

A Note on the Connection between the Primal-Dual
and the A* Algorithm

Xugang Ye, Johns Hopkins University, USA

Shih-Ping Han, Johns Hopkins University, USA

Anhua Lin, Middle Tennessee State University, USA

ABSTRACT

The primal-dual algorithm for linear programming is very effective for solving network flow
problems. For the method to work, an initial feasible solution to the dual is required. In this paper,
we show that, for the shortest path problem in a positively weighted graph equipped with a
consistent heuristic function, the primal-dual algorithm will become the well-known A* algorithm
if a special initial feasible solution to the dual is chosen. We also show how the improvements of
the dual objective are related to the A* iterations.

Keywords: shortest path; primal-dual; A* algorithm

INTRODUCTION

The primal-dual algorithm (Dantzig et al.,
1956; Bertsimas & Tsitsiklis, 1997;
Papadimitriou & Steiglitz, 1998) for linear
programming is very effective for solving
network flow problems. Despite the name,
the method that we discuss in this paper is
not to be confused with the currently
well-known primal-dual interior methods.
The latter were originated by Karmarkar’s
seminal paper (Karmarkar, 1984) and they
enjoy polynomial time-complexity for
solving general linear programming problems
(Wright, 1997) and have been generalized for
some convex conic optimization problems
such as second-order cone programming and
semidefinite programming (Boyd &
Vandenberghe, 2004). The primal-dual
algorithm discussed in this paper starts from

an initial dual feasible solution and iteratively
improves the solution until a primal feasible
solution, determined by the current dual
solution, is found such that the pair satisfies
the complementary slackness conditions
(Bertsimas & Tsitsiklis, 1997). In this paper,
we consider the primal-dual algorithm for the
shortest path problem in a positively
weighted graph equipped with extra
information and study the consequence of
choosing a proper initial feasible solution to
the dual.

The key point of this paper is to utilize
the extra information, or heuristic in the
language of the field of artificial intelligence,
of the graph to construct an initial feasible
solution to the dual. We show that the
well-known A* algorithm (Hart et al., 1968;
Hart et al., 1972; Nilsson, 1980; Pearl, 1984)
can be derived. This derivation actually goes

directly from the primal-dual algorithm to the
A* algorithm. Furthermore, we show how the
improvements of the dual objective are
related to the A* iterations.

This paper is organized as follows. We
first set up the problem domain and introduce
the A* algorithm and the primal-dual
algorithm. We then use the heuristic to
construct an initial feasible solution to the
dual and propose a best-first search (Pearl,
1984) version of the primal-dual algorithm.
We show that this version of the primal-dual
algorithm behaves essentially as same as the
A* algorithm that uses the same heuristic.
Finally, we provide additional discussions.

BACKGROUND

We consider a directed, positively weighted
simple graph denoted as G = (V, A, W, δ, b),
where V is the set of nodes, A is the set of
arcs, W: A → R is the weight function, δ > 0
is a constant such that δ ≤ W(a) < +∞ for all a
∈ A, and finally b is a constant integer such
that 0 < b < |V| and |{v | (u, v) ∈ A or (v, u) ∈
A}| ≤ b for all u ∈ V. Suppose we want to
find a shortest s-t (directed) path in G, where
s ∈ V is a specified starting node and t ∈ V is
a specified terminal node. Further suppose
that there exists a heuristic function h: V→ R
such that h(v) ≥ 0 for all v ∈ V, h(t) = 0, and
W(u, v) + h(v) ≥ h(u) for all (u, v) ∈ A. h is
called consistent heuristic. According to
Hart et al. (1968), Hart et al.(1972), Nilsson
(1980), and Pearl (1984), the A* algorithm
that uses such h is complete, that is, it can
find a shortest s-t path in G as long as there
exists an s-t path in G. The algorithm can be
stated as follows. It searches from s to t.

The A* Algorithm

Notations:
h: heuristic
O: Open list
E: Closed list

d: distance label
f: node selection key
pred: predecessor

Steps:
Given G, s, t, and h
Step 1. Set O = {s}, d(s) = 0, and E = φ.
Step 2. If O = φ and t ∉ E, then stop (there is

no s-t path); otherwise, continue.
Step 3. Find u =

Ov∈
minarg f(v) = d(v) + h(v).

Set O = O \ {u} and E = E ∪{u}. If t
∈ E, then stop (a shortest s-t path is
found); otherwise, continue.

Step 4. For each node v ∈ V such that (u, v) ∈
A and v ∉ E,
if v ∉ O, then

set O = O ∪{v}, d(v) = d(u) + W(u,
v), and pred(v) = u;

otherwise,
if d(v) > d(u) + W(u, v), then

set d(v) = d(u) + W(u, v) and
pred(v) = u.

Go to Step 2.

