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Abstract—Modeling text semantic similarity via neural 

network approaches has significantly improved performance on 

a set of information retrieval tasks in recent studies. However 

these neural network based latent semantic models are mostly 

trained by using simple user behavior logging data such as 

clicked (query, document)-pairs, and all the clicked pairs are 

assumed to be uniformly positive examples. Therefore, the 

existing method for learning the model parameters does not 

differentiate data samples that might reflect different relevance 

information. In this paper, we relax this assumption and propose 

a new learning method through a generalized loss function to 

capture the subtle relevance differences of training samples when 

a more granular label structure is available. We have applied it 

to the Xbox One’s movie search task where session-based user 

behavior information is available and the granular relevance 

differences of training samples are derived from the session logs. 

Compared with the existing method, our new generalized loss 

function has demonstrated superior test performance measured 

by several user-engagement metrics. It also yields significant 

performance lift when the score computed from our model is 

used as a semantic similarity feature in the gradient boosted 

decision tree model which is widely used in modern search 

engines. 

Keywords—neural network; semantic model; loss function; 

click logs; movie search 

I. INTRODUCTION  

Nowadays search engines are heavily relied on for 
retrieving relevant information for users, and search engines 
that can understand the search intent behind the words of a 
query despite language divergence are highly in demand. 
However, this presents a great challenge. Unlike term or lexical 
matching, which is straightforward and easy to implement, 
building a search engine that understands the intent and 
contextual meaning of the query is difficult, especially when 
the query is short and ambiguous. In order to address this 
problem, many latent semantic models have been proposed 
during the past decade. Let’s review some of the major 
techniques presented in the literature. 

A. Latent Semantic Models 

Latent Semantic Analysis (LSA) [7][8] is a straightforward 
and well-known latent semantic model. It reconstructs the 
term-document matrix by using low rank matrix approximation 
such that both the terms and the documents can be mapped to a 
low dimensional space. However, the mapping is done by a 
linear projection. Nonlinear methods include popular topic 

models such as the probabilistic latent semantic indexing 
(PLSI) [12] and the Latent Dirichlet allocation (LDA) [2], with 
each being a generative model and having a strong probability 
foundation. PLSI assumes that the document index, which has 
a multinomial prior, generates a latent topic and the topic in 
turn generates a word. LDA assumes that a word is generated 
by a latent topic, and the topic is a sample of a multinomial 
distribution that has a Dirichlet prior. By using either PLSI or 
LDA, a document’s representation at the topic level can be 
computed [11]. One important application of the latent 
semantic models is to fulfil the needs of semantic matching for 
search engines by calculating the similarity between the 
documents at the topic or semantic level. Recently, some 
semantic models were proposed for search specifically. For 
examples, the coupled probabilistic latent analysis (CPLSA) by 
Platt, Toutanova and Yih [17] is an extension of the PLSI, the 
Bi-Lingual Topic Model (BLTM) by Gao, Toutanova and Yih  
[9] is an extension of the LDA, and both of them can calculate 
the query-document similarity at the topic level. 

B. Neural Network Models 

Another set of latent semantic models are neural network 
based. It has been shown that a neural network with multiple 
hidden layers can discover even more sophisticated latent 
structures than a neural network with a single hidden layer 
[1][19]. Therefore, recently a series of latent semantic models 
with deep neural network structure have been proposed to 
model complex concepts and hidden hierarchical structures 
[1][10][13][16][19][20]. The Semantic Hashing method by 
Salakhutdinov and Hinton [19] was designed to project a bag-
of-words based term vector to a binary code vector by an auto 
encoder that minimizes the reconstruction error. Recently, a 
deep Structured Semantic Model (DSSM) was developed by 
Huang, He, Gao and Deng [13] to model the semantic 
similarity between a query and a document for the task of web 
search. More recently, Shen, He, Gao, Deng and Mesnil [20] 
extended the DSSM to the convolutional latent semantic model 
(CLSM) to capture important contextual information without 
making a strong bag-of-words assumption. 

Compared with the previous latent semantic models, the 
key distinct feature of DSSM and CLSM is that they are task-
specific supervised learning algorithms. Both DSSM and 
CLSM were originally designed for web search and they were 
trained by using the clicked (query, document)-pairs. On the 
contrary, the previous latent semantic models are based on 
unsupervised learning and the semantic similarity computed 



from any of these models is not learned from the labels. It has 
been reported in [13][20] that when used as a single-feature 
ranker for web search, both DSSM and CLSM significantly 
outperform other latent semantic models such as LSA, PLSI, 
BLTM in terms of the NDCG (Normalized Discounted 
Cumulative Gain [14]) measurements using human labels. 
Although CLSM has higher NDCG values than DSSM, due to 
the convolutional neural network structure, the CLSM’s 
computational cost in scoring is much higher than DSSM, 
which could be a concern for the online search system. Besides 
the web search task, DSSM and CLSM can also be applied to a 
broader set of applications such as word embedding [21] and 
question-answering [22], etc. 

