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ABSTRACT 
 
The primal-dual algorithm for linear programming is very effective for solving network flow 
problems. For the method to work, an initial feasible solution to the dual is required. In this paper, 
we show that, for the shortest path problem in a positively weighted graph equipped with a 
consistent heuristic function, the primal-dual algorithm will become the well-known A* algorithm 
if a special initial feasible solution to the dual is chosen. We also show how the improvements of 
the dual objective are related to the A* iterations. 
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INTRODUCTION 
 
The primal-dual algorithm (Dantzig et al., 
1956; Bertsimas & Tsitsiklis, 1997; 
Papadimitriou & Steiglitz, 1998) for linear 
programming is very effective for solving 
network flow problems. Despite the name, 
the method that we discuss in this paper is 
not to be confused with the currently 
well-known primal-dual interior methods. 
The latter were originated by Karmarkar’s 
seminal paper (Karmarkar, 1984) and they 
enjoy polynomial time-complexity for 
solving general linear programming problems 
(Wright, 1997) and have been generalized for 
some convex conic optimization problems 
such as second-order cone programming and 
semidefinite programming (Boyd & 
Vandenberghe, 2004). The primal-dual 
algorithm discussed in this paper starts from 

an initial dual feasible solution and iteratively 
improves the solution until a primal feasible 
solution, determined by the current dual 
solution, is found such that the pair satisfies 
the complementary slackness conditions 
(Bertsimas & Tsitsiklis, 1997). In this paper, 
we consider the primal-dual algorithm for the 
shortest path problem in a positively 
weighted graph equipped with extra 
information and study the consequence of 
choosing a proper initial feasible solution to 
the dual. 

The key point of this paper is to utilize 
the extra information, or heuristic in the 
language of the field of artificial intelligence, 
of the graph to construct an initial feasible 
solution to the dual. We show that the 
well-known A* algorithm (Hart et al., 1968; 
Hart et al., 1972; Nilsson, 1980; Pearl, 1984) 
can be derived. This derivation actually goes 



 

 

directly from the primal-dual algorithm to the 
A* algorithm. Furthermore, we show how the 
improvements of the dual objective are 
related to the A* iterations. 

This paper is organized as follows. We 
first set up the problem domain and introduce 
the A* algorithm and the primal-dual 
algorithm. We then use the heuristic to 
construct an initial feasible solution to the 
dual and propose a best-first search (Pearl, 
1984) version of the primal-dual algorithm. 
We show that this version of the primal-dual 
algorithm behaves essentially as same as the 
A* algorithm that uses the same heuristic. 
Finally, we provide additional discussions. 
 
BACKGROUND 
 
We consider a directed, positively weighted 
simple graph denoted as G = (V, A, W, δ, b), 
where V is the set of nodes, A is the set of 
arcs, W: A → R is the weight function, δ > 0 
is a constant such that δ ≤ W(a) < +∞ for all a 
∈ A, and finally b is a constant integer such 
that 0 < b < |V| and |{v | (u, v) ∈ A or (v, u) ∈ 
A}| ≤ b for all u ∈ V. Suppose we want to 
find a shortest s-t (directed) path in G, where 
s ∈ V is a specified starting node and t ∈ V is 
a specified terminal node. Further suppose 
that there exists a heuristic function h: V→ R 
such that h(v) ≥ 0 for all v ∈ V, h(t) = 0, and 
W(u, v) + h(v) ≥ h(u) for all (u, v) ∈ A. h is 
called consistent heuristic. According to  
Hart et al. (1968), Hart et al.(1972), Nilsson 
(1980), and Pearl (1984), the A* algorithm 
that uses such h is complete, that is, it can 
find a shortest s-t path in G as long as there 
exists an s-t path in G. The algorithm can be 
stated as follows. It searches from s to t. 
 
The A* Algorithm 
 
Notations: 
h: heuristic 
O: Open list 
E: Closed list 

d: distance label 
f: node selection key 
pred: predecessor 
 
Steps: 
Given G, s, t, and h 
Step 1. Set O = {s}, d(s) = 0, and E = φ. 
Step 2. If O = φ and t ∉ E, then stop (there is 

no s-t path); otherwise, continue. 
Step 3. Find u = 

Ov∈
minarg f(v) = d(v) + h(v). 

Set O = O \ {u} and E = E ∪{u}. If t 
∈ E, then stop (a shortest s-t path is 
found); otherwise, continue. 

Step 4. For each node v ∈ V such that (u, v) ∈ 
A and v ∉ E, 
if v ∉ O, then 

set O = O ∪{v}, d(v) = d(u) + W(u, 
v), and pred(v) = u; 

otherwise, 
if d(v) > d(u) + W(u, v), then 

set d(v) = d(u) + W(u, v) and 
pred(v) = u. 

Go to Step 2. 
 

