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Abstract: Sparse signals can be sensed with a reduced number of projections and then reconstructed if compressive sensing (CS)
is employed. Traditionally, the projection matrix is chosen as a random matrix, but a projection sensing matrix that is optimally
designed for a certain class of signals can further improve the reconstruction accuracy or further reduce the necessary number of
measurement samples. This paper considers the problem of designing the projection matrix Φ for a compressive sensing system
in which the dictionary Ψ is assumed to be given. The optimal projection matrix design is formulated in terms of finding those Φ
such that the Frobenius norm of the difference between the Gram matrix of the equivalent dictionary ΦΨ and the identity matrix
is minimized. A novel algorithm based on SVD for optimal projection matrix searching is proposed to solve the corresponding
minimization problem. Simulation results reveal that the signal recovery performance of sensing matrix obtained by proposed
algorithm surpasses that of other standard sensing matrix designs.
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1 Introduction

Compressive sensing (CS) is an emerging framework,

which states that sparse signals, that is, signals that have a

concise linear representation on an appropriate dictionary,

can be exactly recovered from a number of linear projec-

tions of dimension considerably lower than the number of

samples required by the Shannon-Nyquist Theorem [1] - [3].

Over the last few years researchers have derived some new

compressive sensing theory for a variety of structured sens-

ing matrices [4]. In the same time, some progress has been

made in making statements on the pursuit performance for

optimized dictionaries [5] - [6].

In one the hand, given a signal vector y ∈ �N we consider

measurement systems that acquire M linear measurements.

We can represent this process mathematically as

z = Φy (1)

where Φ ∈ �M×N and z ∈ �M . The matrix Φ, called mea-
surement matrix or sensing matrix, represents a dimensional-
ity reduction, i.e., it maps �N into �M , where M is typically

much smaller than N . Note that in the standard CS frame-

work, we assume that the measurements are non-adaptive,

meaning that the rows of Φ are fixed in advance and do not

depend on the previously acquired measurements. In this

paper, we will optimize the measurement matrix or sensing
matrix to obtain significant performance gains.

In the other hand, a given signal y ∈ �N can often

be expressed as a linear combination of a small number of

signals taken from a “resource” database, which is called

the dictionary. Elements of the dictionary are typically u-

nit norm functions called atoms. Let us denote the dic-

tionary as Ψ, and the atoms as ψk, k = 1, · · · , L, that is,

Ψ
�
=

[
ψ1 ψ2 · · · ψL

] ∈ �N×L, where L is the size

of the dictionary. The dictionary is over-complete (L > N )

when it spans the signal space and its atoms are linearly de-

pendent. In that case, every signal can be represented as a

linear combination of atoms in the dictionary :

y =
L∑

k=1

skψk
�
= Ψs (2)

where s
�
=

[
s1 s2 · · · sL

]T
is a coefficient vector

that represents y in dictionary Ψ. A signal is said to be com-
pressible if most of the coefficients of s are zero or they can

be discarded without much loss of information of the signal.

Denote s̄ as the signal where only the K largest coefficients

of s are kept and the rest are set to zero, and thus we have a

new signal

ȳ
�
= Ψs̄

If the value of the coefficients (sorted in decreasing order),

decrease quickly, then y is well approximated by ȳ, when

properly selecting both s and the dictionary Ψ.

By substituting y in (1) with (2), z can be rewritten as

z = ΦΨs
�
= As (3)

where the matrix A = ΦΨ =
[
A1 A2 · · · AL

] ∈
�M×L is sometimes referred to as equivalent dictionary of

the CS system. As A ∈ �M×L with M << L, the equiva-
lent dictionaryA is over-complete. Thus for given measure-

ment vector z and equivalent dictionaryA, the coefficients

vector s tends to be not unique. This is where the sparsity

constraint comes into play.

The spark of a given matrix A, denoted as spark(A), is

defined as the smallest number of columns in A that are lin-

early dependent. This property of matrices for the study of

the uniqueness of sparse solutions is of great importance.

The spark gives a simple criterion for uniqueness of sparse

solutions. By definition, the vectors in the null-space of the

matrix

As = 0

must satisfy

||s||0 ≥ spark(A) (4)
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where ||s||0 denotes the number of non-zero elements of vec-

tor s. Since these vectors combine lineally columns from

A to generate the zero vector, and at least spark(A) such

columns are necessary by definition.

