
Generalized Learning of Neural Network based Semantic

Similarity Models and its Application in Movie Search

Xugang Ye, Zijie Qi, Xinying Song, Xiaodong He, Dan Massey

Microsoft

Bellevue, USA

{xugangye, zijieqi, xinson, xiaohe, danmass}@microsoft.com

Abstract—Modeling text semantic similarity via neural

network approaches has significantly improved performance on

a set of information retrieval tasks in recent studies. However

these neural network based latent semantic models are mostly

trained by using simple user behavior logging data such as

clicked (query, document)-pairs, and all the clicked pairs are

assumed to be uniformly positive examples. Therefore, the

existing method for learning the model parameters does not

differentiate data samples that might reflect different relevance

information. In this paper, we relax this assumption and propose

a new learning method through a generalized loss function to

capture the subtle relevance differences of training samples when

a more granular label structure is available. We have applied it

to the Xbox One’s movie search task where session-based user

behavior information is available and the granular relevance

differences of training samples are derived from the session logs.

Compared with the existing method, our new generalized loss

function has demonstrated superior test performance measured

by several user-engagement metrics. It also yields significant

performance lift when the score computed from our model is

used as a semantic similarity feature in the gradient boosted

decision tree model which is widely used in modern search

engines.

Keywords—neural network; semantic model; loss function;

click logs; movie search

I. INTRODUCTION

Nowadays search engines are heavily relied on for
retrieving relevant information for users, and search engines
that can understand the search intent behind the words of a
query despite language divergence are highly in demand.
However, this presents a great challenge. Unlike term or lexical
matching, which is straightforward and easy to implement,
building a search engine that understands the intent and
contextual meaning of the query is difficult, especially when
the query is short and ambiguous. In order to address this
problem, many latent semantic models have been proposed
during the past decade. Let’s review some of the major
techniques presented in the literature.

A. Latent Semantic Models

Latent Semantic Analysis (LSA) [7][8] is a straightforward
and well-known latent semantic model. It reconstructs the
term-document matrix by using low rank matrix approximation
such that both the terms and the documents can be mapped to a
low dimensional space. However, the mapping is done by a
linear projection. Nonlinear methods include popular topic

models such as the probabilistic latent semantic indexing
(PLSI) [12] and the Latent Dirichlet allocation (LDA) [2], with
each being a generative model and having a strong probability
foundation. PLSI assumes that the document index, which has
a multinomial prior, generates a latent topic and the topic in
turn generates a word. LDA assumes that a word is generated
by a latent topic, and the topic is a sample of a multinomial
distribution that has a Dirichlet prior. By using either PLSI or
LDA, a document’s representation at the topic level can be
computed [11]. One important application of the latent
semantic models is to fulfil the needs of semantic matching for
search engines by calculating the similarity between the
documents at the topic or semantic level. Recently, some
semantic models were proposed for search specifically. For
examples, the coupled probabilistic latent analysis (CPLSA) by
Platt, Toutanova and Yih [17] is an extension of the PLSI, the
Bi-Lingual Topic Model (BLTM) by Gao, Toutanova and Yih
[9] is an extension of the LDA, and both of them can calculate
the query-document similarity at the topic level.

B. Neural Network Models

Another set of latent semantic models are neural network
based. It has been shown that a neural network with multiple
hidden layers can discover even more sophisticated latent
structures than a neural network with a single hidden layer
[1][19]. Therefore, recently a series of latent semantic models
with deep neural network structure have been proposed to
model complex concepts and hidden hierarchical structures
[1][10][13][16][19][20]. The Semantic Hashing method by
Salakhutdinov and Hinton [19] was designed to project a bag-
of-words based term vector to a binary code vector by an auto
encoder that minimizes the reconstruction error. Recently, a
deep Structured Semantic Model (DSSM) was developed by
Huang, He, Gao and Deng [13] to model the semantic
similarity between a query and a document for the task of web
search. More recently, Shen, He, Gao, Deng and Mesnil [20]
extended the DSSM to the convolutional latent semantic model
(CLSM) to capture important contextual information without
making a strong bag-of-words assumption.

Compared with the previous latent semantic models, the
key distinct feature of DSSM and CLSM is that they are task-
specific supervised learning algorithms. Both DSSM and
CLSM were originally designed for web search and they were
trained by using the clicked (query, document)-pairs. On the
contrary, the previous latent semantic models are based on
unsupervised learning and the semantic similarity computed

from any of these models is not learned from the labels. It has
been reported in [13][20] that when used as a single-feature
ranker for web search, both DSSM and CLSM significantly
outperform other latent semantic models such as LSA, PLSI,
BLTM in terms of the NDCG (Normalized Discounted
Cumulative Gain [14]) measurements using human labels.
Although CLSM has higher NDCG values than DSSM, due to
the convolutional neural network structure, the CLSM’s
computational cost in scoring is much higher than DSSM,
which could be a concern for the online search system. Besides
the web search task, DSSM and CLSM can also be applied to a
broader set of applications such as word embedding [21] and
question-answering [22], etc.

