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ABSTRACT

A numerical and analytical study of the free convection thermal boundary layer or wall jet at
�nite Prandtl number is performed to understand the mechanisms of the separation of a high
Prandtl number thermal boundary layer �ows� The model is that adopted by Smith � Duck
���		
 in which the upstream in�uence delineates the �ow into a �double�deck
 structure with
the lower deck having thickness O�R�����
� R being the Rayleigh number� The velocities
and pressure in the lower deck are obtained thus determining the temperature distribution
in the reversed �ow zone� The asymptotic structure of the �ow downstream of separation
for the temperature is analysed indicating a functional dependence on the streamfunction in
the slowly recirculating inviscid core�

� INTRODUCTION

There are many examples of �uid �ows in technology and engineering where imposed bound�
ary conditions or geometries results in �ow separation� In applications where thermal e�ects
are signi�cant� such as cooling or insulating systems� such separations can have important
consequences for the heat transfer properties of the system� In the present paper we consider
the manner in which a thermal jet �ow� such as that driven by buoyancy along a heated
vertical wall� can separate resulting in a drastic reduction in heat transfer through the wall�
Such separations may be relevant� for example� where the jet encounters a corner� obstruction
or sudden change in thermal boundary conditions�

One important aspect of such �ows is the r�ole of the Prandtl number� �� An eventual
aim of the present work is to investigate the �ow development at high Prandtl numbers
where inertial e�ects are suppressed at the expense of buoyancy� leading to the possibility
of the thermal �eld playing a signi�cant r�ole in the local separation process� Here results
are presented for the separation zone at �nite Prandtl numbers� where locally the �ow is
controlled by viscosity and inertia� independent of thermal e�ects� Nevertheless the resulting
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Figure �� The double deck structure� the sketch has been rotated ��o degrees�

temperature �eld is of some interest and its calculation is a natural �rst step in the analysis
of high Prandtl number separating �ows�

� PROBLEM FORMULATION

The solution of a vertical thermal boundary layer �ow at high Rayleigh numbers� R� was
obtained by Gill �����
� it may be represented by the following elementary functions�

� � R�����X
� u � �� w � R���W �X
� T � z ���X
�

where x � R����X� z are the horizontal and vertical coordinates respectively� u� w are the
corresponding velocity components�

At �nite Prandtl numbers� the separation of a boundary layer from the wall can occur as
a local interaction of the type described by Smith and Duck ���		
� In this case� a double
deck occurs on a vertical streamwise scale of Z � O��
 where z � R�����Z with a main deck
where X � O��
 and a lower deck where �X � O��
 with x � R����� �X� Fig� � demonstrates
the double deck structure of the �ow undergoing free interaction�

If� in the lower deck�

u � R���� �U� �X�Z
� w � R��� �W � �X�Z
�

p � R��� �P �Z
� T � R����� �T � �X�Z
�

then the following equations describe the steady �ow�
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with�
�U � �W � �T � � at �X � ��

and
�W � W ���
� �X � A�Z
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where the free interaction condition is given by�

d�A

dZ�
� �

� �P �Z
R
�

�
W �dX

� ��


Thus at leading order� the buoyancy term is not present in the momentum equation� The
above equations may be normalised as follows�

�U � W ���
���	����	�	�� �U
�W � W ���
���	���	���� �W
�X � W ���
��	���	���� �X
�Z � W ���
��	���	�����Z
�P � W ���
���	���	����� �P
�T � W ���
��	����
�����	���� �T
�A � W ���
��	���	����A

where � �� ��
R
�

�
W �dX� On dropping the hat symbol� the fundamental equations reduce
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with
U � W � T � � at X � ��

and
W � X �A�Z

T � X �A�Z


�
as X ���

where

d�A

dZ�
� �P �Z
� ��


A consequence of the normalisation is that the temperature T is decoupled from the velocity
�eld whence it su�ces to determine the velocity and the pressure �rst and then determine