In particular, when h = 0, the A* 
algorithm stated above reduces to the 
Dijkstra’s algorithm (Dijkstra, 1959; Ahuja et 
al., 1993; Papadimitriou & Steiglitz, 1998). 
For convenience, for any two nodes u ∈ V 
and v ∈ V, let dist(u, v) denote the distance 
from u to v in G. That is, if there is no u-v 
path in G, we define dist(u, v) = +∞; 
otherwise, we define dist(u, v) to be the 
length of a shortest u-v path in G. According 
to Hart et al. (1968) and Pearl (1984), a 
central property, called strong optimality, of 
the A* algorithm stated above is d(u) = dist(s, 
u) when u ∈ E. If G is a large and sparse 
finite graph in the sense that b << |V|, then 
the algorithm can be efficiently implemented 
by storing G in the form of adjacency lists 
(Cormen et al., 2001) and maintaining the 
Open list O as a binary heap, or pairing heap, 
or Fibonacci heap (Ahuja et al., 1993; 
Cormen et al., 2001). For example, using a 



 

 

binary heap to maintain O yields a total 
number of operations bounded by 
O(|Efinal|⋅b⋅log2|Omax|) upon successful 
termination, where Efinal is the final Closed 
list, Omax is the Open list of the largest size 
during the iterations, and “O” stands for the 
“big O” notation. In the worst case, this 
bound is just O(|A|⋅log2|V|), which is the 
worst-case time-complexity of the Dijkstra’s 
algorithm for the single-source shortest path 
problem using the binary heap 
implementation. The actual running time of 
the A* algorithm, however, is determined by 
dist(s, t), h, and the data structure in 
implementation. One important result in the 
A* literature says that the better the heuristic 
function h, the smaller the size of Efinal. We 
leave this to the discussions in the later 
sections. 

Given a consistent heuristic h, we can 
define a new weight function Wh such that 
Wh(u, v) = W(u, v) + h(v) – h(u) for all (u, v) 
∈ A. This change of weights results in a new 
graph Gh = (V, A, Wh, δ, b). It has been 
known from Ahuja et al. (1993) that running 
the Dijkstra’s algorithm to find a shortest s-t 
path in Gh is equivalent to running the A* 
algorithm stated above to find a shortest s-t 
path in G if the two algorithms apply the 
same tie-breaking rule. The equivalence is 
due to the fact that the two algorithms 
construct identical shortest path tree that is 
rooted at s although the distance labels of the 
same leaf are distinct. The equivalence tells 
that the two algorithms can be derived from 
each other. 

Now consider modeling the shortest 
path problem as linear programming (LP). 
For convenience, we define G  = (V, A , 
W , δ, b), where A = {(u, v) | (v, u) ∈ A} and 
W (u, v) = W(v, u) for all (u, v) ∈ A , that is, 
G  is formed by reversing the directions of 
all the arcs of G. Clearly, to find a shortest s-t 
path in G is equivalent to find a shortest t-s 
path in G . For each (u, v) ∈ A , let x(u, v) 

denote the decision variable. A primal LP 
model for finding a shortest t-s path in G  is 
 

Min
( , )

( , ) ( , )
u v A

W u v x u v
∈

⋅∑  

Subject to 

:( , )

( , )
v u v A

x u v
∈

∑  −
:( , )

( , )
v v u A

x v u
∈

∑  

 
 
 
 
x(u, v) ≥ 0 for all (u, v) ∈ A . 

 
As long as there exists an s-t path in G, it can 
be easily shown that a binary optimal 
solution to Model (2.1-2.3) exists. In fact, 
Model (2.1-2.3) is just to send a unit flow 
from a supplier t to a customer s in G  with 
least cost. The price of sending a unit flow 
along any (u, v) ∈ A  is W (u, v). One 
option is to find a shortest t-s path in G  and 
send a unit flow along this path. The general 
option is to divide the unit flow into pieces. 
However, to minimize the cost, each piece 
must be sent along a shortest t-s path in G . 
This backward version of the primal LP 
model has a very nice dual, which can be 
expressed only with respect to G. In order to 
show this, we can first write down the dual of 
Model (2.1-2.3) with respect to G . It is 
 

Max π(t) − π(s) 
Subject to 
π(u) − π(v) ≤W (u, v) 

for all (u, v) ∈ A , 
 
where for each v ∈ V, π(v) is the decision 
variable, which is also known as the potential 
of v. Note that for each (u, v) ∈ A , (v, u) ∈ 
A and vice versa. And also note that W (u, v) 
= W(v, u). Hence Constraint (2.5) can be 
rewritten as 
 

(P) 

(2.1) 

(2.2) 

(2.3) 

(D) 
(2.5) 

(2.4) 

1    if u = t; 
−1   if u = s; 
0    for all u ∈ V \ {s, t}, 

= 



 

 

π(u) − π(v) ≤ W(v, u) for all (v, u) ∈ A. 
 
By exchanging the arguments u and v, we can 
further rewrite (2.6) into 
 
π(v) − π(u) ≤ W(u, v) for all (u, v) ∈ A. 
 
Constraint (2.7) says that for each (u, v) ∈ A, 
a triangle inequality relative to s holds as the 
following Figure 1 shows. Hence if the 
primal is the model of searching from t to s 
inG , then the dual is the model of searching 
from s to t in G. Conversely, if the primal is 
the model of searching from s to t in G, then 
the dual is the model of searching from t to s 
inG . 
 