C. Loss Function

Despite the superior performance of DSSM and CLSM,
these models treat all the clicked (query, document)-pairs
uniformly as positive examples. Therefore, the current method
for learning the model parameters does not differentiate data
samples that might reflect different relevance information. In
other words, there is no differentiation between two clicked
documents under the same query, with one being more relevant
and the other being less relevant. In this paper, we propose a
generalized loss function that can incorporate the subtle
relevance differences among the documents for learning the
model parameters. Our experimental results have shown that
the new method can significantly improve the ranking results
on the movie search tasks.

Our method requires fine-grained relevance labels. Some
commercial search engines like Bing has already utilized
multi-level relevance information. There are usually two kinds
of resources: human judgments and search logs. The human
labels for web search usually have 5 coarse grained relevance
levels: Perfect, Excellent, Good, Fair, and Bad. When this type
of labels are taken, each category will be converted into an
appropriate number (the more relevant the label represents, the
greater the number is). The labels constructed from the search
logs often take various forms of click-likelihood, which have
numerical values. Although the commercial search engines
have already used fine-grained relevance labels, none of neural
network based latent sematic models has done so. This is the
first study that investigates using fine-grained relevance labels
to improve the neural-network-based latent semantic models.

D. Model Score as Ranking Feature

Since the semantic similarity score computed from a
neural-network-based latent semantic model can be viewed as
a feature, it is worthwhile considering how a commercial
search engine can benefit from this feature. Currently the
LambdaMart algorithm [4], which is an extension of the
LambdaRank algorithm [4], is widely used as a core ranking
algorithm of many commercial search engines including Bing.
The LambdaMart is a gradient boosted decision tree model that
takes as many features as it can and selects the important ones.
Usually, many sophistic features are manually built for the
LambdaMart based on term or lexical matching. An interesting
question is how much improvement there could be if the
semantic similarity score is added as a new feature to the
LambdaMart. Our experimental results have shown that the
semantic similarity score computed from our model not only

outperforms the semantic similarity scores computed from
previous state-of-the-art models such as DSSM, but also
further improves the overall performance of a strong
LambdaMart-based ranker when used as an additional feature.

E. Movie Search

It’s very expensive to obtain high quality human labels on a
large scale. As a result, both DSSM and CLSM for the web
search task were trained from the click-through data and
evaluated using the human labels. Moreover, if there are only a
very limited number of judges, the bias is a serious concern.
Although click signals can easily scale up, they are very noisy.
However, we found that for media search, noise in click
information is easier to handle, and labels can be built from the
click-through data with good quality comparable to human
labels. Therefore, as the first shot, we selected the media search
domain and used movie search logs to experiment on our idea.

We extracted the movie search logs from the Xbox One, a
very popular entertainment platform. The data has an
advantage that each logged query session contains a user ID.
Therefore, we can calculate how many distinct users have
clicked a movie under a query in a period of time and use it as
the label for a (query, movie)-pair. This is an aggregated
number that is robust to noise, easy to scale up and calculate.
Our experiments have shown that the labels generated in this
way are highly consistent with the human labels and they can
be easily built into our generalized loss function. Obviously,
this advantage also widely exists in many other online video
service platforms such as YouTube, Netflix, Amazon Video
and Hulu etc. Therefore, the method for generating labels from
the Xbox One’s search logs can also be used for generating the
same kind of labels for those platforms. We should point out
that our generalized loss function is not limited to the specific
domain of media search. It can be used broadly as long as fine-
grained labels can be built.

F. Organization of the Paper

The rest of the paper is organized as follows. We first
describe our generalized loss function for the neural-network-
based latent semantic models and provide an analysis of its
probability foundation. We then define our model, with the
same architecture as the DSSM model in [13], but it is learned
by minimizing the proposed generalized loss function. We also
describe the corresponding new gradient computation method
and the dimension reduction technique. The reason why we
choose DSSM’s architecture is because it has much lower
computational cost in scoring than CLSM and hence it’s easier
to implement for a commercial search engine. Replacing
CLSM’s loss function will be studied in future work. After
defining two types of evaluation metrics in our experiments,
we present the results of applying our model to the task of
movie search and compare it against existing models on
various benchmarks. In evaluation, we not only introduce the
effectiveness of our model in the single-feature-ranking setting,
but also present the results of adding the semantic similarity
score computed from our model to the LambdaMart as a new
feature. Our model leads to significant improvement in both
settings, which demonstrates the effectiveness of the proposed
method. In the end, we draw the conclusion and suggest future
research directions.

II. OUR MODEL

A. Generalized Loss Function

The main contribution of this work is the generalization of
the loss function for learning the neural network based
semantic similarity models. Extended from the loss function
originally proposed in [13], the generalized loss function takes
into account fine-grained relevance labels and captures the
subtle relevance difference of different data samples. Suppose ���� , ���: 	 = 1,2, … , �� are � ��, �� -pairs such that �� is
clicked under �� . To learn a semantic similarity model, the
DSSM in [13] aims to minimize

 ���Λ� = − ∑ �ln ����|��; Λ������ , (1)

where ����|��; Λ� is the parameterized conditional probability
that document �� is relevant given query �� and Λ denotes the
set of model parameters. Minimizing this loss function is
interpreted as maximizing the joint probability that ���, ���,
…, ��� , ��� are relevant pairs, with the assumption that they
are independent of each other. Note that in the objective
function in (1) “clicked” is treated as “relevant” regardless how
many different people clicked �� under ��. In order to take into
account the various relevance levels reflected by different click
signals for different clicked pairs, we proposed a generalized
loss function. Suppose for each 	, the clicked pair ��� , ��� is
labeled �� , where 0≤ �� ≤ 1 and �� is a probabilistic measure
of the relevance of �� to �� . Our generalized loss function is
expressed as

