REVERSED FLOW CALCULATIONS OF HIGH PRANDTL NUMBER THERMAL
BOUNDARY LAYER SEPARATION!

J. T. Ratnanather and P. G. Daniels
Department of Mathematics

City University

London, England, EC1V 0HB

ABSTRACT

A numerical and analytical study of the free convection thermal boundary layer or wall jet at
finite Prandtl number is performed to understand the mechanisms of the separation of a high
Prandtl number thermal boundary layer flows. The model is that adopted by Smith & Duck
(1977) in which the upstream influence delineates the flow into a ‘double-deck’ structure with
the lower deck having thickness O(R‘3/14), R being the Rayleigh number. The velocities
and pressure in the lower deck are obtained thus determining the temperature distribution
in the reversed flow zone. The asymptotic structure of the flow downstream of separation
for the temperature is analysed indicating a functional dependence on the streamfunction in
the slowly recirculating inviscid core.

1 INTRODUCTION

There are many examples of fluid flows in technology and engineering where imposed bound-
ary conditions or geometries results in flow separation. In applications where thermal effects
are significant, such as cooling or insulating systems, such separations can have important
consequences for the heat transfer properties of the system. In the present paper we consider
the manner in which a thermal jet flow, such as that driven by buoyancy along a heated
vertical wall, can separate resulting in a drastic reduction in heat transfer through the wall.
Such separations may be relevant, for example, where the jet encounters a corner, obstruction
or sudden change in thermal boundary conditions.

One important aspect of such flows is the role of the Prandtl number, . An eventual
aim of the present work is to investigate the flow development at high Prandtl numbers
where inertial effects are suppressed at the expense of buoyancy, leading to the possibility
of the thermal field playing a significant role in the local separation process. Here results
are presented for the separation zone at finite Prandtl numbers, where locally the flow is
controlled by viscosity and inertia, independent of thermal effects. Nevertheless the resulting
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Figure 1: The double deck structure: the sketch has been rotated 90° degrees.
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temperature field is of some interest and its calculation is a natural first step in the analysis
of high Prandtl number separating flows.

2 PROBLEM FORMULATION

The solution of a vertical thermal boundary layer flow at high Rayleigh numbers, R, was
obtained by Gill (1966); it may be represented by the following elementary functions:

Y =RYU(X), u=0, w=RVPW(X), T=z+0(X),

where = R™Y4X, » are the horizontal and vertical coordinates respectively; u, w are the
corresponding velocity components.

At finite Prandtl numbers, the separation of a boundary layer from the wall can occur as
a local interaction of the type described by Smith and Duck (1977). In this case, a double
deck occurs on a vertical streamwise scale of Z = O(1) where 2 = R=3/1 7 with a main deck
where X = O(1) and a lower deck where X = O(1) with z = R=%/?8X. Fig. 1 demonstrates

the double deck structure of the flow undergoing free interaction.

If, in the lower deck,

u=RYPU(X,7), w=RN"W(X,Z),
p= RSITP(Z), T = R-YYI(X, 7),

then the following equations describe the steady flow:
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Thus at leading order, the buoyancy term is not present in the momentum equation. The
above equations may be normalised as follows:
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where v := 1/[7° W2dX. On dropping the hat symbol, the fundamental equations reduce
to:
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with
U = W =T = 0atX =0
and
W ~ X4+ A(Z)
T o~ X—I—A( )}asX—>oo
where
d?A
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A consequence of the normalisation is that the temperature T is decoupled from the velocity
field whence it suffices to determine the velocity and the pressure first and then determine



the temperature for a given Prandtl number, o. For the solution of the velocities and
pressure, we follow Smith and Duck (1977). The equations may be expressed in terms of
1, W and 7 where 9 is the streamfunction (W = 0¢/0X,U = —0v/0Z) and 7 = OW/0X
is the stress. The Keller Box scheme (Keller, 1974) is applied to the resulting system of
first order partial differential equations with the central differencing centred at the node
(Zi—12, Xj—1/2)- The nonlinear discrete equations are solved by a Newton-Raphson scheme.
Boundary conditions at X = 0 and X = X, are prescribed where X, is a suitably chosen
large number. Forward marching in the Z direction is adopted with the proviso that at each
Z; station, if W;_y/5;_1/2 < 0, as might happen in reversed flows, the discrete form of the
streamwise convection term, WOW/0Z is neglected. Known as the FLARE approximation
(Fligge-Lotz and Reyhner, 1968; Stewartson and Williams, 1969) the effect is to avoid any
numerical instabilities due to the march in the direction opposite to the backflow at the
expense of accuracy. FLARE may be used as a starting point in an iteration scheme which
allows one to integrate from downstream into the reversed flow yielding a more accurate
picture of the flow. This leads to the necessary specification of a downstream boundary
condition.