 
 
 
 
 
 
 
 
 
 

An obvious advantage of (D) is that a 
feasible solution is easy to find. At least, π = 
0 is one. The key idea of the primal-dual 
algorithm for the shortest path problem, 
illustrated in Papadimitriou & Steiglitz 
(1998), is to start from a feasible solution π 
to (D), search for a feasible solution x to (P) 
such that for each (u, v) ∈ A, x(u, v) = 0 
whenever W(u, v) − π(v) + π(u) > 0. If such x 
is found, then a shortest s-t path in G can be 
found. In fact, such x corresponds to an s-t 
path on which for each arc (u, v), the equality 
W(u, v) − π(v) + π(u) = 0 holds. If such x 
cannot be found, then some procedure is 
needed to update π such that Constraint (2.7) 
is still satisfied and Objective (2.4) is 
improved. An important feature of the 
primal-dual algorithm is that any equality in 

Constraint (2.7) still holds after π is updated. 
Another important feature is that after π is 
updated, one strict inequality in Constraint 
(2.7) may become equality. The primal-dual 
algorithm keeps attempting to construct an s-t 
path in G by using the arcs that correspond to 
the equalities in Constraint (2.7). According 
to Papadimitriou & Steiglitz (1998), given 
the initial feasible solution π = 0 to (D), the 
primal-dual algorithm behaves essentially as 
same as the Dijkstra’s algorithm that searches 
from s to t in G. Hence the Dijkstra’s 
algorithm can be derived from the 
primal-dual algorithm. 

The two known results show that the A* 
algorithm with consistent heuristic h can be 
derived from the primal-dual algorithm. But 
the derivation needs the Dijkstra’s algorithm 
as the bridge. It also involves the change of 
the weight function. In this paper we show 
that if we use h to construct an initial feasible 
solution to (D), then applying the primal-dual 
algorithm directly leads to the A* algorithm 
that searches from s to t in G. 
 
DERIVATION 
 
The key point of our derivation is to choose 
π(0) = − h as the initial feasible solution to (D). 
To justify the dual feasibility of π(0), we 
notice, by the consistency of h, that W(u, v) + 
h(v) ≥ h(u) for all (u, v) ∈ A. Hence W(u, v) − 
π(0)(v) ≥ −π(0)(u) for all (u, v) ∈ A. The 
inequality can be rewritten as π(0)(v) − π(0)(u) 
≤ W(u, v), which is exactly what the dual 
feasibility requires. 

A nice property of (D) is that it does not 
require its solution to be nonnegative. 
Although π(0) = − h ≤ 0, what really matters is 
π(0)(t) − π(0)(s) = − h(t) + h(s) = h(s) ≥ 0. This 
means π(0) = − h is a better initial feasible 
solution to (D) than π(0) = 0. But we still need 
to justify the validity of π(0) = − h. That is, we 
still need to show that the primal-dual 
algorithm that starts from the solution π(0) = 

(2.6) 

(2.7) 

s t

u

v
π(v)

π(u)
W(u, v)

 

Figure 1: Triangle inequality relative to s for arc 
(u, v) in G 



 

 

−h to (D) can find a shortest s-t path in G as 
long as there exists an s-t path in G. It 
suffices to show the equivalence between the 
primal-dual algorithm that starts from − h and 
the A* algorithm that uses h. We now give 
the description of the best-first search version 
of the primal-dual algorithm that starts from 
− h as follows: 
 
Algorithm 1 
Notations: 
h: heuristic 
O: Open list 
E: Closed list 
π : potential 
f1: node selection key 
pred: predecessor 
θ: potential increment 
Φ: cumulative potential increase 
 
Steps: 
Given G, s, t, and h 
Step 1. Set Φ = 0. Set O = {s}, π(s) = −h(s), 

pred(s) = s, and E = φ. Set W(s, s) = 0. 
Step 2. If O = φ and t ∉ E, then stop (there is 

no s-t path); otherwise, continue. 
Step 3. Find u = arg min

v O∈
f1(v) = W(pred(v), v) 

− π(v) + π(pred(v)). Set θ = 
W(pred(u), u) − π(u) + π(pred(u)). Set 
Φ = Φ + θ. Set O = O \ {u} and E = E 
∪{u}. Set π(u) = −h(u) + Φ. If t ∈ E, 
then stop (a shortest s-t path is found); 
otherwise, continue. 

Step 4. For each v ∈ O, set π(v) = −h(v) + Φ. 
Step 5. For each v ∈ V such that (u, v) ∈ A 

and v ∉ E, 
if v ∉ O, then 

set O = O ∪{v}, pred(v) = u, and 
π(v) = −h(v) + Φ; 

otherwise, 
if W(pred(v), v) + π(pred(v)) > W(u, 
v) + π(u), then 

set pred(v) = u. 
Go to Step 2. 

For theoretical convenience, right after 
Step 5, for all v ∈ V \ (E∪O), we define π(v) 
= −h(v) + Φ. We can show that Algorithm 1, 
just like the classical version (Papadimitriou 
& Steiglitz, 1998) of the primal-dual 
algorithm, maintains the dual feasibility 
throughout. 
 