C. Loss Function 

Despite the superior performance of DSSM and CLSM, 
these models treat all the clicked (query, document)-pairs 
uniformly as positive examples. Therefore, the current method 
for learning the model parameters does not differentiate data 
samples that might reflect different relevance information. In 
other words, there is no differentiation between two clicked 
documents under the same query, with one being more relevant 
and the other being less relevant. In this paper, we propose a 
generalized loss function that can incorporate the subtle 
relevance differences among the documents for learning the 
model parameters. Our experimental results have shown that 
the new method can significantly improve the ranking results 
on the movie search tasks. 

Our method requires fine-grained relevance labels. Some 
commercial search engines like Bing has already utilized 
multi-level relevance information. There are usually two kinds 
of resources: human judgments and search logs. The human 
labels for web search usually have 5 coarse grained relevance 
levels: Perfect, Excellent, Good, Fair, and Bad. When this type 
of labels are taken, each category will be converted into an 
appropriate number (the more relevant the label represents, the 
greater the number is). The labels constructed from the search 
logs often take various forms of click-likelihood, which have 
numerical values. Although the commercial search engines 
have already used fine-grained relevance labels, none of neural 
network based latent sematic models has done so. This is the 
first study that investigates using fine-grained relevance labels 
to improve the neural-network-based latent semantic models. 

D. Model Score as Ranking Feature 

Since the semantic similarity score computed from a 
neural-network-based latent semantic model can be viewed as 
a feature, it is worthwhile considering how a commercial 
search engine can benefit from this feature. Currently the 
LambdaMart algorithm [4], which is an extension of the 
LambdaRank algorithm [4], is widely used as a core ranking 
algorithm of many commercial search engines including Bing. 
The LambdaMart is a gradient boosted decision tree model that 
takes as many features as it can and selects the important ones. 
Usually, many sophistic features are manually built for the 
LambdaMart based on term or lexical matching. An interesting 
question is how much improvement there could be if the 
semantic similarity score is added as a new feature to the 
LambdaMart. Our experimental results have shown that the 
semantic similarity score computed from our model not only 

outperforms the semantic similarity scores computed from 
previous state-of-the-art models such as DSSM, but also 
further improves the overall performance of a strong 
LambdaMart-based ranker when used as an additional feature. 

E. Movie Search 

It’s very expensive to obtain high quality human labels on a 
large scale. As a result, both DSSM and CLSM for the web 
search task were trained from the click-through data and 
evaluated using the human labels. Moreover, if there are only a 
very limited number of judges, the bias is a serious concern. 
Although click signals can easily scale up, they are very noisy. 
However, we found that for media search, noise in click 
information is easier to handle, and labels can be built from the 
click-through data with good quality comparable to human 
labels. Therefore, as the first shot, we selected the media search 
domain and used movie search logs to experiment on our idea. 

We extracted the movie search logs from the Xbox One, a 
very popular entertainment platform. The data has an 
advantage that each logged query session contains a user ID. 
Therefore, we can calculate how many distinct users have 
clicked a movie under a query in a period of time and use it as 
the label for a (query, movie)-pair. This is an aggregated 
number that is robust to noise, easy to scale up and calculate. 
Our experiments have shown that the labels generated in this 
way are highly consistent with the human labels and they can 
be easily built into our generalized loss function. Obviously, 
this advantage also widely exists in many other online video 
service platforms such as YouTube, Netflix, Amazon Video 
and Hulu etc. Therefore, the method for generating labels from 
the Xbox One’s search logs can also be used for generating the 
same kind of labels for those platforms. We should point out 
that our generalized loss function is not limited to the specific 
domain of media search. It can be used broadly as long as fine-
grained labels can be built. 

F. Organization of the Paper 

The rest of the paper is organized as follows. We first 
describe our generalized loss function for the neural-network-
based latent semantic models and provide an analysis of its 
probability foundation. We then define our model, with the 
same architecture as the DSSM model in [13], but it is learned 
by minimizing the proposed generalized loss function. We also 
describe the corresponding new gradient computation method 
and the dimension reduction technique. The reason why we 
choose DSSM’s architecture is because it has much lower 
computational cost in scoring than CLSM and hence it’s easier 
to implement for a commercial search engine. Replacing 
CLSM’s loss function will be studied in future work. After 
defining two types of evaluation metrics in our experiments, 
we present the results of applying our model to the task of 
movie search and compare it against existing models on 
various benchmarks. In evaluation, we not only introduce the 
effectiveness of our model in the single-feature-ranking setting, 
but also present the results of adding the semantic similarity 
score computed from our model to the LambdaMart as a new 
feature. Our model leads to significant improvement in both 
settings, which demonstrates the effectiveness of the proposed 
method. In the end, we draw the conclusion and suggest future 
research directions. 