In another words, for a given z and A there exists at most

one s such that z = As if and only if

spark(A) > 2||s||0 (5)

As seen from the above, the larger the spark of A, the

bigger the signal space among which the CS systems can

guarantee an exact recovery. For a given dictionary Ψ, the

spark of the equivalent dictionary A is determined by the

sensing matrix Φ. It would be of great interest to design Φ
such that spark(A) is maximized.

One concludes that any K-sparse signal y0 = Ψs0 can be

uniquely determined from the measurement z given by

z = Φy0

and that s0 is the solution of the following constrained prob-

lem:

s0 = arg min
s

||s||0 s.t. z = As (6)

as long as (5) holds, that is, spark(A) > 2K.

Such a problem can be attacked by a number of algorithms

which are classified into two groups. The first group includes

greedy algorithms such as the matching pursuit (MP) and

the orthogonal MP (OMP), which iteratively select locally

optimal basis vectors.

In the second group, the algorithms are based on convex

relaxation methods such as the basis pursuit (BP) or least

absolute shrinkage and selection operator (LASSO), which

solve the following problem:

s0 = arg min
s

||s||1 s.t. z = As (7)

The replacement of || ||0 by || ||1, the l1 norm, converts the

non-convex problem to a convex one.

Moreover, there are alternative properties of A that can be

easily exploited to provide recovery guarantees. One of such

properties is the mutual coherence of a matrix [5], which will

be introduced in the next section.

The main objective and contribution of this paper are:

• Objective: in order to improve the performance of

compressed sensing (signal reconstruction accuracy),

we consider the problem of designing the projection

matrix Φ for a compressive sensing system in which

the dictionary Ψ is given. The optimal projection ma-

trix design is formulated in terms of finding those Φ
such that the Frobenius norm of the difference between

the Gram matrix of the equivalent dictionary ΦΨ and

the identity matrix is minimized.

• Contribution: we investigate the problem of projection

matrix design for sensing signals which are sparse in

over-complete dictionaries and a novel algorithm based

on SVD for optimal projection matrix searching is pro-

posed in this paper. Experiments are given to show that

the sensing matrix obtained using our proposed algo-

rithm outperforms others in signal reconstruction accu-

racy.

The outline of this paper is arranged as follows. In Sec-

tion 2, we define the criteria that is used for measuring the

coherence of a matrix. In Section 3, some related work on

the sensing matrix optimization problem is provided, and

an iterative algorithm based on SVD for optimal projection

matrix searching is derived to find an optimal sensing ma-

trix that minimizes the coherence of the equivalent dictio-

nary. Experiments are carried out in Section 4 to analyze the

proposed algorithm. Simulations are also presented in Sec-

tion 5 to show the effectiveness of our proposed method in

improving signal reconstruction accuracy. Some concluding

remarks are given in Section 6 to end this paper.

2 Preliminaries

The mutual coherence, denoted as μ(A), represents the

worst-case coherence between any two columns (atoms) of

A and is one of the most fundamental quantities associated

with CS theory. As shown in [5], any K-sparse signal s0 can

be exactly recovered from the observation/measurement via

s0 = arg min
s

||s||0 s.t. z = As

as long as

K <
1

2
[1 +

1

μ(A)
] (8)

The mutual coherence of this matrix is defined as

μ(A)
�
= max

1≤i�=j≤L

|AT
i Aj |

‖Ai‖2‖Aj‖2 (9)

which measures the maximum linear dependency possibly

achieved by any two columns of matrix A. Coherence is a

blunt instrument since it only reflects the most extreme cor-

relation in the matrix. Nevertheless, it is easy to calculate

and it captures well the behavior of uniform matrices. Thus

it can be used as a criteria of the CS system.