Proposition 1. The dual feasibility stated as 
Constraint (2.7) is maintained when running 
Algorithm 1. 
Proof. The proof is inductive. The base case 
is upon the completion of the first iteration. 
At this moment, π = π(0), it’s trivially true. 
Suppose right before the k-th iteration (k > 1), 
the potential of any v ∈ V is π(v) and π 
satisfies the dual feasibility. We need to show 
that right after the k-th iteration, the dual 
feasibility is still maintained. Right before the 
k-th iteration, let [E, O] denote the E-O cut, 
which is the set of arcs from E to O. We only 
need to show that the node selection rule in 
Step 3 of Algorithm 1 is equivalent to finding 
an arc (u, v) ∈ [E, O] such that W(u, v) − π(v) 
+ π(u) is the minimum. In fact, 
 

( , ) [ , ]
min

u v E O∈
[W(u, v) − π(v) + π(u)] 

= min
v O∈

( , ) [ , ]

min
u E

u v E O
∈
∈

[W(u, v) − π(v) + π(u)] 

= min
v O∈

( , ) [ , ]

min [ ( , ) ( )] ( )
u E

u v E O

W u v u vπ π
∈
∈
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⎢ ⎥+ −⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 

= min
v O∈

[W(pred(v), v) + π(pred(v)) − π(v)]. 

 
Hence, the node selection rule in Step 3 of 
Algorithm 1 is equivalent to the arc selection 
rule in the classical version of the primal-dual 
algorithm. Note that the later one guarantees 
the satisfaction of the dual feasibility right 
after the k-th iteration, therefore, the 
proposition is true.                Q.E.D. 
 

From Algorithm 1 we can see that the 
potentials of the nodes that have entered the 
Closed list E become permanent. 



 

 

Furthermore, we can show that the potential 
difference between any u ∈ E and s is 
actually the length of the shortest s-u path in 
G. 
 
Proposition 2. After each iteration of 
Algorithm 1, π(u) − π(s) = dist(s, u) for any 
node u ∈ E. 
Proof. When node u enters E, an s-u pointer 
path, say P: v1 (= s) ~ v2 ~ … ~ vk (= u), is 
determined. Denote L(P) as the length of P. 
Note that π(v2) = W(v1, v2) + π(v1), …, π(vk) 
= W(vk-1, vk) + π(vk-1). By telescoping, we 
have π(vk) = L(P) + π(v1), i.e. π(u) − π(s) = 
L(P). Since there is an s-u path in G, there 
must be a shortest s-u path in G. This is 
because any s-u path in G with length no 
longer than L(P) has only finite number of 
arcs, hence the number of s-u paths in G with 
length no longer than L(P) is finite. Let 
P : 1v  (= s) ~ 2v ~ … ~ kv (= u) be a shortest 
s-u path in G and denote L( P ) as the length 
of P . By Proposition 1, Algorithm 1 
maintains the dual feasibility stated as 
Constraint (2.7). Hence π( 2v ) ≤ W( 1v , 2v ) + 
π( 1v ), …, π( kv ) ≤ W( 1kv − , kv ) + π( 1kv − ). By 
telescoping, we have π( kv ) ≤ L( P ) + π( 1v ), 
i.e. π(u) − π(s) ≤ L( P ). The two arguments 
jointly imply that P is in fact a shortest s-u 
path and π(u) − π(s) = dist(s, u).     Q.E.D. 
 

We now show the equivalence between 
Algorithm 1 and the A* algorithm we listed 
at the beginning. 
 
Proposition 3. Under the same tie-breaking 
rule, Algorithm 1 is equivalent to the A* 
algorithm that uses h, searching from s to t. 
Proof. The proof is inductive. We need to 
show that right after each same iteration, the 
two algorithms have the same Open list and 
Closed list, and for each node in the Open list, 
the two algorithms assign the same 
predecessor in the Closed list. The base case 

is upon the completion of the first iteration of 
the two algorithms, respectively. Note that in 
the base case, s is the only node “closed” by 
the two algorithms. Hence the base case is 
trivially true. Suppose (inductive hypothesis) 
right before the k-th iteration (k > 1) of the 
two algorithms, the claim above is true. We 
now show that the claim still holds right after 
the k-th iteration. 

Firstly, we need to show that the node 
selection rule in Step 3 of Algorithm 1 is 
equivalent to the node selection rule in the 
A* algorithm. Consider the moment 
Algorithm 1 is about to enter its Step 3. At 
this moment, (arbitrarily) consider a node v ∈ 
O. Note that v must have a predecessor, say u 
∈ E. The selection key of v is W(u, v) − π(v) 
+ π(u). Note that  
 

W(u, v) − π(v) + π(u)  
= W(u, v) − (−h(v) + Φ) + π(u)  
= W(u, v) + π(u) − π(s) + h(v) − Φ + π(s). 
 
By Proposition 2, we have π(u) − π(s) = 
dist(s, u). Hence 
 

W(u, v) − π(v) + π(u) 
= W(u, v) + dist(s, u) + h(v) − Φ + π(s). 
 