II. OUR MODEL 

A. Generalized Loss Function 

The main contribution of this work is the generalization of 
the loss function for learning the neural network based 
semantic similarity models. Extended from the loss function 
originally proposed in [13], the generalized loss function takes 
into account fine-grained relevance labels and captures the 
subtle relevance difference of different data samples. Suppose ���� , ���: 	 = 1,2, … , ��  are �  ��, �� -pairs such that ��  is 
clicked under �� . To learn a semantic similarity model, the 
DSSM in [13] aims to minimize 

 ���Λ� = − ∑ �ln ����|��; Λ������ , (1) 

where ����|��; Λ� is the parameterized conditional probability 
that document �� is relevant given query �� and Λ denotes the 
set of model parameters. Minimizing this loss function is 
interpreted as maximizing the joint probability that ���, ���, 
…, ��� , ��� are relevant pairs, with the assumption that they 
are independent of each other. Note that in the objective 
function in (1) “clicked” is treated as “relevant” regardless how 
many different people clicked �� under ��. In order to take into 
account the various relevance levels reflected by different click 
signals for different clicked pairs, we proposed a generalized 
loss function. Suppose for each 	, the clicked pair ��� , ��� is 
labeled �� , where 0≤ �� ≤ 1 and ��  is a probabilistic measure 
of the relevance of ��  to �� . Our generalized loss function is 
expressed as 

    �!�Λ�   

= − ∑ "�� ln ����|��; Λ� + �1 − ��� ln$1 − ����|�� ; Λ�%&���� (2) 

Clearly, when �� = 1  for all 	 , (2) reduces to (1). To 
interpret this loss function, imagine that there are ' users. For 
the 	-th pair ��� , ���, the relevance probability is ����|��; Λ�. 
Suppose relevance leads to click(s), and ��  is the portion of the ' users who clicked �� given ��, then the probability that there 
are '��  users who click �� under �� is 

 (��Λ� = ) ''��* ����|��; Λ�+,-$1 − ����|��; Λ�%+.+,-
.  (3) 

Assuming the clicks are independent of each other, the joint 

probability that there are '�� users who click �� under �� for 	 = 1, … , � is 

∏ (��Λ����� ∝ ∏ ����|��; Λ�+,-$1 − ����|��; Λ�%+.+,-���� . (4) 

By taking the negative natural logarithm of (4), we have 

 − ∑ ln (��Λ����� = −'�!�Λ� + Const.        (5) 

Therefore, minimizing �!  in (2) is equivalent to maximizing 
the joint probability in (4). And this joint probability takes into 
account the probabilistic labels ��, …, ��. 

B. Analysis 

To illustrate the benefit of generalizing �� in (1) into �! in 
(2), let’s consider the test accuracy of the prediction. 

Let �56 be a probabilistic prediction vector for a collection of 
test cases. Let �6′ be an approximated target vector, and recall �6 

is the true target vector. Note that 0≤ ��8 ≤ 1 for all 	. Assume 

��8 = 9����  for all 	 , where 9: �0,1� → �0,1�  is an 
approximation function that satisfies 

(i)  9 is monotonically increasing; 

(ii) 9�0� = 0, 9�1� = 1, lim,→> 9��� ln � = 0. 

The binary labels can be viewed as a special 9  such that 9��� = 1 if � > �∗; 9��� = 0 otherwise, where �∗ is the cut-

off and 0 ≤ �∗ ≤ 1. More generally, the layered labels (e.g., 

“Perfect”, “Excellent”, “Good”, “Fair”, “Bad”) can be viewed 

as having multiple cut-offs. By using the concept of Kullback–

Leibler divergence [15] (or KL-distance), we can show how 

much accuracy could be lost when �6′ = 9��6�  is used to 

approximate �6.  

We first consider the loss of having prediction �56 when the 
true target �6 is given: 

 �$�56; �6% = − ∑ ��� ln �� + �1 − ��� ln�1 − ����� . (6) 

Note that this loss is random since �56 is random. We further 

consider the expectation of this loss, denoted as A"�$�56; �6%&. 

Note that 

           A"�$�56; �6%&  
    = − ∑ ���A�ln ��� + �1 − ���A�ln�1 − ������    

    ≥ − ∑ ��� ln A���� + �1 − ��� ln�1 − A�������   

    ≥ − ∑ ��� ln �� + �1 − ��� ln�1 − ����� ,                        (7) 

where the first “≥” is by Jensen’s inequality and the second 
“ ≥ ” is due to the fact that �� ln C + �1 − ��� ln�1 − C�  is 
maximized over 0 ≤ C ≤ 1 when C = ��. The lower bound can 

be reached if and only if �56  equals the constant �6 . This 
condition seems to be too strong since no prediction can be 
expected to have 100% accuracy. However, the necessary 

condition A$�56% = �6 for reaching the lower bound is realistic. 

We define a model as consistent if the expected value of its 
prediction equals its target. 