 �!�Λ�

= − ∑ "�� ln ����|��; Λ� + �1 − ��� ln$1 − ����|�� ; Λ�%&���� (2)

Clearly, when �� = 1 for all 	 , (2) reduces to (1). To
interpret this loss function, imagine that there are ' users. For
the 	-th pair ��� , ���, the relevance probability is ����|��; Λ�.
Suppose relevance leads to click(s), and �� is the portion of the ' users who clicked �� given ��, then the probability that there
are '�� users who click �� under �� is

 (��Λ� =) ''��* ����|��; Λ�+,-$1 − ����|��; Λ�%+.+,-
. (3)

Assuming the clicks are independent of each other, the joint

probability that there are '�� users who click �� under �� for 	 = 1, … , � is

∏ (��Λ����� ∝ ∏ ����|��; Λ�+,-$1 − ����|��; Λ�%+.+,-���� . (4)

By taking the negative natural logarithm of (4), we have

 − ∑ ln (��Λ����� = −'�!�Λ� + Const. (5)

Therefore, minimizing �! in (2) is equivalent to maximizing
the joint probability in (4). And this joint probability takes into
account the probabilistic labels ��, …, ��.

B. Analysis

To illustrate the benefit of generalizing �� in (1) into �! in
(2), let’s consider the test accuracy of the prediction.

Let �56 be a probabilistic prediction vector for a collection of
test cases. Let �6′ be an approximated target vector, and recall �6

is the true target vector. Note that 0≤ ��8 ≤ 1 for all 	. Assume

��8 = 9���� for all 	 , where 9: �0,1� → �0,1� is an
approximation function that satisfies

(i) 9 is monotonically increasing;

(ii) 9�0� = 0, 9�1� = 1, lim,→> 9��� ln � = 0.

The binary labels can be viewed as a special 9 such that 9��� = 1 if � > �∗; 9��� = 0 otherwise, where �∗ is the cut-

off and 0 ≤ �∗ ≤ 1. More generally, the layered labels (e.g.,

“Perfect”, “Excellent”, “Good”, “Fair”, “Bad”) can be viewed

as having multiple cut-offs. By using the concept of Kullback–

Leibler divergence [15] (or KL-distance), we can show how

much accuracy could be lost when �6′ = 9��6� is used to

approximate �6.

We first consider the loss of having prediction �56 when the
true target �6 is given:

 �$�56; �6% = − ∑ ��� ln �� + �1 − ��� ln�1 − ����� . (6)

Note that this loss is random since �56 is random. We further

consider the expectation of this loss, denoted as A"�$�56; �6%&.

Note that

 A"�$�56; �6%&
 = − ∑ ���A�ln ��� + �1 − ���A�ln�1 − ������

 ≥ − ∑ ��� ln A���� + �1 − ��� ln�1 − A�������

 ≥ − ∑ ��� ln �� + �1 − ��� ln�1 − ����� , (7)

where the first “≥” is by Jensen’s inequality and the second
“ ≥ ” is due to the fact that �� ln C + �1 − ��� ln�1 − C� is
maximized over 0 ≤ C ≤ 1 when C = ��. The lower bound can

be reached if and only if �56 equals the constant �6 . This
condition seems to be too strong since no prediction can be
expected to have 100% accuracy. However, the necessary

condition A$�56% = �6 for reaching the lower bound is realistic.

We define a model as consistent if the expected value of its
prediction equals its target.

We’re now ready to show how much accuracy could be lost

when a consistent model generates a prediction �56 of the
approximated target �6′ = 9��6�. By consistency definition, we

have A$�56% = �6′ . We are interested in the quantity

A"D���56||�6�&, which is the expected KL-distance between the

prediction �56 and the true target �6. We have

 A"D���56||�6�&
 = A�− ∑ ���ln �� − ln ���� �
 = A�− ∑ ���ln �� − ln ��8 + ln ��8 − ln ���� �
 = A�− ∑ ���ln �� − ln ��8�� � + A�− ∑ ���ln ��8 − ln ���� �
 = − ∑ A�����ln �� − ln ��8�� + A�D���56||�6′��
 = − ∑ ��8�ln �� − ln ��8�� + A�D���56||�6′��
 = D���6′||�6� + A�D���56||�6′��. (8)

Hence, by the KL-distance measure, predicting �6′ yields
the loss of accuracy that is at least D���6′||�6�. That is to say,
even if the model can learn its target with 100% accuracy such
that the second term vanishes, there is still the first term
remaining that is completely due to the label error. If we can
improve the labels, then we can improve the prediction
independent of the learning model. Back to the benefit of
generalizing �� in (1) into �! in (2), since �� corresponds to the
extreme case that all the clicked pairs are labeled 1, it can be
expected that better labels could be built to obtain better
ranking results.