We can see that W(u, v) + dist(s, u) = W(u, v) 
+ d(u) = d(v) and d(v) + h(v) = f(v). Also Note 
that both Φ and π(s) remain the same when 
different nodes in O are considered. Hence by 
inductive hypothesis, under the same 
tie-breaking rule, Algorithm 1 selects the 
same node from O as the A* algorithm. 

Secondly, we need to show that, under 
the same tie-breaking rule, after a node, say u, 
is removed from O and put into E in Step 3 of 
Algorithm 1, the predecessor update on any 
node v ∈ O is as same as that in the A* 
algorithm. In fact, if there is no arc (u, v) ∈ A, 
there won’t be any predecessor update on v. 
If there is an arc (u, v) ∈ A, then in Algorithm 
1, the update is based on comparing 
W(pred(v), v) + π(pred(v)) with W(u, v) + 



 

 

π(u). By Proposition 2 again, 
 

W(pred(v), v) + π(pred(v)) 
= W(pred(v), v) + π(pred(v)) − π(s) + π(s) 
= W(pred(v), v) + dist(s, pred(v)) + π(s) 
 
and 
 

W(u, v) + π(u) 
= W(u, v) + π(u) − π(s) + π(s) 
= W(u, v) + dist(s, u) + π(s). 

 
Note that π(s) is common, hence the 
comparison is actually between W(pred(v), v) 
+ dist(s, pred(v)) = d(v) and W(u, v) + dist(s, 
u) = W(u, v) + d(u). Under the same 
tie-breaking rule, this is just the predecessor 
update rule in the A* algorithm. 
  Finally, note that if there is a node v ∈ V \ 
(E∪O) such that (u, v) ∈ A, then Algorithm 1 
will put it into O and assign it a predecessor u. 
Hence W(pred(v), v) + π(pred(v)) = W(u, v) + 
π(u) = W(u, v) + dist(s, u) + π(s), which 
implies that v receives a distance label d(v) = 
W(u, v) + dist(s, u). This is just what the A* 
algorithm does. 

Combine the three arguments above, we 
have shown that the two algorithms maintain 
the same Open list and Closed list, and for 
each node in the Open list, they assign the 
same predecessor in the Closed list.  Q.E.D. 
 

The original version of the primal-dual 
in Papadimitriou & Steiglitz (1998) selects an 
arc in E-O cut and adds the head of this arc 
into E. Other than manipulating the arc 
selection, Algorithm 1 manipulates the node 
selection in each iteration. Although the A* 
algorithm is algorithmically different from 
Algorithm 1, they behave the same. Those 
equivalences imply that the time-complexity 
of the A* algorithm should also be valid for 
the primal-dual algorithm. And indeed, the 
A* algorithm is a good implementation of the 
primal-dual algorithm that starts from π(0) = 
−h. 

DUALITY 
 
There is a nice property of the A* algorithm 
that uses consistent heuristic. For the A* 
algorithm we listed at the beginning, suppose 
a node u1 is closed no later than another node 
u2, then according to Hart et al. (1968) and 
Pearl (1984), f(u1) ≤ f(u2). This property is 
called monotonicity. By monotonicity, before 
t is closed, for any closed node u, f(u) ≤ dist(s, 
t). By combining the monotonicity property 
of the A* algorithm and Algorithm 1, we 
have the following interesting result. 
 
Proposition 4. After each iteration of 
Algorithm 1, π(t) − π(s) = max

u E∈
 f(u) ≤ dist(s, 

t). 
Proof. The inequality directly follows from 
the monotonicity property. We now show the 
equality. Consider any iteration of Algorithm 
1. Suppose node u is selected in Step 3 during 
this iteration. Upon the completion of this 
iteration, by the proof of Proposition 3, we 
see that Φ = f(u) + π(s); also note that π(t) = 
− h(t) + Φ = Φ, hence π(t) − π(s) = f(u). By 
monotonicity property, upon the completion 
of this iteration, f(u) = 

'
max
u E∈

f(u ′).   Q.E.D. 

 
If we define d(t) = +∞ when t ∉ E∪O, 

we then have that π(t) − π(s) ≤ d(t) always 
holds. This is because d(t) ≥ dist(s, t) always 
hold. The inequality π(t) − π(s) ≤ d(t) can be 
viewed as the weak duality. The duality gap 
is d(t) − (π(t) − π(s)) = d(t) − max

u E∈
f(u). As 

the primal objective, d(t) is monotonically 
nonincreasing; as the dual objective, π(t) − 
π(s) = max

u E∈
f(u) is monotonically increasing. 

By completeness, if there exists an s-t path in 
G, then t will eventually be closed. Upon the 
moment t is closed, we have max

u E∈
f(u) = f(t) 

= d(t). Hence both π(t) − π(s) and d(t) reach 
optimal. This means the duality gap is 
eliminated. The final equality is just the 



 

 

so-called strong duality. 
Just like the A* algorithm, Algorithm 1 

may terminate at its Step 2. Simple analysis 
(Pearl, 1984) of the A* algorithm tells that 
termination at Step 2 implies there is no s-t 
path in G. An explanation within the 
primal-dual framework is that when 
Algorithm 1 terminates at its Step 2, the 
potentials of all nodes outside E can be 
arbitrarily raised the same value without 
violating Constraint (2.7). But the objective 
(2.4) will be unbounded. This just implies the 
infeasibility of (P). Just like the A* algorithm, 
Algorithm 1 may not terminate at all. This 
happens when there is no s-t path in G, but 
there are infinitely many nodes that are 
connected with s via paths. Under this 
circumstance, the objective (2.4) is also 
unbounded. We conclude this section with a 
numerical example that demonstrates how the 
A* iterations improve the dual objective 
(2.4). 