We’re now ready to show how much accuracy could be lost 

when a consistent model generates a prediction �56  of the 
approximated target �6′ = 9��6�. By consistency definition, we 

have A$�56% = �6′ . We are interested in the quantity 

A"D���56||�6�&, which is the expected KL-distance between the 

prediction �56 and the true target �6. We have 

           A"D���56||�6�&  
      = A�− ∑ ���ln �� − ln ���� �  
      = A�− ∑ ���ln �� − ln ��8 + ln ��8 − ln ���� �  
      = A�− ∑ ���ln �� − ln ��8�� � + A�− ∑ ���ln ��8 − ln ���� �  
      = − ∑ A�����ln �� − ln ��8�� + A�D���56||�6′�� 
      = − ∑ ��8�ln �� − ln ��8�� + A�D���56||�6′�� 
      = D���6′||�6� + A�D���56||�6′��.                               (8) 



Hence, by the KL-distance measure, predicting �6′  yields 
the loss of accuracy that is at least D���6′||�6�. That is to say, 
even if the model can learn its target with 100% accuracy such 
that the second term vanishes, there is still the first term 
remaining that is completely due to the label error. If we can 
improve the labels, then we can improve the prediction 
independent of the learning model. Back to the benefit of 
generalizing �� in (1) into �! in (2), since �� corresponds to the 
extreme case that all the clicked pairs are labeled 1, it can be 
expected that better labels could be built to obtain better 
ranking results. 

III. LEARNING MODEL 

The learning model is essentially the parameterization 
structure of the relevance probability ���|�� for the query � 
and document � . As mentioned earlier, we adopted the 
structure of the DSSM in [13]. At first, ���|�� is defined as a 
normalized exponential of the semantic similarity function 
denoted as  E��, �� . Then E��, ��  is parameterized via two 
neural networks, with one for � and the other for �. We can 
show that for parameter estimation, the formula for computing 
the gradient of �� in (1) only needs slight changes to fit for �! 
in (2). 

A. Relevance Probability 

The softmax form of the parameterized relevance 
probability ���|�; Λ� can be expressed as 

 ���|�; Λ� = FGH �IJ�K,L;M��
FGH �IJ�K,L;M��N∑ FGH �IJ�K,LO;M��PO∈RS  , (9) 

where T > 0 is a pre-determined smooth parameter and U. is 
the set of all irrelevant documents to be ranked under �. In 
practice, for many queries, there are very few or no irrelevant 
documents to be ranked, as a result, U.  is approximated by 
randomly choosing V�≥ 4� unclicked documents under ��. 
B. Semantic Similarity 

The parameterized semantic similarity function E��, �; Λ� 
is defined in the form of the cosine similarity: 

 E��, �; Λ� = X6�Y�ZX6�P�
||X6�Y�||∙||X6�P�|| , (10) 

where C6�K� = \$�; Λ�K�%  and C6�L� = ]$�; Λ�L�%  are the 

semantic vectors of � and � respectively, and Λ�K� and Λ�L� are 
parts of parameter set Λ corresponding to � and � respectively. 
The two functions \  and ]  are represented by two neural 
networks. For both nets, ^_�ℎ function is used as the activation 

function. That is if we denote the a-th layer as �b�c, b!c, …, b�dc � 

and the �a + 1�-th layer as �b�cN� , b!cN� , …, b�defcN� �, then for 

each 	 = 1, … , �cN�, 

 b�cN� = �.FGH).!g-d*
�NFGH$.!g-d% , (11) 

where _�c = ∑ hi,�c bic�di�� + h>,�c . Note that the last layers for � 

and � are C6�K� and C6�L� respectively. The structure is illustrated 
in the following Fig. 1. 

 

 

Fig. 1. Illustration of the neural network structure for computing E��, �; Λ�. 

For both the query q and document d, it maps high dimensional sparse bag-of-

words term vectors into low dimensional dense semantic vectors. 

C. Parameter Estimation 

We applied the gradient descent method to estimate the 
parameters. That is                           

 Λ�j� = Λ�j.�� − kj∇M��Λ�, (12) 

where kj�> 0� is the learning rate and ∇M��Λ� is the gradient 
of ��Λ� with respect to Λ. To calculate the gradient of the loss 
function in (2), we first express ����|��; Λ� as 

 ����|��; Λ� = �
�N∑ FGH).I∆P- *P∈R-S

 , (13) 

where ∆L� =  E��� , ��; Λ� − E��� , �; Λ�. Then  

 ∇M log ����|��; Λ� = − ∑ oL� ∙ ∇M∆L�L∈p-S , (14) 

where oL� = .I FGH).I∆P- *
�N∑ FGH).I∆PO- *PO∈R-S

 , and 

 ∇M log$1 − ����|��; Λ�% = ∑ �qL� − oL� � ∙ ∇M∆L�L∈p-S , (15) 

where qL� = .I FGH).I∆P- *
∑ FGH).I∆PO- *PO∈R-S

 . Therefore, 

 ∇M��Λ� = ∑ ∑ "oL� − �1 − ���qL� & ∙ ∇M∆L�L∈p-S
���� . (16) 

In the special case that �� = 1 for all 	, this formula reduces 
to the same form as (1) used in [13][20]. 