The (i, j)th element of the Gram matrix of A is defined as

gij
�
= AT

i Aj

and

Sc
�
= diag(g

−1/2
11 · · · g

−1/2
kk · · · g−1/2

LL )

Thus the Gram matrix of Ā
�
= ASc, denoted as Ḡ = {ḡij},

is normalized such that ḡkk = 1, ∀ k. Obviously,

μ(A) = max
i�=j

|ḡij |

It can be shown [9] that for a matrix A ∈ �M×N , μ(A) is

bounded with

μ ≤ μ(A) ≤ 1 (10)

with the low bound given by

μ
�
=

√
L−M

M(L− 1)
(11)

Simulations have shown that the performance of an CS sys-

tem is more related to the averaged mutual coherence, de-

fined as [6]

μt(A)
�
=

∑
∀ (i,j)∈St

|ḡij |
Nt

(12)
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where St
�
= {(i, j) : |ḡij | ≥ t} with 0 ≤ t < 1 a given

number and Nt is the number of elements in the index set St.

It should be pointed out that μt(A) was used as an indicator

of convergence for a proposed iteration procedure but not

minimized directly in [6].

3 Sensing Matrix Optimization

In this section, we first provide some related work on

the sensing matrix optimization problem, and then an iter-

ative algorithm based on SVD for optimal projection matrix

searching is derived to find an optimal sensing matrix that

minimizes the coherence of the equivalent dictionary.

3.1 Related work
This subsection contains a brief survey of the important

results in optimization of the projection matrix.

Elad proposed the first work of the optimal design of sens-

ing matrix Φ in [6]. It is due to the fact that (8) is just a worst-

case bound and can not reflect the average signal recovery

performance that, instead of μ(A), an averaged mutual co-

herence, denoted as μt(A), was dealt with in [6]. Simulation

results showed that the optimized sensing matrix with the

procedure of reducing outperforms the one generated ran-

domly in terms of signal recovery accuracy.

In [7] Duarte-Carvajalino and Sapiro produced a approach

to learning the projection matrix for a given dictionary as

min
Φ

||Π2
d −Π2

dU
T
d ΦT ΦUdΠ

2
d||2F (13)

where || ||F denotes the Frobenius norm and Ψ =
Ud

[
Πd 0

]
V T
d is a singular value decomposition (SVD)

of the dictionary Ψ. The numerical procedure, though not

globally optimal, was reported to be faster and for some sit-

uations, the obtained sensing matrix led to a more accurate

signal recovery than the approach proposed in [6] . How-

ever, this numerical procedure used in (13) lost the original

intension of making the Gram matrix as close to the identity

matrix as possible due to several approximation procedures

involved in.

Zelnik-Manor considered the following optimal sensing

matrix design problem in [8] formulated as

min
Φ∈�M×N

||IL −ΨT ΦT ΦΨ||2F (14)

where IL denotes the identity matrix of dimension L. Com-

pared with (13), (14) has a much clearer physical meaning.

Noting that

||IL −ΨT ΦT ΦΨ||2F =
∑
i�=j

|gij |2 +
L∑

k=1

|1− gkk|2 (15)

In the one hand, as we have seen

μt(A) =

∑
∀ (i,j)∈St

|ḡij |
Nt

Thus
∑

i�=j |gij |2 is related to the the averaged coherence,

which is just the term we want to optimize. In the other hand,

noting the second term
∑L

k=1 |1− gkk|2 means the distance

of equivalent atoms (or frames) {Ak} to be one, where Ak

is the kth column vector of the equivalent dictionary A. Ob-

viously, this term included in (15) observes the purpose of

normalizing the equivalent dictionary.

3.2 Problem formation and the proposed method
An Equiangular Tight Frame (ETF) of size N × M with

N ≤ M is a matrix with normalized columns such that its

Gram matrix G = AT A satisfies

∀k �= j, |Gi,j | =
√

L−M

M(L− 1)
(16)

As we have stated in (11), this is the smallest possible mutual

coherence possible.

An ETF has a very nice averaged mutual coherence be-

havior and has been used in optimal dictionary design [10].

However, it is difficult to make the equivalent dictionary

A = ΦΨ an ETF with Φ only as the degrees of freedom,

compared with those in a totally free A, are much reduced.

Therefore, we extend the searching space to a more convex

set Λε

Λε
�
= {Gea ∈ �L×L : Gea = GT

ea, Gea(k, k) = 1, ∀k
maxi�=j |Gea(i, j)| ≤ ε} (17)

in which ε > 0 is a constant to control the searching space.

When ε = μ, the ideal ETF Grams of dimension L are con-

fined in Λε.