As shown in Figure 2, a 257×257 2-D 
terrain is fractally generated using the 
diamond square algorithm ((Miller, 1986) as 
the test graph. The graph is a grid with 
8-adjacency with blue-color coded nodes as 
reachable and red-color coded nodes as 
forbidden. The starting node is s = (0, 0) and 
the target node is t = (256, 256). The 
subfigures (b) and (c) display the search 
results associated with π(0) = 0 (the Dijkstra’s 
algorithm) and π(0) = −dEu,t (the A* 
algorithm), respectively. Both algorithms 
were coded with Matlab 7.1 and tested in a 
PC with Intel dual core CPU T2050 at 1.6 
GHz and 1.0 G RAM. The notation dEu,t 
stands for the Euclidean distance with respect 
to the target node t, that is, for any reachable 
node v, dEu,t(v) denotes the Euclidean 
distance between v and t. Obviously, dEu,t is a 
consistent heuristic in the A* search. In both 
(b) and (c), the green-color coded nodes 
represent those that have been closed when t 
is closed. The black curves are the shortest s-t 
paths that are found by the two algorithms. 

The subfigure (d) displays how the dual 
objective is iteratively improved by the two 
algorithms. It can be seen that, in this 
numerical instance, the A* algorithm needs 
much less iterations than the Dijkstra’s 
algorithm. Although the computational cost 
of evaluating the heuristic in the A* search is 
involved, substantially less iterations lead to 
the much better overall efficiency. 
 
INITIAL FEASIBLE SOLUTIONS 
 
Our analysis so far tells that the selection of 
π(0) = – h is sound. Actually, –h defines a 
class of initial feasible solutions to (D). 
Suppose we have two consistent heuristics h1 
and h2. Denote PDi as the primal-dual 
algorithm starting from –hi, i = 1, 2. By 
completeness, both PD1 and PD2 will 
successfully terminate as long as there exists 
an s-t path in G. If h1(v) > h2(v) for all v ∈ V \ 
{t} and there exists an s-t path in G, then A 
dominance theorem (Hart et al., 1968; 
Nilsson, 1980; Pearl, 1984) on the A* 
algorithm says that E1 ⊆ E2, where Ei denotes 
the final Closed list of PDi, i = 1, 2. 

There are two interesting extreme cases. 
One is that π(0) = 0. We have seen, in this case, 
that Algorithm 1 reduces to the Dijkstra’s 
algorithm. This just indicates the derivation 
of the Dijkstra’s algorithm from the 
primal-dual algorithm. The other is that π(0)(v) 
= − dist(v, t) for all v ∈ V. In this case, 
Algorithm 1 only closes the nodes that lie on 
a shortest s-t path in G, hence the initial 
feasible solution to (D) is perfect. 

Sometimes, there exits some metric 
function H: V×V → R such that H(u, v) ≥ 0 
for all u, v ∈ V, H(v, v) = 0 for all v ∈ V, and 
W(u, v) + H(v, w) ≥ H(u, w) for all (u, v) ∈ A. 
We immediately have a consistent heuristic, 
say hH, defined as hH(v) = H(v, t) for all v ∈ V. 
Under some condition, we can also find 
another consistent heuristic. Suppose we 
already have a partial solution that is 
represented by a shortest path tree T of G  
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(d)       Improvements of the Dual Objective 

Figure 2: A numerical demonstration that how the A* iterations improve the dual objective. (a): A 
257×257 fractally generated 2-D terrain is used as the test graph. The graph has 8-adjacency with 
blue-color coded nodes as reachable and red-color coded nodes as forbidden. The starting node is s = 
(0, 0) and the target node is t = (256, 256). (b): Start from π(0) = 0, that is, the Dijkstra’s algorithm. 
The CPU time is 47.31 sec.. (c): Start from π(0) = −dEu,t, that is, the A* algorithm. The CPU time is 
27.42 sec.. (d): Improvements of the dual objective along the iterations of the two algorithms. 



 

 

rooted at t. Suppose this shortest path tree is 
found by the Dijkstra’s algorithm that 
searches from t to s in G . Let ET and OT 
denote the Closed list and Open list 
associated with T. We define 
 
 
 
 
 
 
 
 
It can be easily shown that hH,T is a consistent 
heuristic, and for any v ∈ V, as the two 
estimates of dist(v, t), hH,T(v) is at least as 
good as hH(v), that is, hH(v) ≤ hH,T(v) ≤ dist(v, 
t). The primal-dual algorithm can start from 
π(0) = −hH if H is available. The primal-dual 
algorithm can also start from π(0) = −hH,T if 
both H and T are available. In the case that 
both H and T are available, to start from −hH,T 
may result in less closed nodes upon closing t 
than to start from −hH, but it doesn’t mean 

that the former has better efficiency since to 
evaluate hH,T by (5.1) is more costly than to 
evaluate hH. However, an issue that should be 
addressed is that the primal-dual algorithm 
that starts from −hH,T may be able to 
successfully find a solution earlier than the 
moment t is closed. Hence, a different 
termination condition might apply. This is 
actually related to the bidirectional search 
that we will discuss later. 

