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Abstract
In the resin transfer molding (RTM) process, locations of

gates and vents are important design parameters that have a
great impact on the resin flow pattern and mold filling time.
The resin flow pattern is crucial to the quality and properties
of the final product. A good resin flow pattern can cover all dry
areas in the mold with liquid resin; whereas, a poor flow
pattern will lead to some dry spots, which directly result in
defects. In this paper, a single gate, multiple vents location
problem for 2-D RTM process design is formulated as an
optimization model. A process performance index is intro-
duced as the objective function to evaluate the flow pattern in
a 2-D RTM process. The authors introduce the concept of
general distance between any two locations within the mold.
To avoid forming dry spots during the process, all potential
vents are determined once a gate is given. A two-phase op-
timization method, called a graph-based two-phase heuris-
tic (GTPH), is used to find the appropriate locations of the
gate and associated vents. The results are compared with
those from other methods such as genetic algorithms.

Keywords: Resin Transfer Molding, Mold Design, Process
Simulation, Optimization Technique, Heuristic Method

Nomenclature
B index set that denotes partition of the

boundary of the mold geometry; its ele-
ment, bi, i � {1, 2, …, m}, denotes center
of the ith triangle in the finite element mesh
of the mold geometry boundary

di,j Euclidean distance between vi and vj

F control volume
k(vi, vj) average principal permeability from vi to vj

k permeability tensor (second order) (for
isotropic case, k  can be replaced by its
principal value, say, k)

l general distance between centers of two
adjacent finite element triangles (adjacent
if and only if a common edge exists)

L length of shortest path from x (gate) to yj

(jth vent)

M simulation that determines the pressure
profile and set of locations for the vents
from the given location and the pres-
sure of the gate

no number of vents
pi(t0) pressure profile against index of tri-

angles of the finite element mesh of the
mold geometry at time t0

P pressure
P∇ pressure gradient

S(x, y, z, t) saturation rate at (x, y, z), which is the
fraction of resin occupancy

µ viscosity of liquid resin
v velocity vector of a small fluid element
V index set that denotes partition of the

mold geometry; its element, vi, i � {1,
2, …, n}, denotes the center of the ith
triangle in the finite element mesh of
the mold geometry

X location of gate
yj location of jth vent

1. Introduction
During the past two decades, widespread interest

in the manufacture of composite parts has increased
due to their light weight, superior properties, and
excellent design flexibility. As a preferred method
for manufacturing structural composite parts, the resin
transfer molding (RTM) process has attracted in-
creased attention because of its relatively low equip-
ment and tooling costs, short cycle times, and ability
to make parts with complex geometry. Although the
RTM technique is still in the developmental stage, it
has tremendous potential to produce consistently
superior, quality components.

The RTM process can be generally divided into
four steps, as shown in Figure 1. In the first step, dry
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reinforcements are cut and/or shaped into preformed
pieces and then placed in a prepared mold cavity.
This is usually called preform loading. After the mold
is closed and clamped tightly, resin is injected into
the mold cavity, where it flows through the reinforce-
ment preform, expelling the air in the cavity and
“wetting out” or impregnating the reinforcement. This
step, which is considered the most critical in the RTM
process, is called mold filling. When excessive resin
begins to flow out of the vent area of the mold, resin
injection is stopped and the curing step begins. Part
curing can take from several minutes to several hours.
When part curing is complete, the component is then
removed from the mold. This final step is called
demolding.