III. LEARNING MODEL

The learning model is essentially the parameterization
structure of the relevance probability ���|�� for the query �
and document � . As mentioned earlier, we adopted the
structure of the DSSM in [13]. At first, ���|�� is defined as a
normalized exponential of the semantic similarity function
denoted as E��, �� . Then E��, �� is parameterized via two
neural networks, with one for � and the other for �. We can
show that for parameter estimation, the formula for computing
the gradient of �� in (1) only needs slight changes to fit for �!
in (2).

A. Relevance Probability

The softmax form of the parameterized relevance
probability ���|�; Λ� can be expressed as

 ���|�; Λ� = FGH �IJ�K,L;M��
FGH �IJ�K,L;M��N∑ FGH �IJ�K,LO;M��PO∈RS , (9)

where T > 0 is a pre-determined smooth parameter and U. is
the set of all irrelevant documents to be ranked under �. In
practice, for many queries, there are very few or no irrelevant
documents to be ranked, as a result, U. is approximated by
randomly choosing V�≥ 4� unclicked documents under ��.
B. Semantic Similarity

The parameterized semantic similarity function E��, �; Λ�
is defined in the form of the cosine similarity:

 E��, �; Λ� = X6�Y�ZX6�P�
||X6�Y�||∙||X6�P�|| , (10)

where C6�K� = \$�; Λ�K�% and C6�L� =]$�; Λ�L�% are the

semantic vectors of � and � respectively, and Λ�K� and Λ�L� are
parts of parameter set Λ corresponding to � and � respectively.
The two functions \ and] are represented by two neural
networks. For both nets, ^_�ℎ function is used as the activation

function. That is if we denote the a-th layer as �b�c, b!c, …, b�dc �

and the �a + 1�-th layer as �b�cN� , b!cN� , …, b�defcN� �, then for

each 	 = 1, … , �cN�,

 b�cN� = �.FGH).!g-d*
�NFGH$.!g-d% , (11)

where _�c = ∑ hi,�c bic�di�� + h>,�c . Note that the last layers for �

and � are C6�K� and C6�L� respectively. The structure is illustrated
in the following Fig. 1.

Fig. 1. Illustration of the neural network structure for computing E��, �; Λ�.

For both the query q and document d, it maps high dimensional sparse bag-of-

words term vectors into low dimensional dense semantic vectors.

C. Parameter Estimation

We applied the gradient descent method to estimate the
parameters. That is

 Λ�j� = Λ�j.�� − kj∇M��Λ�, (12)

where kj�> 0� is the learning rate and ∇M��Λ� is the gradient
of ��Λ� with respect to Λ. To calculate the gradient of the loss
function in (2), we first express ����|��; Λ� as

 ����|��; Λ� = �
�N∑ FGH).I∆P- *P∈R-S

 , (13)

where ∆L� = E��� , ��; Λ� − E��� , �; Λ�. Then

 ∇M log ����|��; Λ� = − ∑ oL� ∙ ∇M∆L�L∈p-S , (14)

where oL� = .I FGH).I∆P- *
�N∑ FGH).I∆PO- *PO∈R-S

 , and

 ∇M log$1 − ����|��; Λ�% = ∑ �qL� − oL� � ∙ ∇M∆L�L∈p-S , (15)

where qL� = .I FGH).I∆P- *
∑ FGH).I∆PO- *PO∈R-S

 . Therefore,

 ∇M��Λ� = ∑ ∑ "oL� − �1 − ���qL� & ∙ ∇M∆L�L∈p-S
���� . (16)

In the special case that �� = 1 for all 	, this formula reduces
to the same form as (1) used in [13][20].

D. Dimension Reduction

Since the dimension of the sparse bag-of-words term vector
representation of an input text stream can be very high due to a
vast vocabulary size and misspellings, we apply the letter-tri-
gram (LTG) based text stream representation for the purpose of
the dimension reduction [13]. To illustrate the idea, consider
the English text stream “2014 Sci-Fi Movies”. It’s first
converted to “#2014# #sci# #fi# #movies#”, and then broken
into “#20 201 014 14# #sc sci ci# #fi fi# #mo mov ovi vie ies
es#”, which is the final LTG-sequence. If we only include the
26 lower case English letters a-z and the 10 digits 0-9, then the
size of the LTG-dictionary will be 36t + 2 × 36! + 36 =49,284. In general, the size can be expressed as bt + 2 × b! +b, where b is number of valid letters. If the original word based
dictionary has 500k unique words, then the LTG representation
has 10-fold reduction in dimensionality. However it is not easy
to look up a word in such a mechanism. More storage may be
used in order to facilitate the look-up of any LTG-word as we

C6�K�

⋯

Λ�K�

C6�L�

⋯

Λ�L�

E��, �; Λ�

� �

used in our work. Consider the following hash function of the
LTG-word XYZ

 ℎ�C�y� = C�b + 1�! + ��b + 1� + y, (17)

where C, �, y are the numeric indices of X, Y, Z respectively
and they are in the range from 0 to b. Consequently, the LTG-
word XYZ corresponds to the ℎ�C�y�-th word in the extended
dictionary that has the size �b + 1�t. The additional space is
due to those invalid LTG-words in the forms *#*, ##*, *##,
and ###.