In particular, when h = 0, the A*
algorithm stated above reduces to the
Dijkstra’s algorithm (Dijkstra, 1959; Ahuja et
al., 1993; Papadimitriou & Steiglitz, 1998).
For convenience, for any two nodes u ∈ V
and v ∈ V, let dist(u, v) denote the distance
from u to v in G. That is, if there is no u-v
path in G, we define dist(u, v) = +∞;
otherwise, we define dist(u, v) to be the
length of a shortest u-v path in G. According
to Hart et al. (1968) and Pearl (1984), a
central property, called strong optimality, of
the A* algorithm stated above is d(u) = dist(s,
u) when u ∈ E. If G is a large and sparse
finite graph in the sense that b << |V|, then
the algorithm can be efficiently implemented
by storing G in the form of adjacency lists
(Cormen et al., 2001) and maintaining the
Open list O as a binary heap, or pairing heap,
or Fibonacci heap (Ahuja et al., 1993;
Cormen et al., 2001). For example, using a

binary heap to maintain O yields a total
number of operations bounded by
O(|Efinal|⋅b⋅log2|Omax|) upon successful
termination, where Efinal is the final Closed
list, Omax is the Open list of the largest size
during the iterations, and “O” stands for the
“big O” notation. In the worst case, this
bound is just O(|A|⋅log2|V|), which is the
worst-case time-complexity of the Dijkstra’s
algorithm for the single-source shortest path
problem using the binary heap
implementation. The actual running time of
the A* algorithm, however, is determined by
dist(s, t), h, and the data structure in
implementation. One important result in the
A* literature says that the better the heuristic
function h, the smaller the size of Efinal. We
leave this to the discussions in the later
sections.

Given a consistent heuristic h, we can
define a new weight function Wh such that
Wh(u, v) = W(u, v) + h(v) – h(u) for all (u, v)
∈ A. This change of weights results in a new
graph Gh = (V, A, Wh, δ, b). It has been
known from Ahuja et al. (1993) that running
the Dijkstra’s algorithm to find a shortest s-t
path in Gh is equivalent to running the A*
algorithm stated above to find a shortest s-t
path in G if the two algorithms apply the
same tie-breaking rule. The equivalence is
due to the fact that the two algorithms
construct identical shortest path tree that is
rooted at s although the distance labels of the
same leaf are distinct. The equivalence tells
that the two algorithms can be derived from
each other.

Now consider modeling the shortest
path problem as linear programming (LP).
For convenience, we define G = (V, A ,
W , δ, b), where A = {(u, v) | (v, u) ∈ A} and
W (u, v) = W(v, u) for all (u, v) ∈ A , that is,
G is formed by reversing the directions of
all the arcs of G. Clearly, to find a shortest s-t
path in G is equivalent to find a shortest t-s
path in G . For each (u, v) ∈ A , let x(u, v)

denote the decision variable. A primal LP
model for finding a shortest t-s path in G is

Min
(,)

(,) (,)
u v A

W u v x u v
∈

⋅∑

Subject to

:(,)

(,)
v u v A

x u v
∈

∑ −
:(,)

(,)
v v u A

x v u
∈

∑

x(u, v) ≥ 0 for all (u, v) ∈ A .

As long as there exists an s-t path in G, it can
be easily shown that a binary optimal
solution to Model (2.1-2.3) exists. In fact,
Model (2.1-2.3) is just to send a unit flow
from a supplier t to a customer s in G with
least cost. The price of sending a unit flow
along any (u, v) ∈ A is W (u, v). One
option is to find a shortest t-s path in G and
send a unit flow along this path. The general
option is to divide the unit flow into pieces.
However, to minimize the cost, each piece
must be sent along a shortest t-s path in G .
This backward version of the primal LP
model has a very nice dual, which can be
expressed only with respect to G. In order to
show this, we can first write down the dual of
Model (2.1-2.3) with respect to G . It is

Max π(t) − π(s)
Subject to
π(u) − π(v) ≤W (u, v)

for all (u, v) ∈ A ,

where for each v ∈ V, π(v) is the decision
variable, which is also known as the potential
of v. Note that for each (u, v) ∈ A , (v, u) ∈
A and vice versa. And also note that W (u, v)
= W(v, u). Hence Constraint (2.5) can be
rewritten as

(P)

(2.1)

(2.2)

(2.3)

(D)
(2.5)

(2.4)

1 if u = t;
−1 if u = s;
0 for all u ∈ V \ {s, t},

=

π(u) − π(v) ≤ W(v, u) for all (v, u) ∈ A.

By exchanging the arguments u and v, we can
further rewrite (2.6) into

π(v) − π(u) ≤ W(u, v) for all (u, v) ∈ A.

Constraint (2.7) says that for each (u, v) ∈ A,
a triangle inequality relative to s holds as the
following Figure 1 shows. Hence if the
primal is the model of searching from t to s
inG , then the dual is the model of searching
from s to t in G. Conversely, if the primal is
the model of searching from s to t in G, then
the dual is the model of searching from t to s
inG .