Based on the discussions above, we formulate the optimal

sensing matrix design problems as below:

min
Φ∈�M×N ,Gea∈Λμ

||Gea −ΨT ΦT ΦΨ||2F (18)

where the dictionary Ψ is assumed to be given and Gea is

the targeted Gram which belongs to the space Λμ .

Such a problem can be solved practically using alternative
minimization based numerical procedure, which is outlined

below:

Objective: To optimize Φ
Input: Parameters to be set:

• Ψ ∈ �N×L : the dictionary

• Φ ∈ �M×N : the projection

• iter: number of iteration

Initialization: With Ψ given, an initial Φ0, say randomly

generated, and set Φ = Φ0.

Loop: Set k = 1 and repeat iter times.

• Step I: While 1 ≤ k ≤ iter, compute G =
(ΦΨ)T (ΦΨ), then normalize it.

• Step II: Solve

Gea = arg min
Gea∈Λμ

||Gea −G||2F (19)

the solution of this problem is given in [11] as follows:

Gea(i, j) =

⎧⎨
⎩

G(i, j), |G(i, j)| ≤ μ
1, i = j
sign(G(i, j))μ, otherwise

(20)
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• Step III: With Gea obtained above, find the optimal

sensing matrix Φ:

Φ̃ = arg min
Φ

||Gea −ΨT ΦT ΦΨ||F (21)

and if ||Gea −ΨT Φ̃T Φ̃Ψ||F < ||Gea −ΨT ΦT ΦΨ||F
then Φ = Φ̃ and go to Step I with k → k + 1

• Step IV: End while

We propose a novel algorithm based on SVD in the fol-

lowing to solve the corresponding minimization problem

(21) in Step II of the above algorithm.

Denote V
�
= (ΦΨ)T

�
= ΨT Y ∈ �L×M . The Gram ma-

trix can then be rewritten into

G
�
= V V T =

M∑
k=1

vkv
T
k (22)

Let

Ψ = U
[ ∑

Ψ 0
]
QT (23)

be an SVD of Ψ. It is easy to see that

vk = ΨT yk
�
=

N∑
m=1

wmkqm

= Q(:, 1 : N)wk, ∀ k = 1, 2, · · · ,M (24)

Define

Δ(Φ)
�
= Gea −G (25)

where Gea is obtained through Step II of the above algorith-

m. For a given Φ, one wishes to update it with Φ̃ such that

||Δ(Φ̃)||F ≤ ||Δ(Φ)||F
and this can be done using the procedure given below. The

basic idea is to update the column vectors of

V =
[
v1 · · · vk · · · vM

]
one by one, leading to a new matrix

Ṽ =
[
ṽ1 · · · ṽk · · · ṽM

]
Assume that the updating has been done for k =

1, · · · ,m− 1, that is

ṽj = vj , ∀ j ≥ m

To simplify the explanation, let us define a sequence of ma-

trices

Ṽk−1
�
=

[
ṽ1 · · · ṽk−1 vk vk+1 · · · vM

]
and hence

Δk
�
= Gea − ṼkṼ

T
k

It is assumed that

||Δ(Φ)||F ≥ ||Δk−1||F ≥ ||Δk||F , ∀ k ≤ m− 1 (26)

Let {λl,m} be the eigenvalue set of Δm−1 + vmvTm, which

is actually equal to Gea − Ṽm−1Ṽ
T
m−1 + vmvTm. Noting the

symmetry of such a matrix, one has

Δm−1 + vmvTm = EmΛmET
m

where Λm = diag(λm1, · · · , λmL) and Em is the matrix

formed with a set of (orth-normal) eigenvectors of Δm−1 +
vmvTm.

Note

Δm
�
= Gea − ṼmṼ T

m = EmΛmET
m − ṽmṽTm

with ṽm to be determined.

Obviously, if λmk > 0 is the maximal eigenvalue, one

possible choice for ṽm is to take

ṽm =
√
λmkEm(:, k) (27)

as for such a choice, ||Δm||F ≤ ||Δm−1||F holds. Since all

the vectors ṽk in Ṽ should belong to the space spanned with

q1, q2, · · · , qN , one has to use the best projection of ṽm on

this space, which leads to

ṽm =
N∑

k=1

wmkqk (28)

where wmk = qTk ṽm, k = 1, · · · , N as long as with the just

updated Ṽm given by (28), and then produce for m+ 1 until

all the vectors are updated. With such updated Ṽ , then

Φ̃ = Ṽ T ΨT (ΨΨT )−1 (29)

4 Analysis of the Proposed Algorithm

To illustrate the behavior of the proposed algorithm and

compare it with other sensing matrix designs including

Gaussian matrix, Elad’s algorithm 1 [6], DCS’s algorithm

[7] and ZRE’s algorithm [8], we provide a demonstration in

Fig. 1 and Fig. 2. We generate a random dictionary N × L,

and then compute the best projection matrix Φ with the four

method. Both of the proposed algorithm and Elad’s algorith-

m are initialized with a M × N random matrix Φ0 and ran

1000 iterations.