Sometimes there also exists another type 
of heuristic h′ such that h′(v) ≥ 0 for all v ∈ V, 
h′(s) = 0, and W(u, v) + h′(u) ≥ h′(v) for all (u, 
v) ∈ A. h′ is called consistent relative to s. It’s 
obvious that π(0) = h′ is a feasible solution to 
(D). The corresponding objective value of (D) 
is π(0)(t) − π(0)(s) = h′(t) − h′(s) = h′(t) ≥ 0. It 
seems that π(0) = h′ is also a better choice of 
initial feasible solution to (D) than π(0) = 0, 
however, the following simple example 
shows that the primal-dual algorithm that 
starts from h′ may not terminate at all even if 
there exists an s-t path in G. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 shows a simple infinite graph. 
We want to find a shortest s-t path. When 
applying the primal-dual algorithm with π(0) 

= {h′(s) = 0, h′(u) = 0, h′(t) = 0, and h′(vi) = i 
for i = 1, 2, …} as the initial feasible solution 
to (D), the algorithm (Algorithm 1 with 
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π(0)(s) = 0

π(0)(u) = 0

π(0)(t) = 0

π(0)(v1) = 1

π(0)(v2) = 2

π(0)(v3) = 3

π(0)(v4) = 4

Figure 3: A example that the primal-dual algorithm starting from some π(0) = h′ does not terminate, 
where the length of any arc is 1 and the heuristic function h′ is {h′(s) = 0, h′(u) = 0, h′(t) = 0, and 
h′(vi) = i for i = 1, 2, …}.  

hH,T(v) = 

min
TOτ∈

[H(v, τ) + dist(τ, t)] 

for all v ∈ V \ ET;

dist(v, t)  for all v ∈ ET. 

(5.1) 



 

 

initial node potential function set as this π(0)) 
will close s at first, then v1, then v2, …. Note 
that u will never be closed, let alone t. Hence 
the algorithm won’t be able to successfully 
terminate. Even if we restrict this graph to be 
finite and the algorithm is able to terminate, 
the efficiency is bad because it traverses the 
wrong way before heading toward the right 
way. 
 
BIDIRECTIONAL SEARCH 
 
Although h′ is not a proper choice of the 
initial feasible solution to (D) for Algorithm 1 
to start from, it can be used for bidirectional 
search. Consider the primal LP model with 
respect to G, in which for each (u, v) ∈ A, we 
still use x(u, v) to denote the decision 
variable: 
 

Min 
( , )

( , ) ( , )
u v A

W u v x u v
∈

⋅∑  
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:( , )

( , )
v u v A

x u v
∈

∑ −
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v v u A

x v u
∈

∑  

 
= 

 
 

x(u, v) ≥ 0 for all (u, v) ∈ A. 
 
This forward version of primal LP model 
stands for sending a unit flow from a supplier 
s to a customer t in G with least cost. It has 
the following dual: 
 

Max π(s) − π(t) 
Subject to 
π(u) − π(v) ≤ W(u, v) 

for all (u, v) ∈ A. 
 

Similar analysis can show that the 
primal-dual algorithm that uses – h′ as the 
initial feasible solution to (D′) is essentially 
the A* algorithm that searches from t to s in 

G  using the heuristic h′. This version of the 
primal-dual algorithm is exactly the 
backward version of Algorithm 1. If both 
algorithms are used, searching toward each 
other, then a bidirectional A* search can be 
established. For the backward version of 
Algorithm 1, let O′, π ′ and pred ′ denote the 
corresponding Open list, potential function, 
and predecessor function, respectively. When 
the two search fronts (Open lists) meet, an s-t 
path is found, and its length, denoted as L, 
can be expressed as 
 
 L = [W(pred(v), v) + π(pred(v)) − π(s)] + 

[W(v, pred ′(v)) + π ′(pred ′(v)) − π ′(t)], 
 
where v ∈ O∪O′ is the meeting node. When 
the search continues, a sequence of lengths, 
say L1, L2, …, is generated. 

Let L  = min{L1, L2, …}, which is the 
length of the shortest s-t path in G found so 
far. Since π(t) − π(s) ≤ dist(s, t) ≤ L  and  
π ′(s) − π ′(t) ≤ dist(s, t) ≤ L , we have a 
termination condition for the bidirectional A* 
search, expressed via π and π ′, as 
 
max{π(t) − π(s), π ′(s) − π ′(t)} = L . 
 
This condition is essentially as same as the 
one that appears in Pohl (1971). It can 
eventually be satisfied. 