But in order to initiate the forward marching, boundary conditions upstream of the interac-
tion zone are required. This may be done numerically by assuming the flow is unchanged i.e.
W =X,U =0at Z =0 with a small pressure disturbance. Analytically we may appeal to
the Lighthill (1953) solution; see also Stewartson and Williams (1969) and Smith and Duck
(1977). For if, Z is large and negative,

W=X+ f(X)eM, U=-Af(X)e?, P=be?,

then it may be shown that, to leading order in e*?,

AL/3p
~A(0)

Y
f(x / Ai(q)dq,Y = NV2X with A = (=34¢(0))"".
0

where Ai(z) is the Airy function. Thus the wall shear stress is given by:

7 =1-3)A""%bAi(0),

which means that a rise in the pressure (b > 0), which might be expected to occur in a
separating boundary layer, corresponds to a decrease in the wall shear stress. This upstream
influence may manifest itself in the numerical calculations as a boundary condition:

ow
oz
It is possible to derive a similar expression for the temperature but the analysis is too

complicated to present here. In our case, we have imposed a numerical value for the pressure
disturbance, say 10~% which is sufficient to cause separation.

AW — X).

Fig. 2 shows the streamwise behaviour of the pressure, wall shear stress and the displacement
function (P, 7, A respectively). The characteristic features of free interacting boundary layers
are reproduced (Stewartson and Williams, 1969; Smith and Duck, 1977). Note that the plots
have been shifted to coincide with 7 = 0 at the origin where separation occurs.
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Figure 2: Profiles for P (——),7 (=) and A (...) with upstream conditions at 7 ~ —12.1.

Note that the pressure approaches a constant value, say Py, downstream of separation. This
suggests an asymptotic structure for the flow in this region. Assuming that the flow is self
preserving, by appealing to the results of Stewartson and Williams (1973) (and also Smith
and Duck (1977)), the pressure and displacement function attain the forms:

P, P,
P(Z)=Po— 5274 0(Z71 %), A(Z) = = 2% + 0(1).

where P; is an unknown constant. The velocity field may be composed of three zones: an
inner shear layer which is confined to the wall and moves along the wall towards the point of
separation, an inviscid recirculating core and an outer shear layer which is the upstream shear
layer that has been convected away from the wall. The asymptotic structure is summarised
as follows:

(i) outer shear layer is centred about X = —A(Z) with the streamfunction defined
by ¢ = Z*3G(6)+0(1) where £ = (X4 A)/Z"/?, then the equation of momentum

reduces to

1
3
with /(—00) = 0 and G — €*/2 — 0 as £ — oo to ensure that the flow matches

with the main deck profile and the invsicid core. Numerical solution yields the
property G(—o0) = —a & —1.257 (cf. Stewartson and Williams (1973)).

2
G/// _I_ gG//G _ G/2 — 0 (9)

(ii) inviscid core has thickness O(Z?). Thus, if ( = X/Z?* then the streamfunction is
¥ = —aX?/3¢ where a is controlled by the flow in the inner shear layer.
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Figure 3: Asymptotic behaviour of (Py— P)=3/8 (—==), (=70)72/5 (=) and (=Upnin) =% (..0).

(iii) inner shear layer is described by ¢ = Z=YSF(n) + O(Z~%/%) where n = X 77/,
A Falkner-Skan type equation ensues:

1 4
F" - 8F”F - §(F’2 - P)=0 (10)

with the boundary conditions F(0) = F'(0) = 0 and F'(00) = —P,'/2. Thus
matching with the inviscid core gives a? = P;. Numerical solution yields the
property: F”(0) = —1.343P,%/* (cf. Smith and Duck (1977)).