D. Dimension Reduction 

Since the dimension of the sparse bag-of-words term vector 
representation of an input text stream can be very high due to a 
vast vocabulary size and misspellings, we apply the letter-tri-
gram (LTG) based text stream representation for the purpose of 
the dimension reduction [13]. To illustrate the idea, consider 
the English text stream “2014 Sci-Fi Movies”. It’s first 
converted to “#2014# #sci# #fi# #movies#”, and then broken 
into “#20 201 014 14# #sc sci ci# #fi fi# #mo mov ovi vie ies 
es#”, which is the final LTG-sequence. If we only include the 
26 lower case English letters a-z and the 10 digits 0-9, then the 
size of the LTG-dictionary will be 36t + 2 × 36! + 36 =49,284. In general, the size can be expressed as bt + 2 × b! +b, where b is number of valid letters. If the original word based 
dictionary has 500k unique words, then the LTG representation 
has 10-fold reduction in dimensionality. However it is not easy 
to look up a word in such a mechanism.  More storage may be 
used in order to facilitate the look-up of any LTG-word as we 
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used in our work. Consider the following hash function of the 
LTG-word XYZ 

 ℎ�C�y� = C�b + 1�! + ��b + 1� + y, (17) 

where C, �, y are the numeric indices of X, Y, Z respectively 
and they are in the range from 0 to b.  Consequently, the LTG-
word XYZ corresponds to the ℎ�C�y�-th word in the extended 
dictionary that has the size �b + 1�t. The additional space is 
due to those invalid LTG-words in the forms *#*, ##*, *##, 
and ###. 

Besides the dimension reduction, there is another benefit of 
using the LTG based text representation: the morphological 
variants of a same text stream can be mapped to close vectors. 
This is encouraging since a query can always have misspelled 
forms. Take an example “bananna” vs. “bannana”. They are 
two misspelled forms of the correct word “banana”, and they 
have the same LTG words: #ba, ban, ana, nan, ann, nna, na#. 
While the correct spelling has the LTG words: #ba, ban, ana, 
nan, na#, with ana occurring twice, so the correct word has 5 
LTG words with its two misspelled forms in common. 

IV. EVALUATION METRICS  

We used two types of metrics to evaluate the model 
performance on the test set. The first is the average NDCG at a 
truncation level. Precisely, we define the average NDCG of the 
top i positions as 

 NDCG}}}}}}}}� = �
~ ∑ �∑ ����Y

������Ni�
�i�� � / �∑ ���}}}}�Y

������Ni�
�i�� �K , (18) 

where ��b}}}}�K ≥ ��b}}}}!K ≥ ⋯  represent the descending order of ��b�K , ��b!K , … , which are the relevance gains of the documents 

at positions 1,2, … respectively under the query �. We require � to satisfy that '_Ci��biK − '	�i��biK ≥ � > 0, where � is a 

pre-determined parameter. �  is the total number of such 
queries in the test data set. 

In the scenario where there is no preference on the order of 
the desired documents as long as they are returned among the 
top 	  positions, we use the second type of metrics. It’s the 
average top-a ground truth labels’ recall at the top 	 positions 
in prediction, where a ≤ 	. Precisely, it’s defined as 

 Recall}}}}}}}}�c = �
~ ∑ �

c ∑ ����biK ≥ ��b}}}}cK��i��K , (19) 

where ��∙� is the indicator function. 

V. EXPERIMENTS 

In this section, we introduce the results of applying our 
model with the generalized loss function to the task of movie 
search. We collected the data from the Xbox One’s query-logs, 
and used various algorithms and benchmarks including ours to 
predict the ranking order in a future period of time. 

A. Relevance Measure 

Many studies such as [5][6] have shown that the click-
through data are effective in generating labels for learning 
ranking models. One relevance measure is the click-through 
rate (CTR). The CTR for a ��, ��-pair in a period of time is 
defined as the ratio of number of clicks to number of views. 

Although CTR is a good relevance measure by its definition, 
it’s difficult to accurately calculate for our data. One reason is 
that it’s hard to know whether the document � is viewed or not 
if it appears in a �-triggered session but is not clicked. Another 
reason is that one user might click � under � many more times 
than others do. In this case, the CTR calculation is biased 
toward this person. To avoid these issues, we use the number 
of distinct users who clicked � under � in a period of time as 
the relevance measure to determine the position of �  in the 
ranking result of all the document candidates under �. 

To show the validity of this measure, we sampled a set of 
22,190 (query, movie)-pairs from the query-logs from 
December 2013 to March 2014, and obtained the 4-level 
human labels from 5 human judges. The four levels are 
Excellent, Good, Fair, and Bad. For each pair, we counted 
number of distinct users who clicked the movie under the 
query. The histograms of the logarithmic values under Bad, 
Fair or Good, and Excellent respectively are displayed in the 
following Fig. 2. It can be seen that the more people who 
clicked, the more relevant a document is under a query. 
Therefore, it’s reasonable to treat more people who clicked as 
more relevant. 