An obvious advantage of (D) is that a
feasible solution is easy to find. At least, π =
0 is one. The key idea of the primal-dual
algorithm for the shortest path problem,
illustrated in Papadimitriou & Steiglitz
(1998), is to start from a feasible solution π
to (D), search for a feasible solution x to (P)
such that for each (u, v) ∈ A, x(u, v) = 0
whenever W(u, v) − π(v) + π(u) > 0. If such x
is found, then a shortest s-t path in G can be
found. In fact, such x corresponds to an s-t
path on which for each arc (u, v), the equality
W(u, v) − π(v) + π(u) = 0 holds. If such x
cannot be found, then some procedure is
needed to update π such that Constraint (2.7)
is still satisfied and Objective (2.4) is
improved. An important feature of the
primal-dual algorithm is that any equality in

Constraint (2.7) still holds after π is updated.
Another important feature is that after π is
updated, one strict inequality in Constraint
(2.7) may become equality. The primal-dual
algorithm keeps attempting to construct an s-t
path in G by using the arcs that correspond to
the equalities in Constraint (2.7). According
to Papadimitriou & Steiglitz (1998), given
the initial feasible solution π = 0 to (D), the
primal-dual algorithm behaves essentially as
same as the Dijkstra’s algorithm that searches
from s to t in G. Hence the Dijkstra’s
algorithm can be derived from the
primal-dual algorithm.

The two known results show that the A*
algorithm with consistent heuristic h can be
derived from the primal-dual algorithm. But
the derivation needs the Dijkstra’s algorithm
as the bridge. It also involves the change of
the weight function. In this paper we show
that if we use h to construct an initial feasible
solution to (D), then applying the primal-dual
algorithm directly leads to the A* algorithm
that searches from s to t in G.

DERIVATION

The key point of our derivation is to choose
π(0) = − h as the initial feasible solution to (D).
To justify the dual feasibility of π(0), we
notice, by the consistency of h, that W(u, v) +
h(v) ≥ h(u) for all (u, v) ∈ A. Hence W(u, v) −
π(0)(v) ≥ −π(0)(u) for all (u, v) ∈ A. The
inequality can be rewritten as π(0)(v) − π(0)(u)
≤ W(u, v), which is exactly what the dual
feasibility requires.

A nice property of (D) is that it does not
require its solution to be nonnegative.
Although π(0) = − h ≤ 0, what really matters is
π(0)(t) − π(0)(s) = − h(t) + h(s) = h(s) ≥ 0. This
means π(0) = − h is a better initial feasible
solution to (D) than π(0) = 0. But we still need
to justify the validity of π(0) = − h. That is, we
still need to show that the primal-dual
algorithm that starts from the solution π(0) =

(2.6)

(2.7)

s t

u

v
π(v)

π(u)
W(u, v)

Figure 1: Triangle inequality relative to s for arc
(u, v) in G

−h to (D) can find a shortest s-t path in G as
long as there exists an s-t path in G. It
suffices to show the equivalence between the
primal-dual algorithm that starts from − h and
the A* algorithm that uses h. We now give
the description of the best-first search version
of the primal-dual algorithm that starts from
− h as follows:

Algorithm 1
Notations:
h: heuristic
O: Open list
E: Closed list
π : potential
f1: node selection key
pred: predecessor
θ: potential increment
Φ: cumulative potential increase

Steps:
Given G, s, t, and h
Step 1. Set Φ = 0. Set O = {s}, π(s) = −h(s),

pred(s) = s, and E = φ. Set W(s, s) = 0.
Step 2. If O = φ and t ∉ E, then stop (there is

no s-t path); otherwise, continue.
Step 3. Find u = arg min

v O∈
f1(v) = W(pred(v), v)

− π(v) + π(pred(v)). Set θ =
W(pred(u), u) − π(u) + π(pred(u)). Set
Φ = Φ + θ. Set O = O \ {u} and E = E
∪{u}. Set π(u) = −h(u) + Φ. If t ∈ E,
then stop (a shortest s-t path is found);
otherwise, continue.

Step 4. For each v ∈ O, set π(v) = −h(v) + Φ.
Step 5. For each v ∈ V such that (u, v) ∈ A

and v ∉ E,
if v ∉ O, then

set O = O ∪{v}, pred(v) = u, and
π(v) = −h(v) + Φ;

otherwise,
if W(pred(v), v) + π(pred(v)) > W(u,
v) + π(u), then

set pred(v) = u.
Go to Step 2.

For theoretical convenience, right after
Step 5, for all v ∈ V \ (E∪O), we define π(v)
= −h(v) + Φ. We can show that Algorithm 1,
just like the classical version (Papadimitriou
& Steiglitz, 1998) of the primal-dual
algorithm, maintains the dual feasibility
throughout.