Of the four steps in an RTM process, mold filling
is the most critical step in the process. Among the
various processing parameters, gate and vent loca-
tions are very important as they have a great impact
on mold filling time and the resin flow pattern, thus
directly affecting process efficiency and product
quality. Traditionally, selection of gate and vent lo-
cations in RTM process/mold design is largely based
on the experience of designers and an iterative trial-
and-error process. Clearly, such a procedure is usu-
ally very time consuming and expensive. In the last
decade, many studies had been conducted regard-
ing the use of computer software to simulate the RTM
mold filling process (Jiang et al. 1998; Lin, Hahn,
and Huh 1998; Modi, Simacek, and Advani 2003;
Phelan 1997; Young et al. 1991). With such simula-
tion tools, a virtual experiment can predict pressure

distribution, liquid resin flow front, pos-
sible void formation, and other phenom-
ena of the process. From simulation
results, one can determine ideal design
parameters, such as locations of injection
gates, pressures at injection gates, and
locations of vents. Because these param-
eters are extremely important for minimiz-
ing or even eliminating the voids in the
finished part, a systematic method is
needed to determine at least some of the
parameters. Some representative works
that use optimization techniques in RTM
process design include Yu and Young
(1997); Mathur, Advani, and Fink (1999);
and Luo et al. (2001). These studies ex-
tensively employed genetic algorithms

(GAs) to optimize the arrangement of gates and vents
locations. A major disadvantage of using a genetic
algorithm is the expensive computation due to a con-
siderable number of simulation runs. Gokce, Hsaio,
and Advani (2002) developed a branch-and-bound
method (B&B) and compared their results with en-
hanced GAs. Their method showed promising results.

An optimization model, in general, consists of a
set of decision variables (continuous or discrete),
which represents the controllable parameters of a
process; an objective function (multiobjective func-
tions must be mathematically reduced to a single
objective), which acts as the process performance
index; and a collection of constraints, which indi-
cates if a specific solution is feasible. In this study, a
simulation-based black box optimization method is
employed. Some functions (for example, the objec-
tive function) in the optimization model can only be
evaluated by running RTM simulations. In the model,
the decision variables are: location of the single gate
that is fixed during the process, locations of vents
that are fixed during the process, and the pressure at
the gate that is also fixed during the process.

The objective function is formulated by minimiz-
ing the maximum distance from the single gate to all
vents. Once the location of the gate is given, the
location of every vent can be determined by run-
ning a simulation. This indicates the explicit rela-
tionship among the decision variables. The
constraints identify the general distance between any
two locations within the mold. Because one can de-
termine the locations of vents by the gate location,

 

Step 1: Preform loading  Step 2: Resin injection/mold filling 

Step 3: Curing Step 4:  demold Step 4: Demolding 

Figure 1
RTM Process
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the model here can use unconstrained optimization
techniques.

The region defined by mold geometry is a continu-
ous single connected area. The optimization model is
continuous when determining the location of the gate
and the locations of the vents. However, computer
simulation can only treat a partial differential equa-
tion (PDE) discretely (by discretizing the domains and
boundary conditions). Thus, the decision variables in
a simulation-based optimization model can only lie
in a discrete space. This will definitely lead to combi-
natorial optimization, which is not tractable. In this
study, a directed weighted graph (DWG) is constructed
as the simplified representation of a mold geometry.
To decrease the computational complexity, the gate
location in the optimization model is confined at the
boundary of the mold.

2. Problem Formulation
Let V = {v1, v2, …, vn} be the index set that de-

notes the partition of the mold geometry, where vi, i
� {1, 2, …, n} denotes the center of the ith triangle
in the finite element mesh of the mold geometry. Let
B = {b1, b2, …, bm} � V be the index set that denotes
the partition of the boundary of the mold geometry,
where bi, i � {1, 2, …, m} denotes the center of ith
triangle in the finite element mesh of the mold ge-
ometry boundary.

Let x � B be the location of the gate. Let yj � V (j =
1, 2, …, no) be the locations of vents, where no is the
number of vents.