      

 

 

Fig. 2. The histograms of the logarithmic values of number of people who 

clicked, under different human labels. 

Compared with the labels generated by the human judges, 
the labels decided by the number of people who clicked have 
some advantages. First, it’s a good indicator of user 
engagement. For a popular query, it can reveal the intentions of 
different groups of people. The consensus is from a large 
number of real users other than a very limited number of 
human judges, therefore it contains much less bias. Second, 
human labels are expensive and it’s very difficult to scale up, 
whereas the vast amount of click-through data can be obtained 
at very low cost.  

Although the position bias (the higher the ranking position 
of the document shown to the user, the more likely it’s clicked) 
is an important factor in typical web search problems, movie 
search has a quite different scenario due to its unique user 
interface. Usually, movie results are displayed in tile or icon 
layout styles that do not support the common top-down 

 Num. of people  

who clicked 

 mean median 

Bad 2.81 0 

Fair or Good 23.56 3 

Excellent 79.63 15 

 



assumption of the web search. Moreover the picture of a 
movie’s poster also affects its click probability. Therefore, 
click models that are sorely based on the analysis of position 
bias may not apply. On the other hand, number of people who 
clicked is an aggregated result, which is robust to noise. 
Empirically, at least for the movie search, we found the quality 
of this measure is comparable to human labels. 

B. Data Preparation 

We processed a set of query-logs from April 2014 to 
November 2014 and split it into the training part and the test 
part. The training part is from April 1, 2014 to September 30, 
2014; the test part is from October 1, 2014 to November 30, 
2014. For both the training part and the test part, for each 
(query, movie)-pair, we counted the number of distinct users 
who clicked the movie under the query and used it as the label. 

Previous studies such as [6] have shown it is important to 
remove noise from the click-through data, therefore we set a 
threshold to filter out spam queries. Precisely, a query is 
viewed as a spam query if all the movies under it were clicked 
by at most 1 distinct user. In other words, we only kept the 
queries under each of which there is at least one movie that 
was clicked by at least 2 distinct users. We did this filtering for 
both the training part and the test part. Additionally, for the test 
set, we increased the threshold by 1 and removed any query 
with only identical labels since it is impossible to evaluate the 
performance difference in this case. 

After the filtering, there are 674,307 unique (query, movie)-
pairs in the training set, with 26,958 unique queries; and there 
are 176,181 unique (query, movie)-pairs in the test set, with 
7,018 unique queries. In the training set, there are 106,285 
clicked (query, movie)-pairs, and in the test set, there are 
27,595 clicked pairs. 

The average query length is 2.40 for the training set and 
2.30 for the test set. The document of a movie contains 5 
fields: release date, title, actors, genre, and region. To build the 
data for training and testing DSSM and our model, we form the 
text string of a document via the concatenation as: release date 
+ title + actors + genre + region. 

There are 47,069 unique movies in the processed training 
and test sets. The average document length is 18.36 for the 
training set and 20.48 for the test set. The following Table I 
summarizes the basic statistics. 

TABLE I.  DATA STATISTICS 

 Training set Test set 

Time window 

2014-06-01 to  

2014-09-30  

2014-10-01 to  

2014-11-30 

Num. of unique queries 26,958 7,018 

Num. of unique pairs 674,307 176,181 

Num. of unique clicked pairs 106,285 27,595 

Ave. query length 2.40 2.30 

Ave. doc. length 18.36 20.48 

 

The labels in both the training and the test sets have long 
tail distributions. The following Fig. 3 shows the histograms of 
the logarithmic values of the labels in two scenarios for both 
the training and the test sets. In scenario 1, the histogram is 

generated from all ��, ��-pairs (clicked or not clicked). The 
scenario 2 is the scenario 1 zoomed in on the clicked ��, ��-
pairs only. The zoomed-in histograms indicate that the majority 
of the clicked pairs have labels 1 to 3. 

 

 

Fig. 3. The histograms of the logarithmic values of number of people who 

clicked for scenario 1 (all pairs) and scenario 2 (clicked pairs only) in both the 

training and the test sets. 

Among the 22,190 (query, movie)-pairs from the query-
logs from December 2013 to March 2014 that have 4-level 
human labels (Excellent, Good, Fair, Bad), there are 3,763 
labeled Excellent, 3,016 labeled Good or Fair, and 15,411 
labeled Bad. There are 3478, 2287, and 4195 that were clicked 
in the three groups, respectively. Therefore, the likelihoods of 
being clicked for the three groups are 0.924, 0.758, and 0.272, 
respectively. We used that information to fit the parameters of 
the following label mapping function 

 ���� = �
�NFGH �.���.g�� (20) 

and we found � = 0.2641 and _ = 1.2402. The plot of this 
function is shown as the following Fig. 4. 

 

Fig. 4. The plot of the label mapping function.  