Again, the bidirectional A* search 
reduces to the bidirectional Dijkstra’s search 
when h = h′ = 0. An alternative termination 
condition, according to Korf & Zhang (2005) 
and Proposition 2, that is expressed via π and 
π ′, is 
 
min
v O∈

[W(pred(v), v) +π(pred(v)) −π(s)] + 

' '
min
v O∈

[W(v′, pred ′(v′)) +π ′(pred ′(v′)) −π ′(t)] 

= L , 
 
which can also eventually be satisfied. 
 

(P′) 

(D′) 

(6.3) 

(6.2) (6.6) 

(6.7) 

(6.5) 

(6.4) 

1    if u = s; 
−1   if u = t; 
0    for all u ∈ V \ {s, t} 

(6.1) 



 

 

CONCLUSION 
 
We have shown that for the shortest path 
problem in a positively weighted graph 
equipped with a consistent heuristic function, 
choosing the initial feasible solution to the 
dual in the primal-dual algorithm is 
equivalent to choosing the consistent 
heuristic in the A* algorithm. Although the 
equivalence between the primal-dual 
algorithm and the A* algorithm is a known 
result, there are still questions to answer. One 
is that how the A* iterations relate to the 
improvements of the dual objective. Our new 
derivation of the equivalence is not only a 
direct and simpler way but also answers this 
question as stated in Proposition 4. Compared 
to the Dijkstra’s algorithm in improving the 
dual objective, the A* search enjoys an initial 
“leap” of h(s) and the continual role played 
by the heuristic h during the iterations. 
Moreover, the completeness of the A* search 
guarantees that the duality gap can be 
eventually eliminated if there exists a 
solution. 

Through both the theoretical and 
numerical investigations, we not only gain a 
further understanding of the A* algorithm 
from the primal-dual perspective but also like 
to pose new questions. For example, it’s still 
not quite clear on how the primal-dual and 
the bidirectional search relate to each other. A 
central issue of the later is to find a good 
termination condition. Another issue is how 
to alternatively switch from one direction to 
the other. Although those two issues have 
been extensively studied, the idea of looking 
at the questions from the primal-dual 
perspective seems to be novel. We suggest a 
further investigation as a possible extension 
of the work in this paper. 
 
ACKNOWLEDGEMENTS 
 
The authors would like to thank the 
editor-in-chief of the journal, Professor John 

Wang, and the anonymous reviewers for their 
valuable comments and suggestions that 
improved the paper significantly. 
 
REFERENCES 
 
Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). 
Network flows: Theory, algorithms, and 
applications. Englewood Cliffs, NJ: Prentice Hall. 
 
Bertsimas, D., & Tsitsiklis, J. N. (1997). 
Introduction to linear optimization. Belmont, 
Massachusetts: Athena Scientific. 
 
Boyd, S., & Vandenberghe, L. (2004). Convex 
optimization. Cambridge University Press. 
 
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & 
Stein, C. (2001). Introduction to algorithms (2nd ed.). 
Cambridge MA: the MIT Press. 
 
Dantzig, G. B., Ford, L. R., & Fulkerson, D. R. 
(1956). A primal-dual algorithm for linear programs. 
In Kuhn, H. W. & Tucker, A. W. (Eds.), Linear 
inequalities and related systems (pp. 171 - 181). 
Princeton, NJ: Princeton University Press. 
 
Dijkstra, E. W. (1959). A note on two problems in 
connection with graphs. Numerical Mathematics, 1, 
269 - 271. 
 
Hart, P. E., Nilsson, N. J., & Raphael, B. (1972). 
Correction to “A formal basis for the heuristic 
determination of minimum cost paths”. SIGART 
Newsletter, 37, 28 - 29. 
 
Hart, P. E., Nilsson, N. J., & Rapheal, B. (1968). A 
formal basis for the heuristic determination of 
minimum cost paths. IEEE Transactions of System 
Sciences and Cybernetics, SSC-4, 2(July), 100 - 
107. 
 
Karmarkar, N. (1984). A new polynomial-time 
algorithm for linear programming. Combinatorica, 
4, 373 - 395. 
 
Korf, R. E., & Zhang, W. (2005). Frontier search. 
Journal of the Association for Computing 
Machinery, 52(5), 715 - 748. 
 
Miller, G. (1986). The definition and rendering of 
terrain maps. Computer Graphics, 20(4), 39 - 48. 



 

 

Nilsson, N. J. (1980). Principles of artificial 
intelligence. San Mateo, California: Morgan 
Kaufmann. 
 
Papadimitriou, C. H., & Steiglitz, K. (1998). 
Combinatorial optimization: Algorithms and 
complexity. Dover Publications. 
 
Pearl, J. (1984). Heuristics: Intelligent search 
strategies for computer problem solving. 
Addison-Wesley. 
 
Pohl, I. (1971). Bidirectional search. In Meltzer, B., 
& Michie, D. (Eds.), Machine intelligence 6 (pp. 
127 - 140). New York: American Elsevier. 
 
Wright, S. J. (1997). Primal-dual interior-point 
methods. Philadelphia, PA: Society for Industrial 
and Applied Mathematics. 