Besides the dimension reduction, there is another benefit of
using the LTG based text representation: the morphological
variants of a same text stream can be mapped to close vectors.
This is encouraging since a query can always have misspelled
forms. Take an example “bananna” vs. “bannana”. They are
two misspelled forms of the correct word “banana”, and they
have the same LTG words: #ba, ban, ana, nan, ann, nna, na#.
While the correct spelling has the LTG words: #ba, ban, ana,
nan, na#, with ana occurring twice, so the correct word has 5
LTG words with its two misspelled forms in common.

IV. EVALUATION METRICS

We used two types of metrics to evaluate the model
performance on the test set. The first is the average NDCG at a
truncation level. Precisely, we define the average NDCG of the
top i positions as

 NDCG}}}}}}}}� = �
~ ∑ �∑ ����Y

������Ni�
�i�� � / �∑ ���}}}}�Y

������Ni�
�i�� �K , (18)

where ��b}}}}�K ≥ ��b}}}}!K ≥ ⋯ represent the descending order of ��b�K , ��b!K , … , which are the relevance gains of the documents

at positions 1,2, … respectively under the query �. We require � to satisfy that '_Ci��biK − '	�i��biK ≥ � > 0, where � is a

pre-determined parameter. � is the total number of such
queries in the test data set.

In the scenario where there is no preference on the order of
the desired documents as long as they are returned among the
top 	 positions, we use the second type of metrics. It’s the
average top-a ground truth labels’ recall at the top 	 positions
in prediction, where a ≤ 	. Precisely, it’s defined as

 Recall}}}}}}}}�c = �
~ ∑ �

c ∑ ����biK ≥ ��b}}}}cK��i��K , (19)

where ��∙� is the indicator function.

V. EXPERIMENTS

In this section, we introduce the results of applying our
model with the generalized loss function to the task of movie
search. We collected the data from the Xbox One’s query-logs,
and used various algorithms and benchmarks including ours to
predict the ranking order in a future period of time.

A. Relevance Measure

Many studies such as [5][6] have shown that the click-
through data are effective in generating labels for learning
ranking models. One relevance measure is the click-through
rate (CTR). The CTR for a ��, ��-pair in a period of time is
defined as the ratio of number of clicks to number of views.

Although CTR is a good relevance measure by its definition,
it’s difficult to accurately calculate for our data. One reason is
that it’s hard to know whether the document � is viewed or not
if it appears in a �-triggered session but is not clicked. Another
reason is that one user might click � under � many more times
than others do. In this case, the CTR calculation is biased
toward this person. To avoid these issues, we use the number
of distinct users who clicked � under � in a period of time as
the relevance measure to determine the position of � in the
ranking result of all the document candidates under �.

To show the validity of this measure, we sampled a set of
22,190 (query, movie)-pairs from the query-logs from
December 2013 to March 2014, and obtained the 4-level
human labels from 5 human judges. The four levels are
Excellent, Good, Fair, and Bad. For each pair, we counted
number of distinct users who clicked the movie under the
query. The histograms of the logarithmic values under Bad,
Fair or Good, and Excellent respectively are displayed in the
following Fig. 2. It can be seen that the more people who
clicked, the more relevant a document is under a query.
Therefore, it’s reasonable to treat more people who clicked as
more relevant.

Fig. 2. The histograms of the logarithmic values of number of people who

clicked, under different human labels.

Compared with the labels generated by the human judges,
the labels decided by the number of people who clicked have
some advantages. First, it’s a good indicator of user
engagement. For a popular query, it can reveal the intentions of
different groups of people. The consensus is from a large
number of real users other than a very limited number of
human judges, therefore it contains much less bias. Second,
human labels are expensive and it’s very difficult to scale up,
whereas the vast amount of click-through data can be obtained
at very low cost.

Although the position bias (the higher the ranking position
of the document shown to the user, the more likely it’s clicked)
is an important factor in typical web search problems, movie
search has a quite different scenario due to its unique user
interface. Usually, movie results are displayed in tile or icon
layout styles that do not support the common top-down

 Num. of people

who clicked

 mean median

Bad 2.81 0

Fair or Good 23.56 3

Excellent 79.63 15

assumption of the web search. Moreover the picture of a
movie’s poster also affects its click probability. Therefore,
click models that are sorely based on the analysis of position
bias may not apply. On the other hand, number of people who
clicked is an aggregated result, which is robust to noise.
Empirically, at least for the movie search, we found the quality
of this measure is comparable to human labels.

B. Data Preparation

We processed a set of query-logs from April 2014 to
November 2014 and split it into the training part and the test
part. The training part is from April 1, 2014 to September 30,
2014; the test part is from October 1, 2014 to November 30,
2014. For both the training part and the test part, for each
(query, movie)-pair, we counted the number of distinct users
who clicked the movie under the query and used it as the label.

Previous studies such as [6] have shown it is important to
remove noise from the click-through data, therefore we set a
threshold to filter out spam queries. Precisely, a query is
viewed as a spam query if all the movies under it were clicked
by at most 1 distinct user. In other words, we only kept the
queries under each of which there is at least one movie that
was clicked by at least 2 distinct users. We did this filtering for
both the training part and the test part. Additionally, for the test
set, we increased the threshold by 1 and removed any query
with only identical labels since it is impossible to evaluate the
performance difference in this case.

