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Abstract 

In most airlines, crew costs are the second largest direct operation cost next to the fuel 
costs. But unlike the fuel costs, a considerable portion of the crew costs can be saved 
through optimized utilization of the internal resources of an airline company. And the 
saving is largely realized through solving the crew pairing problem. This paper aims to 
give a brief review of the fundamental crew pairing problem: its concepts, its models, and 
its algorithms. 
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1. Introduction 

As an important issue of airlines’ operational planning, crew pairing immediately follows fleet 
assignment phase and right precedes crew rostering phase. A pairing is a sequence of connectable 
flight legs, within the same fleet, that starts from and ends at the same crew base, where the crew 
actually lives. A pairing is sometimes called an itinerary for the crew assigned to this journey. It 
typically spans from one to five days. To create tasks for crew members, the planners of an airline 
must generate a set of pairings to cover as many flight legs in a planning horizon as possible, with a 
cost as small as possible. For a large airline, the number of the flight legs in a planning horizon can be 
very many, hence the planning of pairings can be highly computationally intensive. Although it is 
possible to model the crew pairing problem as a binary linear programming (BLP) problem if we 
consider all the subsets of the set of the flight legs in a planning horizon, the number of the decision 
variables could easily exceed the capability of the current computing technology. Therefore, people 
rely on more practical methods. The most popular method seems to solve the problem sequentially 
with two phases. The first phase is to generate as many legal pairings as possible. The second phase is 
to select a best subset in the sense of least cost. 

The reason the sequential method could reduce the computational complexity is that although there 
can be 2n subsets of the set of n flight legs in a planning horizon, the number of legal pairings is not 
such many because the formation of a legal pairing must satisfy many constraints. Those constraints 
not only follows the pairing’s definition, but also include union rules, government regulations, and 
contractual agreements. In [1], Andersson et al. listed several main characteristics of the crew pairing 
problem. Those characteristics systematically highlight the structure of crew pairing in both North 
American airlines and European airlines. Also according to [1], a crew pairing problem can be daily, 
weekly, or fully dated. The most common version is the daily problem. The problem is formulated 
upon an assumption that the flight schedule is the same every day. Actually, most published research 
focuses on this version (see [2]). In [3], Anbil et al. provided a pairing example in American Airlines. 
The pairing is built with the daily assumption. 
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As Figure 1.1 shows, a legal pairing is an alternating sequence of events that are mainly divided 
into duties and overnight rests. Each duty period represents a daily task segment that can be 
subdivided into flight leg segments separated by sit connections. Hence duties must be formed before 
pairings. A duty can become a pairing if it starts from and ends at the same city. In United States, the 
length of a duty is largely determined by Federal Aviation Regulations (FAR). However, the length can 
vary from airline to airline. The Federal law only requires that a pilot cannot fly more than eight hours 
within a 24-hour period, and he/she must also be able to rest for eight hours in the same time span. A 
sit connection during a duty period mainly consists of the waiting time of the crew for changing planes 
on to the next flight leg. Finally, an overnight rest (or layover) is a rest period between two 
consecutive duties. If the overnight rest happens away from the home base of the crew, the airline 
must pay for their hotel expenses and additional compensations. 

Crew pairing problem usually has two objectives. One is to cover as many flight legs in a planning 
horizon as possible. The other is to minimize the total cost associated with the constructed pairings. 
Note that a more general statement of the first objective is to cover as many important flight legs in a 
planning horizon as possible. The importance can be quantified with profits, or market values. The rest 
of this paper is organized as follows. We first introduce several formulations of the crew pairing 
problem; we then give a brief review of the optimization methods for the crew pairing problem; finally 
we present a concrete modeling example in American Airlines. 
 