Let M: (B, R+, R+) → {( R+
− )n, P (V) (power set of

V)} denote the simulation that determines the pres-
sure profile and the set of locations of the vents from
the location and the pressure of the gate at some
time. So, M(x, Px, t0) = p t p t p tn1 0 2 0 0( ) ( ) ( )⎡⎣ ⎤⎦{ , , , ,…

y y yno1 2, , ,…{ }} , where x is the location of the gate; Px

is the pressure fixed at the gate; t0 is the time until
local minima of the pressure profile are isolated;
[p1(t0), p2(t0), …, pn(t0)] denotes the pressure profile
against the index of triangles of the finite element
mesh of the mold geometry at time t0; and

y y yno1 2, , ,…{ }  is the set of isolated locations of local
minimum pressure at time t0. Obviously, y y yno1 2, , ,…{ }
is also the set of locations of the vents.

Let

( ) ( ) ( ) ( )
2
,

0

0 0

, ,
,

i j
i j

i j i j

d
l v v t

k v v P t P t

µ ⋅
=

⋅ −

be the general distance between centers of two adja-
cent finite element triangles (adjacent if and only if
a common edge exists), where µ is the viscosity of
the liquid resin; k(vi, vj) is the average principal per-
meability from vi to vj; and di,j is the Euclidean dis-
tance between vi and vj.

Let ( )
1 2

, , , , ,
si i i jx v v v y  be a directed path from x

(gate) to yj (jth vent) if and only if for each k = 1, 2,
…, s–1, 

1
0

k ki iP P
+

− > .
Let L(x, yj) be the length of shortest path from x

(gate) to yj (jth vent).
The optimization model can be written as:

min , , , max ,
:

f x y y n L x yn o
j n

jo
o

1
1

"( ) = ⋅ ( )( )
= (1)
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M x P t
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L x y

l x v t l v v t

j
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k
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,
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i j
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i j i j

l v v

d

k v v P t P t

for all i j n

=

µ ⋅
⎡ ⎤⋅ −⎣ ⎦
=

(4)

x B V∈ ⊂ (5)

y V j nj o∈ =, , , ,1 2" (6)

3. Algorithm
The model (1)–(6) is a nonlinear resource alloca-

tion problem, which is NP-hard (see Gokce, Hsiao,
and Advani 2002). The model (1)–(6) is a black box
optimization problem because of the constraint (2).
Thus, for efficiency, an efficient heuristic algorithm
is needed to search for satisfactory solutions.

Reeves (1993), Pardalos and Resende (2002), and
Pardalos and Romeijn (2002) categorized “black
box” optimization (discrete or continuous) as opti-
mization problems with the objective function ana-
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lytically unknown. They proposed several general
techniques, including general branch-and-bound,
local search by multi-starts, pattern search by multi-
starts, sequential constructive algorithm, tabu search,
recursive sampling, simulated annealing, and genetic
algorithm. All of these techniques are meta-heuris-
tic, namely, they are independent of problem prop-
erties. Therefore, for the model (1)–(6), all of the
techniques referred to above can be implemented to
obtain a solution heuristically. However, the essen-
tial difficulty is the considerable number of simula-
tion runs required. In the family of combinatorial
black box optimization problems, the number of runs
of simulation grows exponentially with the increase
of feasible solution space, as does the number of
constraints checking. A successful simulation-based
optimization implementation requires an efficient
solution algorithm.

3.1  Simulation-Based Optimization

Simulation-based optimization involves finding
optimal inputs to a process or a system such that the
responses can be optimized. In this case, the simula-
tion takes the role of a process or a system.

Generally, a simulation is built by numerical tech-
niques to approximate (or simulate) a real process
qualitatively and quantitatively. Reasonable assump-
tions are made to simplify the mathematical formu-
lation of the problem of interest such that the
approximate solution can be easily obtained by nu-
merical techniques. Once the simulation can approxi-
mate the real process, it can be combined with
optimization methods to assist optimal design of the
process. Figure 2 characterizes the relation between
optimization and simulation.

3.2  Simulation of RTM Process

The RTM process simulation is based on solving
a time-dependent partial differential equation (PDE)
that describes the liquid resin flow in a porous me-
dium under some initial and boundary conditions. If
the location of the gate and the pressure at the gate
are fixed during the process, the boundary condi-
tion can be viewed as time independent (or steady).