Proposition 1. The dual feasibility stated as
Constraint (2.7) is maintained when running
Algorithm 1.
Proof. The proof is inductive. The base case
is upon the completion of the first iteration.
At this moment, π = π(0), it’s trivially true.
Suppose right before the k-th iteration (k > 1),
the potential of any v ∈ V is π(v) and π
satisfies the dual feasibility. We need to show
that right after the k-th iteration, the dual
feasibility is still maintained. Right before the
k-th iteration, let [E, O] denote the E-O cut,
which is the set of arcs from E to O. We only
need to show that the node selection rule in
Step 3 of Algorithm 1 is equivalent to finding
an arc (u, v) ∈ [E, O] such that W(u, v) − π(v)
+ π(u) is the minimum. In fact,

(,) [,]
min

u v E O∈
[W(u, v) − π(v) + π(u)]

= min
v O∈

(,) [,]

min
u E

u v E O
∈
∈

[W(u, v) − π(v) + π(u)]

= min
v O∈

(,) [,]

min [(,) ()] ()
u E

u v E O

W u v u vπ π
∈
∈

⎡ ⎤⎡ ⎤
⎢ ⎥+ −⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

= min
v O∈

[W(pred(v), v) + π(pred(v)) − π(v)].

Hence, the node selection rule in Step 3 of
Algorithm 1 is equivalent to the arc selection
rule in the classical version of the primal-dual
algorithm. Note that the later one guarantees
the satisfaction of the dual feasibility right
after the k-th iteration, therefore, the
proposition is true. Q.E.D.

From Algorithm 1 we can see that the
potentials of the nodes that have entered the
Closed list E become permanent.

Furthermore, we can show that the potential
difference between any u ∈ E and s is
actually the length of the shortest s-u path in
G.

Proposition 2. After each iteration of
Algorithm 1, π(u) − π(s) = dist(s, u) for any
node u ∈ E.
Proof. When node u enters E, an s-u pointer
path, say P: v1 (= s) ~ v2 ~ … ~ vk (= u), is
determined. Denote L(P) as the length of P.
Note that π(v2) = W(v1, v2) + π(v1), …, π(vk)
= W(vk-1, vk) + π(vk-1). By telescoping, we
have π(vk) = L(P) + π(v1), i.e. π(u) − π(s) =
L(P). Since there is an s-u path in G, there
must be a shortest s-u path in G. This is
because any s-u path in G with length no
longer than L(P) has only finite number of
arcs, hence the number of s-u paths in G with
length no longer than L(P) is finite. Let
P : 1v (= s) ~ 2v ~ … ~ kv (= u) be a shortest
s-u path in G and denote L(P) as the length
of P . By Proposition 1, Algorithm 1
maintains the dual feasibility stated as
Constraint (2.7). Hence π(2v) ≤ W(1v , 2v) +
π(1v), …, π(kv) ≤ W(1kv − , kv) + π(1kv −). By
telescoping, we have π(kv) ≤ L(P) + π(1v),
i.e. π(u) − π(s) ≤ L(P). The two arguments
jointly imply that P is in fact a shortest s-u
path and π(u) − π(s) = dist(s, u). Q.E.D.

We now show the equivalence between
Algorithm 1 and the A* algorithm we listed
at the beginning.

Proposition 3. Under the same tie-breaking
rule, Algorithm 1 is equivalent to the A*
algorithm that uses h, searching from s to t.
Proof. The proof is inductive. We need to
show that right after each same iteration, the
two algorithms have the same Open list and
Closed list, and for each node in the Open list,
the two algorithms assign the same
predecessor in the Closed list. The base case

is upon the completion of the first iteration of
the two algorithms, respectively. Note that in
the base case, s is the only node “closed” by
the two algorithms. Hence the base case is
trivially true. Suppose (inductive hypothesis)
right before the k-th iteration (k > 1) of the
two algorithms, the claim above is true. We
now show that the claim still holds right after
the k-th iteration.

Firstly, we need to show that the node
selection rule in Step 3 of Algorithm 1 is
equivalent to the node selection rule in the
A* algorithm. Consider the moment
Algorithm 1 is about to enter its Step 3. At
this moment, (arbitrarily) consider a node v ∈
O. Note that v must have a predecessor, say u
∈ E. The selection key of v is W(u, v) − π(v)
+ π(u). Note that

W(u, v) − π(v) + π(u)
= W(u, v) − (−h(v) + Φ) + π(u)
= W(u, v) + π(u) − π(s) + h(v) − Φ + π(s).

By Proposition 2, we have π(u) − π(s) =
dist(s, u). Hence

W(u, v) − π(v) + π(u)
= W(u, v) + dist(s, u) + h(v) − Φ + π(s).