2. Models 

Currently, all published methods separate the problem of generating legal pairings from the main 
problem (see [1, 2, 3, 4, 5, 6]). As we have mentioned earlier, one advantage of doing so is to reduce 
the number of decision variables (hence the computational complexity of the main problem). 
Therefore, our review of the models is based the availability of a set of legal pairings and their explicit 
costs. Also, by the definition of pairing, the crew pairing problem is decomposed by fleet type. Hence 
we only focus on the flight legs that are carried by one fleet type. No mater what a crew pairing model 

 

Figure 1.1. A typical pairing with such attributes as duty period, sits within duty periods, 

overnight rests, and sign-in/sign-out times 
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is, the crew capacity of each fleet at each home base must be respected. 
If the crew pairing problem is treated as a multiobjective programming problem, then a bi-objective 

binary linear programming model can be proposed (by author of this paper) as a revision of the one in 
[7]. It is stated as follows. 
 
Sets 

F = Set of flights 
P = Set of legal pairings 
K = Set of crew home base cities 

Indices 
i = Flight index 
j = Pairing index 
k = Crew home base index 

Parameters 
vi = Value of flight i 
cj = Cost of pairing j 
aij = indicator that whether flight i is covered by pairing j (aij = 1 ⇔ “yes”; aij = 1 ⇔ “no”) 
hkj = indicator that whether home base city for pairing j is city k (hkj = 1 ⇔ “yes”; hkj = 1 ⇔ “no”) 
bk = crew capacity at home base city k 

Decision variables 
 
 
 
 
 
Model 

Max ∑
∈

⋅
Fi

ii yv  

Min ∑
∈

⋅
Pj

jj xc  

Subject to 

yi ≤∑
∈

⋅
Pj

jij xa ≤ yi⋅|P| for all i ∈ F 

∑
∈

⋅
Pj

jkj xh ≤ bk for all k ∈ K 

 
In model (2.1-2.4), objective function (2.1) is to maximize the total value of the selected pairings. 

Objective function (2.2) is to minimize the total cost of the selected pairings. Constraint set (2.3) is to 
ensure that for any i ∈ F, when flight i is covered, yi = 1; otherwise, yi = 0. Constraint set (2.4) is to 
respect the crew capacity at each home base city. 
  Multiobjective integer programming is a relatively new research area. Essentially, currently known 

xj = 
1 if pairing j is selected 
0 otherwise 

yi = 
1 if flight i is covered 
0 otherwise 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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methods can be reduced to those that are designed to solve single objective integer programming 
problems. One typical method is to change the multiobjective programming model into its constrained 
version. For example, we can predetermine a threshold value, say v > 0, for objective (2.1) such that 
the following constraint 

∑
∈

⋅
Fi

ii yv ≥ v 

is brought in to replace the objective (2.1). since∑
∈

⋅
Fi

ii yv ≤ ∑
∈Fi

iv , we have that if v =∑
∈Fi

iv and the 

constrained version (2.2-2.5) still has feasible solution, then it is possible to cover all the flight legs. In 
fact, under this circumstance, constraint set (2.3) becomes 

∑
∈

⋅
Pj

jij xa ≥ 1 for all i ∈ F, 

which are exactly set covering constraints. This constraint set functions as same as another set of set 
covering constraints in [1]. Note that set covering constraints allow a flight to be overcovered, when 
that happens, a team of crew is transported as passengers. One advantage of such operation is that the 
crew resources could be utilized more flexibly, but transporting crew only incurs costs without adding 
flying credits to the crew, hence this operation is unpopular with the crew itself. In general, most 
airlines prefer partitioning type of solutions. That is to replace Constraint (2.5) with 

∑
∈

⋅
Pj

jij xa = 1 for all i ∈ F, 

Hence, as long as the set covering constraints can be satisfied, the set partitioning constraints are 
preferred. 
  In [1, 8], some consideration is also given to the workload of the crew in each home base city. Both 
Andersson et al. and Medard et al. proposed a constraint set that involves the limit on the required 
workload for each airline base. To mathematically express these constraints, additional parameters are 
defined as follows: 
  bkj = Workload of pairing j with home base city k, 

bupper_k = Upper limit on the required workload for home base city k, 
blower_k = Lower limit on the required workload for home base city k. 