After the filtering, there are 674,307 unique (query, movie)-
pairs in the training set, with 26,958 unique queries; and there
are 176,181 unique (query, movie)-pairs in the test set, with
7,018 unique queries. In the training set, there are 106,285
clicked (query, movie)-pairs, and in the test set, there are
27,595 clicked pairs.

The average query length is 2.40 for the training set and
2.30 for the test set. The document of a movie contains 5
fields: release date, title, actors, genre, and region. To build the
data for training and testing DSSM and our model, we form the
text string of a document via the concatenation as: release date
+ title + actors + genre + region.

There are 47,069 unique movies in the processed training
and test sets. The average document length is 18.36 for the
training set and 20.48 for the test set. The following Table I
summarizes the basic statistics.

TABLE I. DATA STATISTICS

 Training set Test set

Time window

2014-06-01 to

2014-09-30

2014-10-01 to

2014-11-30

Num. of unique queries 26,958 7,018

Num. of unique pairs 674,307 176,181

Num. of unique clicked pairs 106,285 27,595

Ave. query length 2.40 2.30

Ave. doc. length 18.36 20.48

The labels in both the training and the test sets have long
tail distributions. The following Fig. 3 shows the histograms of
the logarithmic values of the labels in two scenarios for both
the training and the test sets. In scenario 1, the histogram is

generated from all ��, ��-pairs (clicked or not clicked). The
scenario 2 is the scenario 1 zoomed in on the clicked ��, ��-
pairs only. The zoomed-in histograms indicate that the majority
of the clicked pairs have labels 1 to 3.

Fig. 3. The histograms of the logarithmic values of number of people who

clicked for scenario 1 (all pairs) and scenario 2 (clicked pairs only) in both the

training and the test sets.

Among the 22,190 (query, movie)-pairs from the query-
logs from December 2013 to March 2014 that have 4-level
human labels (Excellent, Good, Fair, Bad), there are 3,763
labeled Excellent, 3,016 labeled Good or Fair, and 15,411
labeled Bad. There are 3478, 2287, and 4195 that were clicked
in the three groups, respectively. Therefore, the likelihoods of
being clicked for the three groups are 0.924, 0.758, and 0.272,
respectively. We used that information to fit the parameters of
the following label mapping function

 ���� = �
�NFGH �.���.g�� (20)

and we found � = 0.2641 and _ = 1.2402. The plot of this
function is shown as the following Fig. 4.

Fig. 4. The plot of the label mapping function.

This label mapping function was used to transform the raw
labels of the training set into values between 0 and 1 to
approximate the true probabilistic target so that the generalized
loss function �! in (2) can be constructed from the training set.
Note that we don’t transform the raw labels of the test set since
we use the raw labels in the test set for evaluation.
Consequently, the pairs in the training set for our model have
the label gains as the mapped values and the pairs in the test set

for all methods have the label gains as the original numbers of
people who clicked.

C. Model Setting

As in the existing state-of-the-art work in [13], for both the
embedding functions \ and], we adopted the neural network
structure that is illustrated in the following Fig. 5.

Fig. 5. The neural network structure of the embedding functions. There are

four layers. The input layer corresponds to the LTG-vector representation of

the raw text stream. The output layer corresponds to the vector in the semantic

space. There are two intermediate layers of dimension 300.

Note that the input layer is the LTG based vector
representation. The mapping from the raw input text steam to
the LTG-vector is found by hashing and is fixed throughout the
model training. The model was trained by using the mini-batch
version of the stochastic gradient descent method [3]. Each
mini-batch consists of 1024 randomly selected training
instances. The learning rate is adaptive with initial value 0.5.
For the softmax function, we set T = 10 and V = 4.

D. Comparison Setting

We compared our model with the generalized loss function �! in (2) against two sets of baseline models. The first baseline
is DSSM with the loss function �� in (1). Since DSSM with the
loss function �� has already been compared to a lot of
benchmarks, we provided additional benchmarks for
comparison as the second set of baselines: the first one is the
BM25F [18], which is an unsupervised learning algorithm; the
second one is BLTM[9], an extension of LDA which can
calculate the query document similarities at the topic level; and
the third one is LambdaMart, which is a widely used
supervised learning algorithm and it generates a model in a
form of gradient boosted decision trees. To use the
LambdaMart algorithm, we manually generated about 2,000
term or lexical matching features.

To be consistent with the existing state-of-the-art work
such as [13][20], all models in this study are trained from the
clicked pairs in the training set. Since there are only 106,285
clicked pairs in the training set, for training DSSM and our
model, we took the model produced by Huang, He, Gao and
Deng [13] as the seed one and tuned its parameters using the
106,285 clicked pairs of the training data. The seed model has
the same neural network structure and was trained from the
clicked pairs of a large set of query logs of the Bing search.
The loss function for training the seed model is the same as ��
in (1), and the seed model is denoted as Seed_DSSM. The
DSSM model (denoted as DSSM) and our model with
generalized loss function (denoted as GDSSM) were obtained

by tuning the seed model under the loss functions �� in (1) and �! in (2), respectively.