the temperature for a given Prandtl number� �� For the solution of the velocities and
pressure� we follow Smith and Duck ���		
� The equations may be expressed in terms of
��W and � where � is the streamfunction �W � ����X� U � �����Z
 and � � �W��X
is the stress� The Keller Box scheme �Keller� ��	�
 is applied to the resulting system of
�rst order partial di�erential equations with the central di�erencing centred at the node
�Zi����� Xj����
� The nonlinear discrete equations are solved by a Newton�Raphson scheme�
Boundary conditions at X � � and X � X� are prescribed where X� is a suitably chosen
large number� Forward marching in the Z direction is adopted with the proviso that at each
Zi station� if Wi�����j���� � �� as might happen in reversed �ows� the discrete form of the
streamwise convection term� W�W��Z is neglected� Known as the FLARE approximation
�Fl�ugge�Lotz and Reyhner� ����� Stewartson and Williams� ����
 the e�ect is to avoid any
numerical instabilities due to the march in the direction opposite to the back�ow at the
expense of accuracy� FLARE may be used as a starting point in an iteration scheme which
allows one to integrate from downstream into the reversed �ow yielding a more accurate
picture of the �ow� This leads to the necessary speci�cation of a downstream boundary
condition�

But in order to initiate the forward marching� boundary conditions upstream of the interac�
tion zone are required� This may be done numerically by assuming the �ow is unchanged i�e�
W � X�U � � at Z � � with a small pressure disturbance� Analytically we may appeal to
the Lighthill �����
 solution� see also Stewartson and Williams �����
 and Smith and Duck
���		
� For if� Z is large and negative�

W � X � f ��X
e�Z� U � �	f�X
e�Z� P � be�Z�

then it may be shown that� to leading order in e�Z �

f ��X
 �
	���b

Ai���


Z Y

�

Ai�q
dq� Y � 	���X with 	 �
�
��Ai���


����
�

where Ai�x
 is the Airy function� Thus the wall shear stress is given by�

� � �� �	�	��bAi���
�

which means that a rise in the pressure �b 
 �
� which might be expected to occur in a
separating boundary layer� corresponds to a decrease in the wall shear stress� This upstream
in�uence may manifest itself in the numerical calculations as a boundary condition�

�W

�Z
� 	�W �X
�

It is possible to derive a similar expression for the temperature but the analysis is too
complicated to present here� In our case� we have imposed a numerical value for the pressure
disturbance� say ���� which is su�cient to cause separation�

Fig� � shows the streamwise behaviour of the pressure� wall shear stress and the displacement
function �P� �� A respectively
� The characteristic features of free interacting boundary layers
are reproduced �Stewartson and Williams� ����� Smith and Duck� ��		
� Note that the plots
have been shifted to coincide with � � � at the origin where separation occurs�
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Figure �� Pro�les for P ���
� � ��
 and A ����
 with upstream conditions at Z � ������

Note that the pressure approaches a constant value� say P�� downstream of separation� This
suggests an asymptotic structure for the �ow in this region� Assuming that the �ow is self
preserving� by appealing to the results of Stewartson and Williams ���	�
 �and also Smith
and Duck ���		

� the pressure and displacement function attain the forms�

P �Z
 � P� �
P�
�
Z���� � O�Z�����
� A�Z
 � �

P�
�
Z� � O��
�

where P� is an unknown constant� The velocity �eld may be composed of three zones� an
inner shear layer which is con�ned to the wall and moves along the wall towards the point of
separation� an inviscid recirculating core and an outer shear layer which is the upstream shear
layer that has been convected away from the wall� The asymptotic structure is summarised
as follows�

�i
 outer shear layer is centred about X � �A�Z
 with the streamfunction de�ned

by � � Z���G��
�O��
 where � � �X�A
�Z���� then the equation of momentum
reduces to

G��� �
�

�
G��G�

�

�
G�� � � ��


with G����
 � � and G� ����� � as � � � to ensure that the �ow matches
with the main deck pro�le and the invsicid core� Numerical solution yields the
property G���
 � �� � �����	 �cf� Stewartson and Williams ���	�

�

�ii
 inviscid core has thickness O�Z�
� Thus� if 
 � X�Z� then the streamfunction is
� � �aX���
 where a is controlled by the �ow in the inner shear layer�
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Figure �� Asymptotic behaviour of �P��P 
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�

�iii
 inner shear layer is described by � � Z����F ��
 �O�Z�	��
 where � � XZ�����
A Falkner�Skan type equation ensues�

F ��� �
�

�
F ��F �

�

�
�F �� � P�
 � � ���


with the boundary conditions F ��
 � F ���
 � � and F ���
 � �P�
���� Thus

matching with the inviscid core gives a� � P�� Numerical solution yields the
property� F ����
 � ������P�

��� �cf� Smith and Duck ���		

�

Numerical con�rmation of this asymptotic structure is evident in �g� �� we used P� � �����
Finally the �ow may be uniquely determined in terms of P� via matching of streamfunction
in various zones to give

P� �
���

P�
�
�

Having determined the asymptotic structure downstream of separation� we intend to adopt
the iterative scheme of Williams ���	�
 in which integrating into a suitably chosen back�ow
region we can determine the velocities more accurately than FLARE� Known as Downstream
Upstream ITerative �DUIT
� the algorithm starts with forward marching from the point of
separation using FLARE until a suitable value of P� is determined along with X� which is
the limit of the back�ow region� With these parameters� the asymptotic pro�les may be
determined from the above equations� Then with the streamwise convection termW�W��Z

known� integration into the back�ow is permitted and the whole process is repeated until
the downstream conditions agree� For the temperature pro�les� we expect to adopt a similar
strategy but �rst the asymptotic structure for the temperature has to be determined�
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Figure �� Streamwise development of the wall temperature gradient� �T��X jX
�� for � � �

� TEMPERATURE PROFILES

Since the velocity �eld is already determined� we are left with a linear equation in T for a
given Prandtl number �� As for the velocities� the Keller box scheme is used to set up the
discrete equations along with FLARE as a starting point� Fig� � shows the temperature
gradient at the wall for � � �� It is evident that there is loss of heat transfer in the reversed
�ow region� However� the wiggles which become prominent downstream of separation give
cause for concern� At higher values of � these wiggles become progressively worse� Whether
it is a characteristic feature of the cell Peclet number being greater than � �leading to the
need for upwinding
 or a feature of the FLARE scheme being used� it is prudent� and useful�
to consider the asymptotic structure for the temperature pro�les downstream of separation�
As in the previous section the �ow is delineated into three zones summarised as follows�

��� Outer shear layer

In the outer shear layer we have T � Z���H��
 yielding

H �� �
�

�
�G�H � �GH �
 � �� ���


with H��
 � � to match with the temperature at the upper edge of the lower deck� But for
� � ��� we have

H �� �
���

�
H � � ��
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Figure �� First fundamental solution of outer shear layer temperature equation with
H���
 � �� H��
 � �� � � �� Note that H � G��

and since G���
 � �� the general solution at � � �� is

H � A�Bexp�
���

�
�
�

That there are two fundamental solutions to eq� �� may be seen in �gs� ��� which depict
the solutions for

H���
 � � H��
 � �

or H���
 � � H��
 � ��

Fig� 	 shows that the temperature can attain a minimum in the shear layer before approach�
ing its inviscid core value� Of interest� therefore� is the relationship between the parameters
A�B and the inviscid core temperature�

��� Inviscid core

The temperature may be expressed as T � Z���S�

� Hence the equation for S is�

S � �
S � � �

yielding the general solution S � K
���� This implies that T may be related to the stream�
function by T � K����a
���� K is a constant to be determined that in�uences the choice
of A�B above�
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Figure �� Second fundamental solution of outer shear layer temperature equation with
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Figure 	� Existence of a minimum in the temperature pro�le in the outer shear layer with
H���
 � �� H��
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Figure �� Inner shear layer temperature behaviour� Q ��
 and Q� ���
� with Q � ����� ��
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��� Inner shear layer

Finally� let T � Z�����Q��
 yielding an equation for Q�

Q�� �
�

��
�F �Q� �FQ�
 � � ���


with the boundary conditions Q��
 � � and Q � C����� � � �� the latter being a con�
sequence of the matching with the inviscid core temperature� Fig� � shows the variation
of Q across the inner shear layer� The de�nition of Q suggests that ��T��X�X � �

���	

should develop linearly with respect to Z downstream of separation but the oscillations in
the reversed �ow region masks this variation� Hence it is imperative to adopt a DUIT type
scheme for the temperature �eld before any �rm conclusions can be made about the high
Prandtl number calculations for the temperature �eld in the reversed �ow region�

� CONCLUSIONS

The preliminary results presented here indicate how separation leads to a sudden reduction
of wall heat transfer� As the shear layer departs from the neighbourhood of the wall it carries
with it the heat �ux contained in the upstream jet �ow� leaving a slowly moving region of
reverse �ow closer to the wall� Here the �ow is convectively dominated except in a boundary
layer immediately adjacent to the wall and it appears that the temperature �eld may only be
determined uniquely by speci�cation of its precise functional dependence on streamfunction
downstream of the separation�
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