In practice, workload limit is a more popular measure of the crew capacity of a home base city 
because the workloads of pairings vary from one to another. According to [1, 8], the set of crew 
capacity constraints can be reformulated, to replace Constraint set (2.4), as 

∑
∈

⋅
Pj

jkj xb ≤ bupper_k for all k ∈ K. 

Note that Constraint set (2.7) only deals with upper limits, while the crew pairing model in [7] also 
deals with lower limits. However, the model in [7] considers the minimum number of crew members 
to be used at each home base city. More practically, the constraint set that involves the lower limit on 
the crew capacity of each home base city can be stated as 

∑
∈

⋅
Pj

jkj xb ≥ blower_k for all k ∈ K. 

To introduce lower limits is based on the consideration of balancing the workloads among the home 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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bases. However, to determine proper lower limits is very technical and tedious. 
To conclude this section, we remark that the solution to the crew pairing problem is subject to flight 

schedules, the estimate of pairing costs, and the crew capacities. Most of time, all flight legs can be 
covered, hence the crew pairing model becomes set partition problem with crew capacity constraints. 
But what if the requirement for total covering yields no feasible solution? Hence, it usually needs an 
iterative procedure and feedback system to find a proper pairing solution. That is, the solution is sent 
to planners of fleet assignment, aircraft routing, and roster building for evaluation. Adjustments in all 
planning phases might be needed until a mutually agreement is reached. From this perspective, we can 
see that to be able to find a pairing solution quickly is not only preferred but also required. 
 
3. Algorithms 
3.1 Methods for Pairing Generation 

Without a set of candidate legal pairings, all the modeling techniques mentioned in section 2 make 
no sense. Hence, a method for generating legal pairings is crucial if the crew pairing problem is to be 
well solved. As we mentioned earlier, there can be 2n subsets of the set of n flight legs in a planning 
horizon. Hence total generation of all legal pairings is only possible for small problems. For large 
problems, generation must be restricted to a limited part of the problem, or to a partial selection of all 
possible legal pairings. 

If an old solution to the crew pairing problem is available, then pairing generation can work in the 
first scenario to improve the solution by generating all possible legal pairings based on all the flight 
legs that appear in the old pairing solution. It’s easy to observe that a new pairing solution based on 
selecting from the new set of legal pairings is at least no worse than the old one. Also, this new 
solution, which contains a set of “promising” legal pairings, can be maintained for later use. The logic 
is as simple as utilizing previous efforts to reduce repeated search. In next round of pairing generation, 
each old pairing is checked for feasibility under the current setting. Those that are still feasible will 
join the newly generated legal pairings to form the current pool of candidates. Example of system 
using this approach includes the TRIP system (see [3]), which had ever been used American Airlines 
and Continental Airlines, the TPACS system (see [9]) , which had been used by United Airlines, and 
ALLPS system (see [9]), that had been used by Northwest Airlines and USAir. Although such 
approach is favored by its efficiency, it is pretty much a local method since it only focuses on a small 
number of flight legs. Hence this approach is most often used for short planning horizon and small 
geographical area. 
  In more broader decision environment, pairing generation in the second scenario is favored. Note 
that in the first scenario, it is possible to select an optimal subset from the pool of candidate pairings 
since the size of the pool is within the capability of current integer programming algorithm and 
computer technology. In the second scenario, however, the number of all possible legal pairings can be 
astronomical since there can be very many flight legs. A well-established theoretical result is that the 
selection problem, which is formulated as an integer programming either of set covering type, or of set 
partition type is NP-complete (see [10]). Hence to reduce the number of legal pairings in the candidate 
pool is a must. Current state-of-art pairing generators are equipped with some heuristic rules to 
identify promising pairings. Those rule includes but not restrict to limiting the number of times a flight 
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leg is used in pairings, limiting the connection time, limiting the number of duty periods etc. Currently 
known systems that are built on pairing generation in the second scenario include CPOS system (see 
[11]), which is jointly developed by IBM and Sabre group, Carmen Crew Pairing system (see [12]), 
which is developed by Jeppesen Company, and RALPH system (see [13]), which is another Carmen 
system. Some documented reports of implementation include CPOS in American Airlines and US air, 
the Carmen Crew Pairing system in Northwest Airlines and Delta Airlines, and RALPH system in 
Delta Airlines etc. 