For the LambdaMart algorithm, we designed two versions
of experiments depending on what features are used. One
version only uses the manually generated term or lexical match
features, and it’s denoted as LM_base. The other version uses
both the term or lexical match features and the semantic
similarity feature generated by our model, and it’s denoted as
LM_GDSSM. It’s very interesting to see whether there is
significant performance lift if the semantic similarity score
computed from our new model is added as a new feature. To
train a model using the LambdaMart algorithm, we used the
raw labels other than mapped labels since the LabmdaMart can
take integers as target labels.

Each trained model is called a ranker in this paper. All of
BM25F, DSSM and GDSSM served as single feature rankers
since their values directly decide the ranking order, whereas the
counterparts of LambdaMart models LM_base and
LM_GDSSM are referred as multi-feature rankers since they
combine multiple features. After using each model to score the

(query, movie)-pairs in the test set, we calculated NDCG}}}}}}}}�
(average NDCG of the top 	 positions) for 	 = 1,3,10 and Recall}}}}}}}}�t (average top 3’s recall at the top 	 positions) for 	 =3,6,10 . In the end, the recentness is an important factor to
decide the appropriate ranking order of movies, therefore we
also built simple linear regression models to combine the
rankers’ prediction with the recentness signal to see if we can
further improve the performance.

E. Results

The test results were summarized in the following Tables
II-V. From the tests for single feature rankers, it is shown that
GDSSM does have superior performance over DSSM,
Seed_DSSM, BLTM, and BMF25 with respect to both the
NDCG and the recall metrics. It’s interesting to observe that
the overall order of the single feature rankers’ NDCG and
recall performance is GDSSM > DSSM > BLTM > BMF25 >
Seed_DSSM. The reason why Seed_DSSM is the worst is
because it was trained from the context of web search, while
the other four were trained from the specific context of movie
search. The fact that GDSSM is significantly better than DSSM
shows that fine-grained relevance label structure is very helpful
for capturing the subtle relevance differences between various
documents under the same query, which in turn leads to the
performance improvement.

Regarding the multi-feature rankers, LM_GDSSM is
significantly better than LM_base in both the NDCG and the
recall values. That is to say, adding the score computed from
GDSSM as a semantic similarity feature to LambdaMart that
only uses term or lexical match features can boost the
performance.

We can see that the multi-feature ranker LM_base achieves
better NDCG values than single feature ranker GDSSM (please
refer to Tables II and IV) but GDSSM has better recall values
(please refer to Tables III and V). The main reason why
LM_base beats GDSSM in NDCG measures is that the
LambdaMart was designed for optimizing NDCG directly [4]
and the NDCG measurement emphasizes the top few results,

300

b6�>�: LTG-vector of � or �

b6���

b6�!�

b6�t�: C6�K� or C6�L�

50k

500k Raw text stream

300

Fixed mapping

128

Λ�K� or Λ�L�

while our model and DSSM optimize the similarity between
the query and document in a semantic space but the relative
order of the documents under the same query is not directly
reflected in the objective functions.

The observation that GDSSM has better recall values
compared to LM_base implies that term or lexical matching
based retrieval could miss important semantically matched
contents. Therefore it is not surprising to see LM_GDSSM that
combines both the term or lexical matches and the semantic
matches yields further performance lift.

