrix
slice T ?(:, :,m) has a Vandermonde decomposition sharing
the same Vandermonde matrix U :

T ?(:, :,m) = UDmUH ,

where
U =

[
ef1 · · · efK

]
is an N × K matrix and Dm is a K × K diagonal matrix
with positive numbers d1m, . . . , dKm along the diagonal for
all m ∈ {1, 2, . . . ,M}. With some simple manipulations,
we obtain a CANDECOMP/PARAFAC (CP) decomposition
of our Toeplitz tensor

T ? =

K∑
k=1

efk ⊗ efk ⊗ dk

where
dk =

[
dk1 · · · dkm

]>
.

This implies that the formulated Toeplitz tensor has CP rank
of exactly K.

In the next section, we will leverage this structure of the
formulated Toeplitz tensor to develop an efficient algorithm
for recovering the data. We will use the following tensor no-
tations. Define T : CN×M → CN×N×M as the operator that
maps the data matrix to a Toeplitz tensor, i.e.,

T(X?) := T ?.

Similarly, T∗ : CN×N×M → CN×M is defined as an opera-
tor that transforms a Toeplitz tensor into a matrix; that is, for
any Toeplitz tensor T ∈ CN×N×M

T∗(T ) = X,

where the m-th column of X is obtained by taking the first
column of the Toeplitz matrix T (:, :,m).

The tensor Frobenius norm is defined as the square root
of the sum of all the squared entries of the tensor, i.e., for any
T ∈ CN×N×M

‖T ‖F =

√√√√ M∑
m=1

‖T (:, :,m)‖2F .

Given the partial observations Y , we propose the following
minimization program to recover the original data matrix X?:

minimizeL,T ‖L − T ‖2F
subject to rank(L) ≤ K,

T is a Toeplitz tensor,

PΩ(T∗(T )) = Y .

(1)



Here, the rank constraint is used to enforce the low-rankness
of the Toeplitz tensor and the last constraint is utilized to en-
sure consistency with the measurements.

In the next section, we provide an efficient algorithm to
solve the low rank Toeplitz tensor completion problem.

3. THE JAZZ ALGORITHM

Inspired by [14], we utilize an alternating minimization algo-
rithm to iteratively update L and T in solving (1). In each
iteration, we update T (or L) using a projected gradient de-
scent strategy while L (or T ) is fixed.

Let PK : CN×N×M → CN×N×M denote an opera-
tor which finds the best rank-K approximation to a tensor.
Throughout this paper, we use alternating least squares [17]
to compute a best K-rank tensor approximation. Also let
PT Ω : CN×N×M → CN×N×M denote an operator that re-
turns the Toeplitz tensor that is closest (with respect to Ω) to
an arbitrary tensor. To be precise, for any T ∈ CN×N×M ,
PT Ω(T ) is equivalent to the following loop:

for m = 1, . . . , M

(PT Ω(T ))(:, :,m) = toeplitz(z),

end
where

zi =


T (i, 1,m), Ω(i,m) = 1,
1
2 mean(T (a, b,m), a− b = i− 1)+
1
2 (mean(T (a, b,m), b− a = i− 1))

∗
, Ω(i,m) = 0.

Here toeplitz(z) is the Toeplitz matrix whose first column is
equal to z.

Calculating a gradient based on Wirtinger derivatives [18],
we use the following update rule

Lp+1 = PK(Lp − α1(Lp − Tp)),
Tp+1 = PT Ω(Tp − α2(Tp − Lp+1)),

where p is the iteration number, and α1 and α2 are step sizes.
Note that Lp−Tp (or Tp−Lp) can be viewed as a (conjugate)
gradient of ‖L − Tp‖2F for L (or T ) at Lp (or Tp). The full
JAZZ algorithm is summarized in Algorithm 1.

4. SIMULATIONS

In this section, we present a few numerical experiments to
illustrate the effectiveness of our proposed approach.