This label mapping function was used to transform the raw 
labels of the training set into values between 0 and 1 to 
approximate the true probabilistic target so that the generalized 
loss function �! in (2) can be constructed from the training set. 
Note that we don’t transform the raw labels of the test set since 
we use the raw labels in the test set for evaluation. 
Consequently, the pairs in the training set for our model have 
the label gains as the mapped values and the pairs in the test set 



for all methods have the label gains as the original numbers of 
people who clicked. 

C. Model Setting 

As in the existing state-of-the-art work in [13], for both the 
embedding functions \ and ], we adopted the neural network 
structure that is illustrated in the following Fig. 5. 

Fig. 5. The neural network structure of the embedding functions. There are 

four layers. The input layer corresponds to the LTG-vector representation of 

the raw text stream. The output layer corresponds to the vector in the semantic 

space. There are two intermediate layers of dimension 300. 

Note that the input layer is the LTG based vector 
representation. The mapping from the raw input text steam to 
the LTG-vector is found by hashing and is fixed throughout the 
model training. The model was trained by using the mini-batch 
version of the stochastic gradient descent method [3]. Each 
mini-batch consists of 1024 randomly selected training 
instances. The learning rate is adaptive with initial value 0.5. 
For the softmax function, we set T = 10 and V = 4. 

D. Comparison Setting 

We compared our model with the generalized loss function �! in (2) against two sets of baseline models. The first baseline 
is DSSM with the loss function �� in (1). Since DSSM with the 
loss function �� has already been compared to a lot of 
benchmarks, we provided additional benchmarks for 
comparison as the second set of baselines: the first one is the 
BM25F [18], which is an unsupervised learning algorithm; the 
second one is BLTM[9], an extension of LDA which can 
calculate the query document similarities at the topic level; and 
the third one is LambdaMart, which is a widely used 
supervised learning algorithm and it generates a model in a 
form of gradient boosted decision trees. To use the 
LambdaMart algorithm, we manually generated about 2,000 
term or lexical matching features. 

To be consistent with the existing state-of-the-art work 
such as [13][20], all models in this study are trained from the 
clicked pairs in the training set. Since there are only 106,285 
clicked pairs in the training set, for training DSSM and our 
model, we took the model produced by Huang, He, Gao and 
Deng [13] as the seed one and tuned its parameters using the 
106,285 clicked pairs of the training data. The seed model has 
the same neural network structure and was trained from the 
clicked pairs of a large set of query logs of the Bing search. 
The loss function for training the seed model is the same as �� 
in (1), and the seed model is denoted as Seed_DSSM. The 
DSSM model (denoted as DSSM) and our model with 
generalized loss function (denoted as GDSSM) were obtained 

by tuning the seed model under the loss functions �� in (1) and �! in (2), respectively. 

For the LambdaMart algorithm, we designed two versions 
of experiments depending on what features are used. One 
version only uses the manually generated term or lexical match 
features, and it’s denoted as LM_base. The other version uses 
both the term or lexical match features and the semantic 
similarity feature generated by our model, and it’s denoted as 
LM_GDSSM. It’s very interesting to see whether there is 
significant performance lift if the semantic similarity score 
computed from our new model is added as a new feature. To 
train a model using the LambdaMart algorithm, we used the 
raw labels other than mapped labels since the LabmdaMart can 
take integers as target labels. 

Each trained model is called a ranker in this paper. All of 
BM25F, DSSM and GDSSM served as single feature rankers 
since their values directly decide the ranking order, whereas the 
counterparts of LambdaMart models LM_base and 
LM_GDSSM are referred as multi-feature rankers since they 
combine multiple features. After using each model to score the 

(query, movie)-pairs in the test set, we calculated NDCG}}}}}}}}� 
(average NDCG of the top 	  positions) for 	 = 1,3,10  and Recall}}}}}}}}�t (average top 3’s recall at the top 	 positions) for 	 =3,6,10 . In the end, the recentness is an important factor to 
decide the appropriate ranking order of movies, therefore we 
also built simple linear regression models to combine the 
rankers’ prediction with the recentness signal to see if we can 
further improve the performance. 

E. Results 

The test results were summarized in the following Tables 
II-V. From the tests for single feature rankers, it is shown that 
GDSSM does have superior performance over DSSM, 
Seed_DSSM, BLTM, and BMF25 with respect to both the 
NDCG and the recall metrics. It’s interesting to observe that 
the overall order of the single feature rankers’ NDCG and 
recall performance is GDSSM > DSSM > BLTM > BMF25 > 
Seed_DSSM. The reason why Seed_DSSM is the worst is 
because it was trained from the context of web search, while 
the other four were trained from the specific context of movie 
search. The fact that GDSSM is significantly better than DSSM 
shows that fine-grained relevance label structure is very helpful 
for capturing the subtle relevance differences between various 
documents under the same query, which in turn leads to the 
performance improvement. 