Before the PDE is derived, some basic assump-
tions are made to simplify the mathematical formu-
lation of the liquid resin filling process. The
assumptions include: incompressible liquid resin, no
chemical reaction, negligible inertia effect, negligible

surface tension, isothermal, and no fiber deforma-
tion. If the thickness of the part is much smaller than
the size of the surface, the simulation model can be
reduced to 2-D. With these assumptions, Darcy’s law
[Eq. (7)] can replace momentum equations in gen-
eral Navier-Stokes equations for a small element of
fluid, as shown in Figure 3 (Young et al. 1991).

k
v P= ⋅∇

µ
(7)

 Locations of gate and vents 
Pressure at gate 

RTM simulation 

Performance index of 
flow pattern 

Better? 

No 

Heuristically 
optimal solution 

Optimization 
algorithm 

Figure 2
Schematic of Simulation-Based RTM

Process Design Optimization

Figure 3
Darcy’s Law

 d 

P1 
P2 

k(x ,y 

µ 
d

ppk
v 21 −⋅=

µ

k(x, y, z)
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where v  is the velocity vector of small fluid ele-
ment at (x, y, z, t), ∇P  is the pressure gradient at (x,
y, z, t), k  is the permeability tensor (second order) at
(x, y, z) (for isotropic case, k  can be replaced by its
principal value, say, k), and µ is the viscosity of fluid,
which can be viewed as a constant for a specific
liquid resin.

The filling process is a time-dependent process.
When considering the process as single-phase flow,
a filling rate at (x, y, z) is defined as: F(x, y, z, t) (�
[0, 1] ) : F(x, y, z, t) = 0 if the control volume at (x, y,
z) is empty; F(x, y, z, t) = 1 if the control volume at
(x, y, z) is fully filled. Those control volumes with 0
< F(x, y, z, t) < 1 are viewed as belonging to the flow
front. Then mass conservation can be formulated as:

ε
µ

∂
∂

= ∇ = ∇ ⋅ ⋅∇
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

F

t
v

k
P (8)

where � is a constant. At gate: P (or 
∂
∂
P

n
) is given; at

mold boundary: 
∂
∂
P

n
 = 0; beyond the flow front: P =

0. The filling process ends with F = 1 throughout the
mold geometry.

When considering the process as two-phase flow,
a saturation rate at (x, y, z) is defined as S(x, y, z, t),
which is the fraction of resin occupancy. The mass
conservation can be similarly formulated as:

α
µ

∂
∂

= ∇ = ∇ ⋅ ⋅∇
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

S

t
v

k
P (9)

where � is a constant. Those control volumes with
saturation close to some threshold are viewed as the
flow front. At the gate: P (or 

∂
∂
P

n
) is given; at mold

boundary: 
∂
∂
P

n
 = 0; beyond the flow front: P = P0.

The filling process ends with S > some threshold
throughout the mold geometry.

Both Eqs. (8) and (9) have the form:

( ) ∂ ( )
∂

= ∇ ⋅ ⋅∇
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟t

k
P

µ (10)

In the isotropic case, Eq. (10) can be reduced to:

( ) ∂ ( )
∂

= ∇ ⋅ ⋅∇⎛
⎝
⎜

⎞
⎠
⎟t

k
P

µ (11)

Generally, the coefficient k/µ has an order of mag-
nitude of about 10–5. This will make the filling pro-
cess simulation run very slowly when dealing with a
large mold geometry. A method of accelerating the
virtual filling process is to take advantage of a simi-
lar transformation of the governing PDE. From Eq.
(11), multiply a magnifying factor � on both sides; a
new PDE is obtained as:

( ) ∂ ( )
∂

= ∇ ⋅ ⋅∇( )
τ

D P (12)

where D(x, y, z) = � � k(x, y, z)/µ, � = t/�.
Finding the solution of Eq. (11) from time 0→1 is

the same as solving Equation (12) from time 0 → 1/�.
Hence, the virtual process is greatly accelerated when
� >> 1. However, some details will be lost when the
same time step is used.