TABLE II. THE SINGLE-FEATURE RANKERS’ NDCG PERFORMANCE

 Without recentness adjust With recentness adjust

Average

NDCG@i i=1 i = 3 i = 10 i = 1 i = 3 i = 10

BM25F 0.6296 0.7116 0.7718 0.5740 0.6805 0.7465

BLTM 0.5439 0.6821 0.7542 0.5801 0.7021 0.7687

Seed_DSSM 0.4502 0.6000 0.6887 0.4435 0.5977 0.6861

DSSM 0.5875 0.7186 0.7820 0.6127 0.7386 0.7977

GDSSM 0.7265 0.8107 0.8528 0.7508 0.8260 0.8657

TABLE III. THE SINGLE-FEATURE RANKERS’ RECALL PERFORMANCE

 Without recentness adjust With recentness adjust

Average top 3

recall@i i = 3 i = 6 i = 10 i = 3 i = 6 i = 10

BM25F 0.5589 0.7603 0.8420 0.5620 0.7657 0.8476

BLTM 0.5643 0.7702 0.8512 0.5747 0.7809 0.8625

Seed_DSSM 0.5285 0.7491 0.8371 0.5375 0.7575 0.8448

DSSM 0.5910 0.7996 0.8771 0.6001 0.8077 0.8837

GDSSM 0.6243 0.8235 0.8899 0.6322 0.8271 0.8950

TABLE IV. THE MULTI-FEATURE RANKERS’ NDCG PERFORMANCE

 Without recentness adjust With recentness adjust

Average

NDCG@i i = 1 i = 3 i = 10 i = 1 i = 3 i = 10

LM_base 0.7921 0.8263 0.8638 0.8006 0.8346 0.8719

LM_GDSSM 0.8261 0.8647 0.8957 0.8285 0.8685 0.8983

Improvement 4.29% 4.65% 3.69% 3.49% 4.06% 3.03%

TABLE V. THE MULTI-FEATURE RANKERS’ RECALL PERFORMANCE

 Without recentness adjust With recentness adjust

Average

top 3 recall@i i = 3 i = 6 i = 10 i = 3 i = 6 i = 10

LM_base 0.6115 0.7963 0.8697 0.6165 0.8071 0.8786

LM_GDSSM 0.6430 0.8346 0.8965 0.6448 0.8343 0.8989

Improvement 5.16% 4.80% 3.08% 4.60% 3.37% 2.31%

VI. CONCLUSION

In this paper, we have introduced the generalized loss
function �! in (2) for the semantic similarity models that have
neural network structures. It’s motivated by the fact that for
data with a fine-grained target structure, it’s possible to build
better labels to improve the prediction. We analyzed the
generalized loss function and pointed out that label
improvement can make considerable contribution toward
reducing the discrepancy between the prediction and the true
target. We trained models and performed extensive
experiments using the Xbox One’s logs on movie search. We
found evidence that the generalized loss function is
significantly better than the original loss function, and other
benchmarks, measured by the NDCG and recall metrics.

We also compared our model GDSSM with the generalized
loss function �! against the current widely used search ranking
algorithm LambdaMart that uses thousands of manually
generated term or lexical match features and found that our
model has better recall performance. Moreover, by adding the
similarity score computed from our model to the LambdaMart
as a semantic match feature, significant performance lift is
achieved in both NDCG and recall measurements. These
results are encouraging since they indicate some progress in
saving the engineering efforts of manually building features.

As for future work, we suggest adding more structure(s) to
the architecture of our model GDSSM to enrich the feature
generation from the input layer. It will be very interesting to
compare these new type of models to the LambdaMart that
uses both the term or lexical matching features and the
semantic matching features.

REFERENCES

[1] Y. Bengio. Learning Deep Architectures for AI. In Foundations and
Trends in Machine Learning, vol. 2, pp. 1-127, 2009.

[2] D. M. Blei, A. Y. Ng and M. J. Jordan . Latent Dirichlet Allocation. In
JMLR, vol. 3, 2003.

[3] L. Bottou. Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT'2010, pp. 177-186, 2010.

[4] C. Burges. From RankNet to LambdaMart to LambdaMART: An
Overview. Technical Report, No. MSR-TR-2010-82, 2010.

[5] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu and P.
P. Kuksa. Natural Language Processing (Almost) from Scratch. In
JMLR, vol. 12, pp. 2493-2537, 2011.

[6] Z. Dou, R. Song, X. Yuan and J. Wen. Are click-through data adequate
for learning web search rankings? In CIKM, pp. 73-82, 2008.

[7] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas and R. A.
Harshman. Indexing by Latent Semantic Analysis. In J. American
Society for Information Science, 41(6): 391-407, 1990.

[8] S. T. Dumais, T. A.Letsche, M. L. Littman and T. K. Landauer.
Automatic Cross-linguistic Information Retrieval Using Latent Semantic
Indexing. In AAAI-97 Spring Symposium Series: Cross-Language Text
and Speech Retrieval, 1997.

[9] J. Gao, K. Toutanova and W. Yih. Clickthrough-based Latent Semantic
Models for Web Search. In SIGIR, pp. 675-684, 2011.

[10] J. Gao, X. He, W. Yih and L. Deng. Learning Continuous Phrase
Representations for Translation Modeling. In ACL, pp. 699-709, 2014.

[11] M. Girolami and A. Kaban. On an equivalence between PLSA and LDA.
In SIGIR, pp. 433-434, 2003.

[12] T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pp. 50-
57, 1999.

[13] P. Huang, X. He, J. Gao, L. Deng, A. Acero and L. Heck. Learning deep
structured semantic models for web search using clickthrough data. In
CIKM, pp. 2333-2338, 2013.

[14] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving
highly relevant documents. In SIGIR, pp. 41-48, 2000.

[15] S. Kullback and R.A. Leibler. On Information and Sufficiency. Annals
of Mathematical Statistics 22 (1): pp. 79–86, 1951.

[16] G. Mesnil, X. He, L. Deng and Y. Bengio. Investigation of recurrent-
neural-network architectures and learning methods for spoken language
understanding. In INTERSPEECH, pp. 3771-3775, 2013.

[17] J. Platt, K. Toutanova and W. Yih. Translingual Document
Representations from Discriminative Projections. In EMNLP, pp. 251-
261, 2010.

[18] S. E. Robertson and H. Zaragoza. The Probabilistic Relevance
Framework: BM25 and Beyond. In Foundations and Trends in
Information Retrieval, 3(4): 333-389, 2009.

[19] R. Salakhutdinov and G. Hinton. Semantic Hashing. In Proc. SIGIR
Workshop Information Retrieval and Applications of Graphical Models,
2007.

[20] Y. Shen, X. He, J. Gao, L. Deng and G. Mesnil. A Latent Semantic
Model with Convolutional-Pooling Structure for Information Retrieval.
In CIKM, pp. 101-110, 2014.

[21] X. Song, X. He, J. Gao and L. Deng. Unsupervised Learning of Word
Semantic Embedding using the Deep Structured Semantic Model.
Technical Report, No. MSR-TR-2014-109, 2014.

[22] W. Yih, X. He and C. Meek. Semantic Parsing for Single-Relation
Question Answering. In ACL, pp. 643-648, 2014.