We can see that W(u, v) + dist(s, u) = W(u, v)
+ d(u) = d(v) and d(v) + h(v) = f(v). Also Note
that both Φ and π(s) remain the same when
different nodes in O are considered. Hence by
inductive hypothesis, under the same
tie-breaking rule, Algorithm 1 selects the
same node from O as the A* algorithm.

Secondly, we need to show that, under
the same tie-breaking rule, after a node, say u,
is removed from O and put into E in Step 3 of
Algorithm 1, the predecessor update on any
node v ∈ O is as same as that in the A*
algorithm. In fact, if there is no arc (u, v) ∈ A,
there won’t be any predecessor update on v.
If there is an arc (u, v) ∈ A, then in Algorithm
1, the update is based on comparing
W(pred(v), v) + π(pred(v)) with W(u, v) +

π(u). By Proposition 2 again,

W(pred(v), v) + π(pred(v))
= W(pred(v), v) + π(pred(v)) − π(s) + π(s)
= W(pred(v), v) + dist(s, pred(v)) + π(s)

and

W(u, v) + π(u)
= W(u, v) + π(u) − π(s) + π(s)
= W(u, v) + dist(s, u) + π(s).

Note that π(s) is common, hence the
comparison is actually between W(pred(v), v)
+ dist(s, pred(v)) = d(v) and W(u, v) + dist(s,
u) = W(u, v) + d(u). Under the same
tie-breaking rule, this is just the predecessor
update rule in the A* algorithm.
 Finally, note that if there is a node v ∈ V \
(E∪O) such that (u, v) ∈ A, then Algorithm 1
will put it into O and assign it a predecessor u.
Hence W(pred(v), v) + π(pred(v)) = W(u, v) +
π(u) = W(u, v) + dist(s, u) + π(s), which
implies that v receives a distance label d(v) =
W(u, v) + dist(s, u). This is just what the A*
algorithm does.

Combine the three arguments above, we
have shown that the two algorithms maintain
the same Open list and Closed list, and for
each node in the Open list, they assign the
same predecessor in the Closed list. Q.E.D.

The original version of the primal-dual
in Papadimitriou & Steiglitz (1998) selects an
arc in E-O cut and adds the head of this arc
into E. Other than manipulating the arc
selection, Algorithm 1 manipulates the node
selection in each iteration. Although the A*
algorithm is algorithmically different from
Algorithm 1, they behave the same. Those
equivalences imply that the time-complexity
of the A* algorithm should also be valid for
the primal-dual algorithm. And indeed, the
A* algorithm is a good implementation of the
primal-dual algorithm that starts from π(0) =
−h.

DUALITY

There is a nice property of the A* algorithm
that uses consistent heuristic. For the A*
algorithm we listed at the beginning, suppose
a node u1 is closed no later than another node
u2, then according to Hart et al. (1968) and
Pearl (1984), f(u1) ≤ f(u2). This property is
called monotonicity. By monotonicity, before
t is closed, for any closed node u, f(u) ≤ dist(s,
t). By combining the monotonicity property
of the A* algorithm and Algorithm 1, we
have the following interesting result.

Proposition 4. After each iteration of
Algorithm 1, π(t) − π(s) = max

u E∈
 f(u) ≤ dist(s,

t).
Proof. The inequality directly follows from
the monotonicity property. We now show the
equality. Consider any iteration of Algorithm
1. Suppose node u is selected in Step 3 during
this iteration. Upon the completion of this
iteration, by the proof of Proposition 3, we
see that Φ = f(u) + π(s); also note that π(t) =
− h(t) + Φ = Φ, hence π(t) − π(s) = f(u). By
monotonicity property, upon the completion
of this iteration, f(u) =

'
max
u E∈

f(u ′). Q.E.D.

If we define d(t) = +∞ when t ∉ E∪O,

we then have that π(t) − π(s) ≤ d(t) always
holds. This is because d(t) ≥ dist(s, t) always
hold. The inequality π(t) − π(s) ≤ d(t) can be
viewed as the weak duality. The duality gap
is d(t) − (π(t) − π(s)) = d(t) − max

u E∈
f(u). As

the primal objective, d(t) is monotonically
nonincreasing; as the dual objective, π(t) −
π(s) = max

u E∈
f(u) is monotonically increasing.

By completeness, if there exists an s-t path in
G, then t will eventually be closed. Upon the
moment t is closed, we have max

u E∈
f(u) = f(t)

= d(t). Hence both π(t) − π(s) and d(t) reach
optimal. This means the duality gap is
eliminated. The final equality is just the

so-called strong duality.
Just like the A* algorithm, Algorithm 1

may terminate at its Step 2. Simple analysis
(Pearl, 1984) of the A* algorithm tells that
termination at Step 2 implies there is no s-t
path in G. An explanation within the
primal-dual framework is that when
Algorithm 1 terminates at its Step 2, the
potentials of all nodes outside E can be
arbitrarily raised the same value without
violating Constraint (2.7). But the objective
(2.4) will be unbounded. This just implies the
infeasibility of (P). Just like the A* algorithm,
Algorithm 1 may not terminate at all. This
happens when there is no s-t path in G, but
there are infinitely many nodes that are
connected with s via paths. Under this
circumstance, the objective (2.4) is also
unbounded. We conclude this section with a
numerical example that demonstrates how the
A* iterations improve the dual objective
(2.4).