3.3  Optimization Method

With the simulation accelerated, the next step is
to accelerate the optimization process. The key idea
is to decrease the number of objective function evalu-
ations while maintaining the quality of the heuristi-
cally optimal solution.

3.3.1  Mold Geometry Simplification

In this section, a method of directed weighted
graph (DWG) construction is introduced to approxi-
mately analyze the mold geometry. Once the mold
geometry is simplified, dealing with constraints (3)–
(4) can be greatly simplified. Figures 4 to 9 show six
2-D cases that have been studied.

To simplify the mold geometry, the following heu-
ristic principles are employed:

(1) A mold geometry can be represented by a
graph. Figures 10 to 15 are graph representa-
tions of the mold geometries of Figures 4 to 9,
respectively.

(2) The graph can be transformed into a directed
graph (edges are transformed to arcs), accord-
ing to computed pressure profile (at time t = t0)
at the vertices. The pressure at each vertex can
be treated as its label. The local maximum can
be viewed as the source or the gate; the local
minima can be viewed as sinks or vents.

(3) In constructing the representative directed
graph, the scale of the graph (number of verti-
ces, number of arcs) should be minimized. Oth-
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erwise, the algorithms for finding the shortest
path in the directed positively weighted graph
(Dijkstra algorithm, Bellman-Ford, and Acyclic
SP algorithm) would be extremely
computationally costly (West 2001).

(4) In constructing the weight for each arc of the
directed graph, the length of the arc and the
average permeability along the arc must be
considered.

Suppose v1 and v2 are two adjacent vertices in the
constructed directed graph with pressure label P1 and
P2, respectively. Denote (v1, v2) as the arc from v1 to
v2, and c(v1, v2) as the curve of the arc (v1, v2). De-
note d1, 2 as the Euclidean length of c(v1, v2). Then:

2

1

2 2
1,2d x y d

θ

θ θθ
′ ′= + ⋅ θ∫ (13)

Figure 4
Mold Geometry 1

Figure 5
Mold Geometry 2

Figure 6
Mold Geometry 3

Figure 9
Mold Geometry 6

Figure 7
Mold Geometry 4

Figure 8
Mold Geometry 5

Figure 10
Graph Representation for

Mold Geometry 1

Figure 11
Graph Representation for

Mold Geometry 2

Figure 12
Graph Representation for

Mold Geometry 3

Figure 13
Graph Representation for

Mold Geometry 4

Figure 14
Graph Representation for

Mold Geometry 5

Figure 15
Graph Representation for

Mold Geometry 6
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where the integration is on the curve equation of
c(v1, v2) with parameter �, say c(v1, v2) = (x = x(�), y
= y(�):�1 → �2).

The average permeability along the curve of arc
c(v1, v2) is:

( )
( ) ( )( )2

1

2 2

1 2
1,2

,
,

k x y x y d
k v v

d

θ

θ θθ
′ ′θ θ ⋅ + ⋅ θ

=
∫

(14)

The general length of the arc (v1, v2) is:

( ) ( )
2
1,2

1 2
1 2 1 2

,
,

d
l v v

k v v P P

µ ⋅
=

⋅ −
(15)

where µ is the viscosity of the liquid resin.
The direction of the arc is determined by its ver-

tex labels P1 and P2: (v1 → v2) if and only if P1 > P2.
The vertex with only outbound arcs is the source.
Those with only inbound arcs are sinks.

Once the weights and the directions are constructed,
the next step is to find the lengths of the shortest paths
from a presumed source to each of the sinks.