Numerical confirmation of this asymptotic structure is evident in fig. 3; we used Py = 1.22.
Finally the flow may be uniquely determined in terms of Py via matching of streamfunction
in various zones to give

Having determined the asymptotic structure downstream of separation, we intend to adopt
the iterative scheme of Williams (1975) in which integrating into a suitably chosen backflow
region we can determine the velocities more accurately than FLARE. Known as Downstream
Upstream ITerative (DUIT), the algorithm starts with forward marching from the point of
separation using FLARE until a suitable value of Fj is determined along with Xy which is
the limit of the backflow region. With these parameters, the asymptotic profiles may be
determined from the above equations. Then with the streamwise convection term WoW /97
known, integration into the backflow is permitted and the whole process is repeated until
the downstream conditions agree. For the temperature profiles, we expect to adopt a similar
strategy but first the asymptotic structure for the temperature has to be determined.
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Figure 4: Streamwise development of the wall temperature gradient, 97 /90X |x—¢, for o = 1

3 TEMPERATURE PROFILES

Since the velocity field is already determined, we are left with a linear equation in T for a
given Prandtl number o. As for the velocities, the Keller box scheme is used to set up the
discrete equations along with FLARE as a starting point. Fig. 4 shows the temperature
gradient at the wall for ¢ = 1. It is evident that there is loss of heat transfer in the reversed
flow region. However, the wiggles which become prominent downstream of separation give
cause for concern. At higher values of o these wiggles become progressively worse. Whether
it is a characteristic feature of the cell Peclet number being greater than 2 (leading to the
need for upwinding) or a feature of the FLARE scheme being used, it is prudent, and useful,
to consider the asymptotic structure for the temperature profiles downstream of separation.
As in the previous section the flow is delineated into three zones summarised as follows:

3.1 Outer shear layer
In the outer shear layer we have T = Z'/2H (¢) yielding

o - %(G’H —2GH") = 0, (11)

with H(o0) = £ to match with the temperature at the upper edge of the lower deck. But for

& — —o0, we have
200

H//
+ 3

H' =0,
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Figure 5: First fundamental solution of outer shear layer temperature equation with
H(—00)~0,H(¢)~¢&,0=1. Note that H = G'.

and since G(—o0) = —a the general solution at £ ~ —oo is

H~A+ Bexp(%Taf).

That there are two fundamental solutions to eq. 11 may be seen in figs. 5-6 which depict
the solutions for

H(—00)~0 H(oo)~¢
or H(—o0)~1 H(oo)~0.

Fig. 7 shows that the temperature can attain a minimum in the shear layer before approach-
ing its inviscid core value. Of interest, therefore, is the relationship between the parameters
A, B and the inviscid core temperature.

3.2 Inviscid core

The temperature may be expressed as T = Z1/3S(C). Hence the equation for ' is:
S—208" =0

yielding the general solution S = K¢Y2, This implies that T may be related to the stream-
function by T = K(—1/a)'/?. K is a constant to be determined that influences the choice
of A, B above.
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Figure 6: Second fundamental solution of outer shear layer temperature equation with

H(—o00)~1,H(00)~0,0=1.
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Figure 7: Existence of a minimum in the temperature profile in the
H(—0)=1,H(0)~ 0 =1.

outer shear layer with
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Figure 8: Inner shear layer temperature behaviour, Q (=) and Q' (——), with Q ~ 5'/2, 5 —
o0, o = 1.

3.3 Inner shear layer

Finally, let T = Z='/12Q(n) yielding an equation for @Q:
Q"+ f—Q(F’Q —2FQ") =0 (12)

with the boundary conditions Q(0) = 0 and @ ~ Cnl/Q,n — 00, the latter being a con-
sequence of the matching with the inviscid core temperature. Fig. 8 shows the variation
of Q across the inner shear layer. The definition of Q suggests that (87 /90X (X = 0))~%/>
should develop linearly with respect to Z downstream of separation but the oscillations in
the reversed flow region masks this variation. Hence it is imperative to adopt a DUIT type
scheme for the temperature field before any firm conclusions can be made about the high
Prandtl number calculations for the temperature field in the reversed flow region.

4 CONCLUSIONS

The preliminary results presented here indicate how separation leads to a sudden reduction
of wall heat transfer. As the shear layer departs from the neighbourhood of the wall it carries
with it the heat flux contained in the upstream jet flow, leaving a slowly moving region of
reverse flow closer to the wall. Here the flow is convectively dominated except in a boundary
layer immediately adjacent to the wall and it appears that the temperature field may only be
determined uniquely by specification of its precise functional dependence on streamfunction
downstream of the separation.
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