As shown in Figure 2, a 257×257 2-D
terrain is fractally generated using the
diamond square algorithm ((Miller, 1986) as
the test graph. The graph is a grid with
8-adjacency with blue-color coded nodes as
reachable and red-color coded nodes as
forbidden. The starting node is s = (0, 0) and
the target node is t = (256, 256). The
subfigures (b) and (c) display the search
results associated with π(0) = 0 (the Dijkstra’s
algorithm) and π(0) = −dEu,t (the A*
algorithm), respectively. Both algorithms
were coded with Matlab 7.1 and tested in a
PC with Intel dual core CPU T2050 at 1.6
GHz and 1.0 G RAM. The notation dEu,t
stands for the Euclidean distance with respect
to the target node t, that is, for any reachable
node v, dEu,t(v) denotes the Euclidean
distance between v and t. Obviously, dEu,t is a
consistent heuristic in the A* search. In both
(b) and (c), the green-color coded nodes
represent those that have been closed when t
is closed. The black curves are the shortest s-t
paths that are found by the two algorithms.

The subfigure (d) displays how the dual
objective is iteratively improved by the two
algorithms. It can be seen that, in this
numerical instance, the A* algorithm needs
much less iterations than the Dijkstra’s
algorithm. Although the computational cost
of evaluating the heuristic in the A* search is
involved, substantially less iterations lead to
the much better overall efficiency.

INITIAL FEASIBLE SOLUTIONS

Our analysis so far tells that the selection of
π(0) = – h is sound. Actually, –h defines a
class of initial feasible solutions to (D).
Suppose we have two consistent heuristics h1
and h2. Denote PDi as the primal-dual
algorithm starting from –hi, i = 1, 2. By
completeness, both PD1 and PD2 will
successfully terminate as long as there exists
an s-t path in G. If h1(v) > h2(v) for all v ∈ V \
{t} and there exists an s-t path in G, then A
dominance theorem (Hart et al., 1968;
Nilsson, 1980; Pearl, 1984) on the A*
algorithm says that E1 ⊆ E2, where Ei denotes
the final Closed list of PDi, i = 1, 2.

There are two interesting extreme cases.
One is that π(0) = 0. We have seen, in this case,
that Algorithm 1 reduces to the Dijkstra’s
algorithm. This just indicates the derivation
of the Dijkstra’s algorithm from the
primal-dual algorithm. The other is that π(0)(v)
= − dist(v, t) for all v ∈ V. In this case,
Algorithm 1 only closes the nodes that lie on
a shortest s-t path in G, hence the initial
feasible solution to (D) is perfect.

Sometimes, there exits some metric
function H: V×V → R such that H(u, v) ≥ 0
for all u, v ∈ V, H(v, v) = 0 for all v ∈ V, and
W(u, v) + H(v, w) ≥ H(u, w) for all (u, v) ∈ A.
We immediately have a consistent heuristic,
say hH, defined as hH(v) = H(v, t) for all v ∈ V.
Under some condition, we can also find
another consistent heuristic. Suppose we
already have a partial solution that is
represented by a shortest path tree T of G

s

t(a) A fractally generated 2-D terrain

(c) Start from π(0) = −dEu,t

s

t

(b) Start from π(0) = 0

s

t

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
0

50

100

150

200

250

300

350

400

450

Iterations

π(
t)-
π(

s)

π(0) = -dEu,t

π(0) = 0
dist(s, t) = 407.53

(d) Improvements of the Dual Objective

Figure 2: A numerical demonstration that how the A* iterations improve the dual objective. (a): A
257×257 fractally generated 2-D terrain is used as the test graph. The graph has 8-adjacency with
blue-color coded nodes as reachable and red-color coded nodes as forbidden. The starting node is s =
(0, 0) and the target node is t = (256, 256). (b): Start from π(0) = 0, that is, the Dijkstra’s algorithm.
The CPU time is 47.31 sec.. (c): Start from π(0) = −dEu,t, that is, the A* algorithm. The CPU time is
27.42 sec.. (d): Improvements of the dual objective along the iterations of the two algorithms.

rooted at t. Suppose this shortest path tree is
found by the Dijkstra’s algorithm that
searches from t to s in G . Let ET and OT
denote the Closed list and Open list
associated with T. We define