3.3.2  Optimization in Graph

Once a vertex of the constructed DWG is labeled
as a source, one simulation run can determine all of
the sinks. The best candidate algorithm—the Dijkstra
algorithm—for finding the lengths of the shortest path
from the single source to each sink is employed. Back
to the optimization model (1)–(6), the equations in
the set of constraints (3) are redefined in the con-
structed DWG as:

( )
( ) ( ) ( )

1 10 0 0

1

,

min , , , , , ,

1,2, ,

k k s
j

j

i i i i jall paths from xto y k

L x y

l x v t l v v t l v y t

for all j n

+

=

⎡ ⎤+∑ +⎢ ⎥⎣ ⎦
=

(16)

where x, yj � V(G) : set of vertices of constructed
DWG, j = 1, …, n1 (number of sinks).

One time of computing the objective function is
equivalent to one time of calling the Dijkstra algo-
rithm. Because the constructed DWG is much sim-
pler than the original finite element mesh of the mold
geometry, the computational cost of running the
Dijkstra algorithm is largely decreased.

If the single source is not presumed, the optimal
one must be found, which is indicated by the objec-
tive function (1). Because the set of constraints (3)

is redefined in the constructed DWG, the objective
function is accordingly redefined:

( ) ( )( )
1

1
1 1 1:

, , , max ,n j
j n

f x y y n L x y
=

= ⋅ (17)

where x, yj � V(G) : set of vertices of constructed
DWG, j = 1, …, n1 (number of sinks).

However, finding the optimal source in the con-
structed DWG according to objective function (17)
is a problem of global optimization. Every vertex
can be tried to compute the index. This is an ex-
haustive enumeration. Obviously, trying every ver-
tex is not necessary. A heuristic principle is to confine
the candidate source to the boundary of the mold
because a source at the boundary usually generates
less sinks than a source at the interior.

The heuristic method used in this study is called a
graph-based two-phase heuristic (GTPH). In this
heuristic solution algorithm, completing the search
in the vertices at the boundary is finishing the first
phase of the optimization. The second phase is to
refine the search of the optimal source in the arcs
adjacent to the satisfactory source obtained in the
first phase. The first phase is nothing more than a
partial enumeration. The second phase is certainly
the technique of pattern search. After completing the
second phase, a heuristically ideal flow pattern of
one gate versus multiple vents is found. In the next
section, the numerical results will be provided and
analyzed for mold geometries 1 to 6 in detail.

4. Numerical Examples
In this section, each of the six mold geometries is

investigated using the filling process simulation and
numerical optimization. Each case is studied with a
given permeability profile. The pressure at the gate
is set as a constant because the value of the pressure
at the gate mainly affects the speed of the filling pro-
cess other than the flow pattern. The results are shown
in Figures 16 to 21.

5. Discussions
5.1  Effectiveness of Optimization

Figures 22 and 23 show two cases of unoptimized
versus optimized RTM simulation processes. Figure
22 shows two computational results of mold geom-
etry 2. As Figure 22a shows, the gate is arbitrarily
set at the edge of the mold. The computational result
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Figure 18. (c): The heuristically 
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Case 1: Mold Geometry 1

Figure 16a
Near Saturated Pressure Profile of
Heuristically Optimal Flow Pattern

Figure 16b
Source and Sink in Weighted

Directed Graph

Figure 16c
Heuristically Optimal Flow Process

Found After 19 Simulations

Case 2: Mold Geometry 2

Figure 17a
Near Saturated Pressure Profile of
Heuristically Optimal Flow Pattern

Figure 17b
Source and Sink in Weighted

Directed Graph

Figure 17c
Heuristically Optimal Flow Process

Found After 27 Simulations

Case 3: Mold Geometry 3
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Figure 18c
Heuristically Optimal Flow Process

Found After 23 Simulations
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Figure 21a
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Case 5: Mold Geometry 5

Figure 20c
Heuristically Optimal Flow Process

Found After 16 Simulations

Figure 20b
Source and Sink in Weighted

Directed Graph

Figure 20a
Near Saturated Pressure Profile of
Heuristically Optimal Flow Pattern
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Figure 19c
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Found After 14 Simulations

Figure 19b
Source and Sink in Weighted

Directed Graph

Figure 19a
Near Saturated Pressure Profile of
Heuristically Optimal Flow Pattern
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shows three necessary vents. Figure 22b shows the
optimized gate location. There are two necessary
vents and the general distances from gate to the vents
are more uniform.