In the first experiment, we set the number of signals M =
5 and the dimension of each signal x?m to N = 100. We gen-
erate K = 4 frequencies uniformly at random from the unit
interval [0, 1), ensuring a minimum separation of 1/N . Then,
we obtain 100 samples uniformly at random from the N ×M

Algorithm 1 JAZZ Algorithm
input: incomplete observations Y , observation index set Ω,

stepsizes α1 and α2, number of sinusoids K, number of
iterations P

initialize: L0 = 0, T0 = T(Y ), p = 0
1: while p < P do
2: Lp+1 = PK(Lp − α1(Lp − Tp))
3: Tp+1 = PT Ω(Tp − α2(Tp − Lp+1))
4: end while
5: return estimate of data matrix X̂ = T∗(TP )
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Fig. 1. Illustration of ‖Lp − Tp‖F /‖Tp‖F against iterations.

data matrix X? and run the proposed projected gradient de-
scent algorithm with step sizes α1 = 1 and α2 = 1. In all of
the experiments, we set the number of iterations to P = 100.
Figure 1 plots the relative distance ‖Lp − Tp‖F /‖Tp‖F as a
function of the iteration number p. We can see from the figure
that our proposed algorithm converges quickly.

We note that one could also recover each x?m separately
using the method in [14]. To show the effectiveness of our
method, we compare the convergence speed of JAZZ with the
algorithm in [14]. In Figure 2, we use MMV and SMV to de-
note our algorithm (recovering X? jointly) and that proposed
in [14], respectively. For the purpose of this plot, each itera-
tion of SMV corresponds to one update of all of the columns
of the estimated data matrix X?; these updates are indepen-
dent from column to column. It can be seen that our joint
recovery scheme converges quickly to the correct solution
due to the fact that we take advantage of the joint spectrally
sparse structure among all of the x?m; the SMV scheme fails
to converge to the correct solution. In Figure 3, we show the
discrete-time Fourier transform (DTFT) of one signal with
full measurements, say x?m, and its recovered estimates us-
ing both the MMV and SMV strategies. Again, we see that
the MMV performance is superior due to the fact that it takes
advantage of the joint spectrally sparse structure across all of
the signals.

We can ensure that the SMV algorithm converges to the
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Fig. 2. Illustration of ‖X̂p−X?‖/‖X?‖ with 100 total sam-
ples across M = 5 signals.
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Fig. 3. The DTFT of a representative signal, and the recov-
ered estimate using each approach.

correct solution by increasing the number of measurements.
Figure 4 compares MMV and SMV when the total number of
observed samples is doubled to 200. While both techniques
converge, the rate is slightly faster with the MMV approach.

Finally, we study the phase transition of our proposed al-
gorithm. In this experiment, we set M = 5 and N = 30 and
vary the number of frequencies K from 1 to 10 and the total
number of samples from 2M to MN . For each pair of K
and the number of samples, 10 Monte Carlo trials are carried
out with the frequencies being generated uniformly at random
on the unit interval [0, 1) with a minimum separation of 1/N .
For each trial, we claim signal recovery to be successful if the
relative reconstruction error satisfies

‖X? − X̂‖F
‖X?‖F

≤ 0.01,

where we have denoted X̂ as the reconstructed data matrix.
Figure 5 displays the phase transition for our algorithm. We
see that, as one would desire, a linear relationship exists be-
tween the number of degrees of freedom K and the number
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Fig. 4. Convergence comparison with 200 total samples
across M = 5 signals.
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Fig. 5. Illustration of phase transition for JAZZ; the vertical
axis plots the average number of measurements per column
of the data matrix.

of samples when N is fixed.

5. CONCLUSIONS

Using an iterative algorithm for recovery of low-rank Toeplitz
tensors, we have extended the recent work [14] on recovery
of frequency-sparse signals from the single measurement vec-
tor (SMV) case to multiple measurement vector (MMV) case.
Our JAZZ algorithm serves as a companion to MUSIC, and
after the signals have been reconstructed, classical spectral
analysis techniques may be used for frequency estimation. In
future work, we will seek to establish guarantees for the con-
vergence of our algorithm, robustness to noise, and the requi-
site number of measurements for recovery.
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