A central procedure in pairing generation is path enumeration. A pairing generator can use forward, 
backward, or interior enumeration. Which version to use is determined by the selection of the 
so-called seed legs. If a seed leg with departure at some home base city is selected, then a forward 
enumeration is initiated. If a seed leg with arrival at some home base city is selected, then a backward 
enumeration is initiated. If a seed leg with both departure and arrival away from any home base city is 
selected, then an interior enumeration is initiated. An enumeration process is a tree growing process, 
the root of the tree is the seed flight leg. The tree grows unidirectinally or bidirectionaly, subject to the 
pairing generation rules. Once a directed cycle that passes the root is formed, then a legal pairing is 
generated. A pairing generator can starts from many seed legs, deterministically or randomly. Pairing 
generation can also proceed parallely in parallel computing environment. No matter what a pairing 
generation algorithm is, book keeping and duplicate detection is required. To conclude this section, we 
list an illustrating example (shown in Figure 3.1.1) provided in [9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

As Figure 3.1.1 shows, a legal pairing consists of a flight leg (# 223) that departs at 9:00am from 
DRD and arrives at 10:39 am in DEN, a layover between day 1 and day 2, a flight leg (# 293) that 
departs at 14:00pm from DEN and arrives at 15:10pm in LAX, a flight leg (# 766) that departs at 
16:00pm from LAX and arrives at 19:12pm in DEN, a layover between day 2 and day 3, and a flight 
leg (# 228) that departs at 11:00am from DEN and arrives at 14:23pm in ORD. 
 
3.2 Methods for Pairing Selection 

The methods for the pairing selection problem are roughly divided into two classes: exact 
algorithms and heuristic algorithms. Due to the many applications of the set covering and set 

(a) A partial view of flight table 

Figure 3.1.1. A example that a legal pairing (in (b)) is generated from a given flight table (in (a)) 

(b) A legal pairing that spans 3 days 
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partitioning problems a large number of papers have treated these problems and many algorithms have 
been proposed. We only focus on the main ideas. 

Most exact algorithms for the set covering or set partitioning problem are based on branch-and- 
Bound procedures. Lower bounds are usually calculated by solving the continuous relaxation version. 
But Lagrangian relaxation may also be used. Upper bounds are usually calculated by using heuristics. 
Considerably many computational experiments show that the gap between the optimal objective value 
of the continuous relaxation version and the optimal objective value of the integer programming is 
very small. Small problems often have integer solutions to the associated relaxation versions, but there 
may have a gap of up to a few percent. Large problems rarely have integer solutions to the 
corresponding relaxation versions, but the gap is always very small. Of the 11 problems with more 
than 100 constraints considered in [14] the largest gap was 0.7%. In a study of over 100 large 
problems from several European airlines, the gap was almost always less than 0.5% and for the largest 
problems (more than one million non-zeros in the coefficient matrix) the typical gap was 0.1% (see 
[15]). Branching on single variables is generally very inefficient. In [16], some success in using the 
“follow-on” branching strategy proposed in [17] was reported. 

Very recently, Anbil et al. reported some advances in crew pairing with CPOS system (see [18]). 
CPOS uses a combined linear programming and integer programming approach (LP/IP) based on a set 
partitioning formulation where the rows are flights and the columns are pairings. The problem is to 
select the least cost partition from a pool of candidate pairings. CPOS first solves the LP using a 
method called Sprint pioneered at IBM and based on core solvers in OSL. It then employs a branching 
rule based on how flights connect in the LP solution in order to obtain the integer solution. A key IBM 
innovation concerns the generation of a very good starting pool of candidate pairings for the LP/IP 
approach. Here a column generator produces pairings based on approximate LP duals from a new IBM 
subgradient method called the Volume algorithm. Computational experiences show that the Volume 
duals are much better seeds for column generation than LP duals, and are also much easier to compute. 
Additionally, the final Volume duals provide an advanced starting basis for the LP/IP approach. 