It can be easily shown that hH,T is a consistent
heuristic, and for any v ∈ V, as the two
estimates of dist(v, t), hH,T(v) is at least as
good as hH(v), that is, hH(v) ≤ hH,T(v) ≤ dist(v,
t). The primal-dual algorithm can start from
π(0) = −hH if H is available. The primal-dual
algorithm can also start from π(0) = −hH,T if
both H and T are available. In the case that
both H and T are available, to start from −hH,T
may result in less closed nodes upon closing t
than to start from −hH, but it doesn’t mean

that the former has better efficiency since to
evaluate hH,T by (5.1) is more costly than to
evaluate hH. However, an issue that should be
addressed is that the primal-dual algorithm
that starts from −hH,T may be able to
successfully find a solution earlier than the
moment t is closed. Hence, a different
termination condition might apply. This is
actually related to the bidirectional search
that we will discuss later.

Sometimes there also exists another type
of heuristic h′ such that h′(v) ≥ 0 for all v ∈ V,
h′(s) = 0, and W(u, v) + h′(u) ≥ h′(v) for all (u,
v) ∈ A. h′ is called consistent relative to s. It’s
obvious that π(0) = h′ is a feasible solution to
(D). The corresponding objective value of (D)
is π(0)(t) − π(0)(s) = h′(t) − h′(s) = h′(t) ≥ 0. It
seems that π(0) = h′ is also a better choice of
initial feasible solution to (D) than π(0) = 0,
however, the following simple example
shows that the primal-dual algorithm that
starts from h′ may not terminate at all even if
there exists an s-t path in G.

Figure 3 shows a simple infinite graph.
We want to find a shortest s-t path. When
applying the primal-dual algorithm with π(0)

= {h′(s) = 0, h′(u) = 0, h′(t) = 0, and h′(vi) = i
for i = 1, 2, …} as the initial feasible solution
to (D), the algorithm (Algorithm 1 with

...

s

t

u1

1

1

1

1

1

1

v1

v2

v3

v4

π(0)(s) = 0

π(0)(u) = 0

π(0)(t) = 0

π(0)(v1) = 1

π(0)(v2) = 2

π(0)(v3) = 3

π(0)(v4) = 4

Figure 3: A example that the primal-dual algorithm starting from some π(0) = h′ does not terminate,
where the length of any arc is 1 and the heuristic function h′ is {h′(s) = 0, h′(u) = 0, h′(t) = 0, and
h′(vi) = i for i = 1, 2, …}.

hH,T(v) =

min
TOτ∈

[H(v, τ) + dist(τ, t)]

for all v ∈ V \ ET;

dist(v, t) for all v ∈ ET.

(5.1)

initial node potential function set as this π(0))
will close s at first, then v1, then v2, …. Note
that u will never be closed, let alone t. Hence
the algorithm won’t be able to successfully
terminate. Even if we restrict this graph to be
finite and the algorithm is able to terminate,
the efficiency is bad because it traverses the
wrong way before heading toward the right
way.

BIDIRECTIONAL SEARCH

Although h′ is not a proper choice of the
initial feasible solution to (D) for Algorithm 1
to start from, it can be used for bidirectional
search. Consider the primal LP model with
respect to G, in which for each (u, v) ∈ A, we
still use x(u, v) to denote the decision
variable:

Min
(,)

(,) (,)
u v A

W u v x u v
∈

⋅∑

Subject to

:(,)

(,)
v u v A

x u v
∈

∑ −
:(,)

(,)
v v u A

x v u
∈

∑

=

x(u, v) ≥ 0 for all (u, v) ∈ A.

This forward version of primal LP model
stands for sending a unit flow from a supplier
s to a customer t in G with least cost. It has
the following dual:

Max π(s) − π(t)
Subject to
π(u) − π(v) ≤ W(u, v)

for all (u, v) ∈ A.

Similar analysis can show that the
primal-dual algorithm that uses – h′ as the
initial feasible solution to (D′) is essentially
the A* algorithm that searches from t to s in

G using the heuristic h′. This version of the
primal-dual algorithm is exactly the
backward version of Algorithm 1. If both
algorithms are used, searching toward each
other, then a bidirectional A* search can be
established. For the backward version of
Algorithm 1, let O′, π ′ and pred ′ denote the
corresponding Open list, potential function,
and predecessor function, respectively. When
the two search fronts (Open lists) meet, an s-t
path is found, and its length, denoted as L,
can be expressed as

 L = [W(pred(v), v) + π(pred(v)) − π(s)] +

[W(v, pred ′(v)) + π ′(pred ′(v)) − π ′(t)],

where v ∈ O∪O′ is the meeting node. When
the search continues, a sequence of lengths,
say L1, L2, …, is generated.

Let L = min{L1, L2, …}, which is the
length of the shortest s-t path in G found so
far. Since π(t) − π(s) ≤ dist(s, t) ≤ L and
π ′(s) − π ′(t) ≤ dist(s, t) ≤ L , we have a
termination condition for the bidirectional A*
search, expressed via π and π ′, as

max{π(t) − π(s), π ′(s) − π ′(t)} = L .