Regarding the multi-feature rankers, LM_GDSSM is 
significantly better than LM_base in both the NDCG and the 
recall values. That is to say, adding the score computed from 
GDSSM as a semantic similarity feature to LambdaMart that 
only uses term or lexical match features can boost the 
performance. 

We can see that the multi-feature ranker LM_base achieves 
better NDCG values than single feature ranker GDSSM (please 
refer to Tables II and IV) but GDSSM has better recall values 
(please refer to Tables III and V). The main reason why 
LM_base beats GDSSM in NDCG measures is that the 
LambdaMart was designed for optimizing NDCG directly [4] 
and the NDCG measurement emphasizes the top few results, 

300 

b6�>�: LTG-vector of � or � 

b6��� 

b6�!� 

b6�t�: C6�K� or C6�L� 

50k 

500k Raw text stream 
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while our model and DSSM optimize the similarity between 
the query and document in a semantic space but the relative 
order of the documents under the same query is not directly 
reflected in the objective functions. 

The observation that GDSSM has better recall values 
compared to LM_base implies that term or lexical matching 
based retrieval could miss important semantically matched 
contents. Therefore it is not surprising to see LM_GDSSM that 
combines both the term or lexical matches and the semantic 
matches yields further performance lift. 

TABLE II.  THE SINGLE-FEATURE RANKERS’ NDCG PERFORMANCE 

 Without recentness adjust With recentness adjust 

Average 

NDCG@i i=1 i = 3 i = 10 i = 1 i = 3 i = 10 

BM25F 0.6296 0.7116 0.7718 0.5740 0.6805 0.7465 

BLTM 0.5439 0.6821 0.7542 0.5801 0.7021 0.7687 

Seed_DSSM 0.4502 0.6000 0.6887 0.4435 0.5977 0.6861 

DSSM 0.5875 0.7186 0.7820 0.6127 0.7386 0.7977 

GDSSM 0.7265 0.8107 0.8528 0.7508 0.8260 0.8657 

TABLE III.  THE SINGLE-FEATURE RANKERS’ RECALL PERFORMANCE 

 Without recentness adjust With recentness adjust 

Average top 3 

recall@i i = 3 i = 6 i = 10 i = 3 i = 6 i = 10 

BM25F 0.5589 0.7603 0.8420 0.5620 0.7657 0.8476 

BLTM 0.5643 0.7702 0.8512 0.5747 0.7809 0.8625 

Seed_DSSM 0.5285 0.7491 0.8371 0.5375 0.7575 0.8448 

DSSM 0.5910 0.7996 0.8771 0.6001 0.8077 0.8837 

GDSSM 0.6243 0.8235 0.8899 0.6322 0.8271 0.8950 

TABLE IV.  THE MULTI-FEATURE RANKERS’ NDCG PERFORMANCE 

 Without recentness adjust With recentness adjust 

Average 

NDCG@i i = 1 i = 3 i = 10 i = 1 i = 3 i = 10 

LM_base 0.7921 0.8263 0.8638 0.8006 0.8346 0.8719 

LM_GDSSM 0.8261 0.8647 0.8957 0.8285 0.8685 0.8983 

Improvement 4.29% 4.65% 3.69% 3.49% 4.06% 3.03% 

TABLE V.  THE MULTI-FEATURE RANKERS’ RECALL PERFORMANCE 

 Without recentness adjust With recentness adjust 

Average  

top 3 recall@i i = 3 i = 6 i = 10 i = 3 i = 6 i = 10 

LM_base 0.6115 0.7963 0.8697 0.6165 0.8071 0.8786 

LM_GDSSM 0.6430 0.8346 0.8965 0.6448 0.8343 0.8989 

Improvement 5.16% 4.80% 3.08% 4.60% 3.37% 2.31% 

VI. CONCLUSION 

In this paper, we have introduced the generalized loss 
function �! in (2) for the semantic similarity models that have 
neural network structures. It’s motivated by the fact that for 
data with a fine-grained target structure, it’s possible to build 
better labels to improve the prediction. We analyzed the 
generalized loss function and pointed out that label 
improvement can make considerable contribution toward 
reducing the discrepancy between the prediction and the true 
target. We trained models and performed extensive 
experiments using the Xbox One’s logs on movie search. We 
found evidence that the generalized loss function is 
significantly better than the original loss function, and other 
benchmarks, measured by the NDCG and recall metrics. 

We also compared our model GDSSM with the generalized 
loss function �! against the current widely used search ranking 
algorithm LambdaMart that uses thousands of manually 
generated term or lexical match features and found that our 
model has better recall performance. Moreover, by adding the 
similarity score computed from our model to the LambdaMart 
as a semantic match feature, significant performance lift is 
achieved in both NDCG and recall measurements. These 
results are encouraging since they indicate some progress in 
saving the engineering efforts of manually building features.   

As for future work, we suggest adding more structure(s) to 
the architecture of our model GDSSM to enrich the feature 
generation from the input layer. It will be very interesting to 
compare these new type of models to the LambdaMart that 
uses both the term or lexical matching features and the 
semantic matching features. 
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