Many heuristics have been proposed. One possibility is to use a Branch-and-Bound based method 
but to stop before proven optimality. The simplest implementation of this idea is to fix the largest 
fractional xj value from the LP solution to 1. This eliminates the constraints covered by this variable 
and all other variables covering these constraints. The procedure is applied until the remaining 
problem is of manageable size. In [16], reasonable results for small problems were reported. The 
approach is essentially a partial evaluation of the branching tree and it works with any branching 
strategy. The difficulty of the LP can also be avoided by attacking the problem from the dual side. A 
natural way to do this is by Lagrangian relaxation, which works by moving hard constraints into the 
objective function and punishing the objective if the constraints are not satisfied. Lagrangian 
relaxation techniques nowadays form an important family of methods in combinatorial optimization 
and have been proven to be effective both practically and theoretically. In [19], Fisher provided a 
systematic analysis of the Lagrangian relaxation techniques. The analysis forms the basis of many 
subsequent researches. For the crew pairing problem, the so-called Lagrange heuristics (see [10]) are 
also applied quite often. One report can be found in [20]. We conclude this section by remarking that 
today, with an advanced crew pairing system like CPOS or Carmen, pairing optimization from the 
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largest airlines in the world is not a challenge any more. Clients of Carmen system reported (see [21]) 
in 2005 that they could solve up to 25,000 dated flights, directly from scratch. Daily solutions with 
1,500 flights are not a problem. 
 
4. A Case Study 

In this section, we go through the crew pairing process by a simple example provided by American 
Airlines. In this example, a partial flight table is translated into a time space network shown as Figure 
4.1(a). A view via directed graph is shown as Figure 4.1 (b). The connection relation is shown in Table 
4.2. It’s easy to enumerate all possible legal pairings from this small set of flight legs. Figure 4.3 
shows how 4 legal pairings are generated. With the search method illustrated through Figure 4.3, we 
can generate all the legal pairings. They are listed in Table 4.4. Each pairing is associated with a cost 
calculated by American Airlines. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.2. Feasible flight connections 
Flight Connectable flights 
101 203, 204, 211, 212 
109 211, 212 
203 406, 407 
204 305, 308, 310 
211  
212  
305 407 
308 109 
310 211, 212 
402 203, 204, 211, 212 
406 308, 310 
407 109 

 
 

Space

Time

MIA

CHI

CHR

DFW

(101)

(402)

(203)
(204)

(406)

(305)

(407)

(308)

(310)

(109)

(211)

(212)

 

(a) A partial view of time-space flight network 
MIA

CHI

CHR
DFW

(101)

(402)

(203)
(204)

(305)

(406)

(407)

(308)

(310)

(109)

(211)

(212)

(b) A partial view of directed graph 

Figure 4.1. A collection of flight legs for crew pairing 
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Table 4.4. Possible pairings and associated costs 
Index Decision variables Pairing Cost (in hundred dollars) 

1 x1 101-203-406-308 2900 
2 x2 101-203-407 2700 
3 x3 101-204-305-407 2600 
4 x4 101-204-308 3000 
5 x5 203-406-310 2600 
6 x6 203-407-109 3150 
7 x7 204-305-407-109 2550 
8 x8 204-308-109 2500 
9 x9 305-407-109-212 2600 

10 x10 308-109-212 2050 
11 x11 402-204-305 2400 
12 x12 402-204-310-211 3600 
13 x13 406-308-109-211 2550 
14 x14 406-310-211 2650 
15 x15 407-109-211 2350 

 
 