Looking at mold geometry 6, as Figure 23a shows,
the gate is arbitrarily set at the edge of the mold.
Computational results show two necessary vents.
Figure 23b shows the optimized gate location, re-
quiring only one necessary vent.

The objective function (17) or (1) indicates that:
(1) a single gate with as few necessary vents as pos-
sible is desirable; and (2) the shortest possible gen-
eral distance from the single gate to every necessary
vent is desirable (that is, as little filling time as pos-
sible at a fixed gate pressure). The numerical results
in section 4 strongly support these choices.

5.2  Efficiency of Optimization

Of course, two obvious answers to the question
as to why a heuristic is used are the NP-hardness of
the nonlinear combinatorial optimization model and
the computational cost of the objective function
evaluations (runs of simulation). For computer-aided
decision making in manufacturing, “quick and dirty”
algorithms produce better results than technically de-
tailed algorithms that may have better chance to find
an exactly optimal solution. One reason for this is
that an exact optimal solution is only exactly opti-
mal to the model that describes the corresponding
process. In the case that the model can only describe
the process with some degree of approximation, the
“optimal” solution may not be actually optimal.
Hence, technically detailed algorithms that need huge
numbers of function evaluations are not necessary
due to their time inefficiency and pseudo-optimality.
Besides, decision makers are more likely to seek some
improvements over current practices. At this point,
heuristic algorithms that find satisfactory solutions
with as few computational efforts as possible would
be more beneficial.

Because two meta-heuristic methods, genetic al-
gorithms (GAs) and branch-and-bound (B&B)
search, have been used extensively in the field of
optimization for computer-aided manufacturing such
as RTM, Gokce, Hsiao, and Advani (2002) compare
the numbers of function evaluations of exhaustive
search, GAs, and B&B. Several studies employed
basic GAs to optimize the flow front to minimize the
potential dry areas (Jiang, Zhang, and Wang 2002;
Luo et al. 2001; Mathur, Advani, and Fink 1999; Yu
and Young 1997). For comparison, some results are
listed in Table 1. It can be seen that the methods that
analyze the mold geometry best can lead to fewer
simulations. The reason is very simple: more knowl-
edge on the feasible solution space means less ran-
domness in searching for better solutions, thus less
waste of computational efforts.

Also, numerical experiments show that the simi-
larity analysis in section 3.2 helps to decrease the
overall CPU time for one simulation. However, a
balance between the acceleration and loss of filling
process detail is required. Detailed research on this
will be developed in future studies.

6. Conclusions
In this paper, an optimization model was devel-

oped for RTM process design with one gate and
multiple vents. The model was solved using a graph-
based two-phase heuristic method introduced by the
authors. Through numerical examples, the authors
illustrate that the proposed method is more efficient
than the existing algorithms reported in the litera-
ture for solving similar problems. The model can
handle cases of multiple vents. In addition, the model
can be extended for solving multiple gates and mul-
tiple vents location problems for RTM process de-
sign, which could be treated as the problem of
post-solution processing of the one gate and mul-
tiple vents location problem. This optimization model

 

 

  

 

 

 

Figure 22a
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One Gate with Three
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Table 1
Comparison of Computational Efficiency

Average Number of
Algorithm Simulations Required

Exhaustive Search > 800
Basic GAs > 200
Enhanced GAs > 150
B&B 25~100
GTPH 20~50

and solution algorithm can also be extended for simi-
lar process design applications of other processes
such as injection molding where simulations are also
involved for optimization. These applications will
be the subject of future work.
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