Fig. 1 presents the distribution of the absolute value of

the off-diagonal elements of the corresponding normalized

Gram matrix to the five sensing matrix. As shown, there is

a remarkable shift towards the origin of the histogram after

optimized by our algorithm, with a shorter right tail which

represents the higher values.

Fig. 2 illustrates the convergence of the averaged mutual

coherence μt(A), t = 0.2 for Elad’s algorithm and proposed

algorithm. As can be seen, our algorithm yields a smaller μt

than that by Elad’s algorithm at almost every iteration.

1This algorithm has two parameters γ and t. In our simulations, we set

t = 20%, γ = 0.95, unless there is additional instruction.
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Fig. 1: Histogram of the absolute off-diagonal values of dif-

ferent Gram matrix (N = 25,M = 80 and L = 120).
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0.3

0.31
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Elad’s algorithm with γ=0.55
Elad’s algorithm  with γ=0.75
Elad’s algorithm with γ=0.95
Proposed algorithm

Fig. 2: Value of μt(A), t = 0.2 as a function of the iteration

for Elad’s algorithm and proposed algorithm (N = 25,M =
80 and L = 120).

5 Computer Simulation Results

We now present some numerical experiments to evaluate

the performance of the optimized projections via the sig-

nal recovery accuracy. We choose a dictionary Ψ ∈ �N×L

and synthesize 1000 test signals {yj}1000j=1 by randomly gen-

erating K-sparse L × 1 vectors {sj}1000j=1 , and computing

yj = Ψsj . Then we apply random sensing projection and

designed projections to get measurements with z = Φyj .

OMP method is used to recover the sparse vectors ŝj from

the measurements by approximating the solution of

ŝj = arg min ||s||0 s.t. zj = ΦΨs

Then we reconstruct the signal yj = Ψsj and test the recov-

ery error of the relevant CS system via

er =
1

1000

1000∑
k=1

||yk − ŷk||22/||yk||22, ŷk = Ψŝ

In the first experiment, the size of the CS system is M =
25, N = 80 and L = 120. The sparsity K varies in the

range [1, 7]. The results are depicted in Fig. 3. As seen, our

proposed algorithm can yield a better recovery accuracy than

others for all sparsity levels.

The second experiment is similar to the first one, this time

fixing sparsity K = 4, we vary M from 16 to 40. The results

are shown in Fig. 4. As excepted, the results improves as M

increases for all projections. Once again it is evident that

our proposed sensing matrix outperforms the other sensing

matrices. We should point out that both of the settings of the

two experiments are the same as [6].

1 2 3 4 5 6 7
10−3

10−2

10−1

100

K

er

Random
Elad’s algorithm
DCS’s algorithm
ZRE’s algorithm
Proposed algorithm

Fig. 3: Reconstruction error er as a function of the signal s-

parsity K for M = 25, N = 80, L = 120, with random pro-

jection and optimized projections. Note: a vanishing graph

implies a zero error rate.

16 20 24 28 32 36 40
10−3

10−2

10−1

100

M

Random
Elad’s algorithm
DCS’s algorithm
ZRE’s algorithm
Proposed algorithm

Fig. 4: Reconstruction error er as a function of the num-

ber of measurement M , N = 80, L = 120,K = 4, with

random projection and optimized projections. Note: a van-

ishing graph implies a zero error rate.

6 Conclusions

In this paper, we investigate the problem of projection

matrix design for sensing signals which are sparse in over-

complete dictionaries and a novel algorithm based on SVD

for optimal projection matrix searching is proposed in this

paper. Experiments are given to show that the sensing matrix

obtained using our proposed algorithm outperforms others in

signal reconstruction accuracy.
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