Now, given the data, we are ready to set up a pairing selection model. Since there is no workload 
information, we first consider whether a partitioning solution can be found. If the answer is “yes”, 
then each flight leg is covered by exactly one pairing. We aim to find such a solution with minimum 
cost. The model is given below: 
 
Min 2900x1 + 2700x2 + 2600x3 + 3000x4 + 2600x5 + 3150x6 + 2550x7 + 2500x8 + 2600x9 +  

2050x10 + 2400x11 + 3600x12 + 2550x13 + 2650x14 + 2350x15 
Subject to 

x1 + x2 + x3 + x4 = 1 (cover flight 101) 
x6 + x7 + x8 + x9 + x10+ x13 + x15 = 1 (cover flight 109) 
x1 + x2 + x5 + x6 = 1 (cover flight 203) 
x3 + x4 + x7 + x8 + x11 + x12 = 1 (cover flight 204) 

101
MIA-CHI

203

204

211

212

406

407

305 407

308

310
211

212CHI-DFW

DFW-CHR
CHR-MIA

DFW-MIA

CHR-CHI

CHI-CHR CHR-DFW DFW-MIA

308

310
211

212

CHR-CHI

CHR-MIA

Figure 4.3. Four legal pairings generated by the seed leg 101 
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x12 + x13 + x14 + x15 = 1 (cover flight 211) 
x9 + x10 = 1 (cover flight 212) 
x3 + x7 + x9 + x11 = 1 (cover flight 305) 
x1 + x4 + x8 + x10 + x13 = 1 (cover flight 308) 
x5 + x12 + x14 = 1 (cover flight 310) 
x11 + x12 = 1 (cover flight 402) 
x1 + x5 + x13 + x14 = 1 (cover flight 406) 
x2 + x3 + x6 + x7 + x9 + x15 = 1 (cover flight 407) 
x1, x2, …, x15 ∈ {0, 1} 

 
An optimal solution given by Lindo is x1

* = 1, x9
* = 1, x12

* = 1, and xj
* = 0 for j = 2, 3, 4, 5, 6, 7, 8, 

10, 11, 13, 14, 15. Hence the selected pairings are 
 
Pairing 1: 101-203-406-308 with cost $290000 and home base MIA 
Pairing 9: 305-407-109-212 with cost $260000 and home base CHR 
Pairing 12: 402-204-310-211 with cost $360000 and home base DFW 
 
With a total cost $910000. We can see that as long there is one crew team in each of the three home 
bases: MIA, CHR, and DFW, then this solution is executable. 
 
5. Future Discussions 

So far, we have reviewed the most fundamental versions of crew pairing problem. The case study 
provided a concrete example for understanding how a crew pairing problem might be solved. However, 
there is much more to say about crew pairing problem. 

Airline operations are also facing never-ending irregular situations or disruptions. A variety of 
events such as sever weather occurrences, aircraft mechanical failures, air traffic control problems and 
crew unavailability etc will affect the execution of the published flight schedules. The impact of the 
disruptions is significant. The cost arises from every stage of the airline resource planning and 
scheduling: work needs to be done to adjust timetables, aircrafts need to be redeployed, pairings need 
to be reconstructed, and rosters need to be updated accordingly. The perturbations come continuously 
and pass through the entire airline operation system very quickly. Statistics had shown that most 
airlines have delay rates around 20% and cancellation rates around 3%, the cost implication is in 
millions or tens of millions dollars annually, depending on the size of the airline (see [22]). 

Recovery is the process reacting to a disruption: it returns an airline to its original schedule, at the 
minimum cost, as soon as possible. Optimal recovery decisions are hard to determine since the 
disruptions come stochastically in real-time fashion and have extensive influences. In old practices, 
most airlines make recovery decisions manually with little optimization-based decision support (see 
[23]). However, considerable researches have been done. Some representative work on crew pairing 
repair can be found in [23, 24, 25, 26]. In later review, we will discuss the problem of crew pairing 
under uncertainty. 
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