This condition is essentially as same as the
one that appears in Pohl (1971). It can
eventually be satisfied.

Again, the bidirectional A* search
reduces to the bidirectional Dijkstra’s search
when h = h′ = 0. An alternative termination
condition, according to Korf & Zhang (2005)
and Proposition 2, that is expressed via π and
π ′, is

min
v O∈

[W(pred(v), v) +π(pred(v)) −π(s)] +

' '
min
v O∈

[W(v′, pred ′(v′)) +π ′(pred ′(v′)) −π ′(t)]

= L ,

which can also eventually be satisfied.

(P′)

(D′)

(6.3)

(6.2) (6.6)

(6.7)

(6.5)

(6.4)

1 if u = s;
−1 if u = t;
0 for all u ∈ V \ {s, t}

(6.1)

CONCLUSION

We have shown that for the shortest path
problem in a positively weighted graph
equipped with a consistent heuristic function,
choosing the initial feasible solution to the
dual in the primal-dual algorithm is
equivalent to choosing the consistent
heuristic in the A* algorithm. Although the
equivalence between the primal-dual
algorithm and the A* algorithm is a known
result, there are still questions to answer. One
is that how the A* iterations relate to the
improvements of the dual objective. Our new
derivation of the equivalence is not only a
direct and simpler way but also answers this
question as stated in Proposition 4. Compared
to the Dijkstra’s algorithm in improving the
dual objective, the A* search enjoys an initial
“leap” of h(s) and the continual role played
by the heuristic h during the iterations.
Moreover, the completeness of the A* search
guarantees that the duality gap can be
eventually eliminated if there exists a
solution.

Through both the theoretical and
numerical investigations, we not only gain a
further understanding of the A* algorithm
from the primal-dual perspective but also like
to pose new questions. For example, it’s still
not quite clear on how the primal-dual and
the bidirectional search relate to each other. A
central issue of the later is to find a good
termination condition. Another issue is how
to alternatively switch from one direction to
the other. Although those two issues have
been extensively studied, the idea of looking
at the questions from the primal-dual
perspective seems to be novel. We suggest a
further investigation as a possible extension
of the work in this paper.

ACKNOWLEDGEMENTS

The authors would like to thank the
editor-in-chief of the journal, Professor John

Wang, and the anonymous reviewers for their
valuable comments and suggestions that
improved the paper significantly.

REFERENCES

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993).
Network flows: Theory, algorithms, and
applications. Englewood Cliffs, NJ: Prentice Hall.

Bertsimas, D., & Tsitsiklis, J. N. (1997).
Introduction to linear optimization. Belmont,
Massachusetts: Athena Scientific.

Boyd, S., & Vandenberghe, L. (2004). Convex
optimization. Cambridge University Press.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., &
Stein, C. (2001). Introduction to algorithms (2nd ed.).
Cambridge MA: the MIT Press.

Dantzig, G. B., Ford, L. R., & Fulkerson, D. R.
(1956). A primal-dual algorithm for linear programs.
In Kuhn, H. W. & Tucker, A. W. (Eds.), Linear
inequalities and related systems (pp. 171 - 181).
Princeton, NJ: Princeton University Press.

Dijkstra, E. W. (1959). A note on two problems in
connection with graphs. Numerical Mathematics, 1,
269 - 271.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1972).
Correction to “A formal basis for the heuristic
determination of minimum cost paths”. SIGART
Newsletter, 37, 28 - 29.

Hart, P. E., Nilsson, N. J., & Rapheal, B. (1968). A
formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions of System
Sciences and Cybernetics, SSC-4, 2(July), 100 -
107.

Karmarkar, N. (1984). A new polynomial-time
algorithm for linear programming. Combinatorica,
4, 373 - 395.

Korf, R. E., & Zhang, W. (2005). Frontier search.
Journal of the Association for Computing
Machinery, 52(5), 715 - 748.

Miller, G. (1986). The definition and rendering of
terrain maps. Computer Graphics, 20(4), 39 - 48.

Nilsson, N. J. (1980). Principles of artificial
intelligence. San Mateo, California: Morgan
Kaufmann.

Papadimitriou, C. H., & Steiglitz, K. (1998).
Combinatorial optimization: Algorithms and
complexity. Dover Publications.

Pearl, J. (1984). Heuristics: Intelligent search
strategies for computer problem solving.
Addison-Wesley.

Pohl, I. (1971). Bidirectional search. In Meltzer, B.,
& Michie, D. (Eds.), Machine intelligence 6 (pp.
127 - 140). New York: American Elsevier.

Wright, S. J. (1997). Primal-dual interior-point
methods. Philadelphia, PA: Society for Industrial
and Applied Mathematics.

